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Abstract

Satisfiability Modulo Theories (SMT) is about checking the satis-
fiability of logical formulas over one or more theories. The problem
draws on a combination of some of the most fundamental areas in
computer science. It combines the problem of Boolean satisfiability
with domains, such as, those studied in convex optimization and term-
manipulating symbolic systems. It also draws on the most prolific
problems in the past century of symbolic logic: the decision problem,
completeness and incompleteness of logical theories, and finally com-
plexity theory. The problem of modularly combining special purpose
algorithms for each domain is as deep and intriguing as finding new
algorithms that work particularly well in the context of a combina-
tion. SMT also enjoys a very useful role in software engineering. Mod-
ern software, hardware analysis and model-based tools are increasingly
complex and multi-faceted software systems. However, at their core is
invariably a component using symbolic logic for describing states and
transformations between them. A well tuned SMT solver that takes
into account the state-of-the-art breakthroughs usually scales orders of
magnitude beyond custom ad-hoc solvers.

1 Introduction

Satisfiability is one of the most fundamental problems in theoretical com-
puter science, namely the problem of determining whether a formula ex-
pressing a constraint has a solution. Constraint satisfaction problems arise
in many diverse areas including software and hardware verification, type
inference, extended static checking, test-case generation, scheduling, plan-
ning, graph problems, among others [1]. The most well-known constraint
satisfaction problem is propositional satisfiability SAT, where the goal is to
decide whether a formula over Boolean variables, formed using logical con-
nectives, can be made true by choosing true/false values for its variables.



Some problems require or are more naturally described in more expressive
logics such as first-order logic. A first-order formula is formed using logical
connectives, variables, quantifiers, function and predicate symbols. A solu-
tion, also known as a model, is an interpretation for the variable, function
and predicate symbols that makes the formula true. Of particular recent
interest is satisfiability modulo theories (SMT), where the interpretation of
some symbols is constrained by a background theory. For example, the the-
ory of arithmetic restricts the interpretation of symbols such as: +, <, 0,
and 1.

SMT draws on the most prolific problems in the past century of symbolic
logic: the decision problem, completeness and incompleteness of logical the-
ories, and finally complexity theory. The computational complexity of most
SMT problems is very high. The problem of modularly combining special
purpose algorithms for each domain is as deep and intriguing as finding new
algorithms that work particularly well in the context of a combination. The
theory of linear arithmetic, which is the basis of linear programming, is one
prominent theory that is useful in many applications. Linear programming
algorithms can be used to check satisfiability of conjunctions of linear arith-
metic inequalities, but they do not directly apply for Boolean combinations.
SMT solvers distinguish themselves by handling such combinations.

It is well-known that SAT is NP-complete and first-order logic is unde-
cidable. Due to this high computational complexity, it is infeasible to build
a procedure that can solve arbitrary SMT problems. Therefore, most pro-
cedures focus on the more realistic goal of efficiently solving problems that
occur in practice. They rely on the assumption that, although potentially
big, most formulas produced by verification and analysis tools are shallow.
That is, only a small fraction of a formula is really critical for establishing
satisfiability. The rest consists of irrelevant noise.

In recent years, there has been an enormous progress in the scale of
problems that can be solved, thanks to innovations in core algorithms, data
structures, heuristics, and paying attention to implementation details. Mod-
ern SAT procedures can check formulas with hundreds of thousands variables
and millions of clauses. A similar progress has being observed for SMT pro-
cedures for the more commonly occurring theories. The annual competition
for SAT and SMT procedures is a key ingredient in driving progress [2]. In
this paper, we provide a brief overview of SMT and the main technical ideas.



1.1 An Example

We will introduce three theories used in SMT solvers using the following
example:

b+ 2 =cA f(read(write(a,b,3),c —2)) # f(c—b+1).

The formula uses the theory of arrays. It was introduced by McCarthy in [3]
as part of forming a broader agenda for a calculus of computation. In the
theory of arrays, there are two functions read and write. The term read(a, )
produces the value of array a at index i, while the term write(a, i, v) produces
an array, which is equal to a except for possibly index ¢ which maps to v.
These properties can be summarized using the equations:

read(write(a,i,v),1) = v

read (write(a,i,v),j) = read(a,j) for i # j.

They state that the result of reading write(a,i,v) at index j is v for i = j.
Reading the array at any other index produces the same value as read(a, j).
The formula also uses the function f, therefore for all ¢t and s, if ¢t = s,
then f(t) = f(s) (congruence rule). In other words, the only assumption
about function f is that it always produce the same result when applied
to the same arguments. The congruence rule implies that formulas remain
equivalent when replacing equal terms. The example formula is unsatisfiable.
That is, there is no assignment to the integers b and ¢ and the array a such
that the first equality b + 2 = ¢ holds and at the same time the second
disequality also is satisfied. One way of establishing the unsatisfiability is
by replacing ¢ by b+ 2 in the disequality, to obtain the equivalent

b+ 2 =cA f(read(write(a,b,3),b+2—2)) # f(b+2—-b+1),
which after reduction using facts about arithmetic becomes
b+ 2 =cA f(read(write(a,b,3),b)) # f(3).

The theory of arrays implies that the nested array read/write functions
reduce to 3 and the formula becomes:

b+2=cA f(3) % f(3).

The congruence property of f entails that the disequality is false.



2 Preliminaries

A propositional formula ¢ can be a propositional variable p or a negation
-, a conjunction ¢g A ¢1, a disjunction ¢g V @1, an implication ¢y = ¢1,
or a bi-implication ¢y < ¢ of smaller formulas g, p1. A truth assignment
M for a formula ¢ maps the propositional variables in ¢ to {true,false}.
We say a truth assignment M satisfies ¢ (M = ¢), if M makes ¢ evaluate
to true under the usual truth table interpretation of the connectives. For
instance, let ¢ be the formula p vV (—g A r), then the truth assignment M =
{p + false,q — false,r — true} satisfies . A formula ¢ is satisfiable if
there is an M s.t. M |= ¢, and ¢ is valid if for all M, M = ¢. We say ¢;
and 9 are equisatisfiable if 1 is satisfiable iff (o is satisfiable. A literal is
either a propositional variable p or its negation —p. A clause is a disjunction
of literals 1 V...V l,. A formula is in conjunctive normal form (CNF) if
it is a conjunction of clauses C1 A ... A C),. We will write CNF formulas
as set of clauses. Any propositional formula can be converted to CNF, in
linear time, by introducing fresh variables for each compound subformula
and adding suitable clauses. For example, let ¢ be the formula —pV (g A—r),
in converting ¢ into CNF, we label ¢ A —r as k; and encode ki < (g A —r)
using the set of auxiliary clauses Ay = {—k1 V g, k1 V =r, =gV 1V k1},
similarly, we label —pV k; as kg and encode kg < (—pV k1) using the clauses
Ay = {pVky, —k1Vke, —kaV—pVki}, hence, the formula ¢ is equisatisfiable
to the set of clauses {ko} U A; UA,.

Many-sorted (first-order) logic is a commonly used formalism and frame-
work for formulating SMT problems. A many-sorted signature is composed
of a set of sorts, a set of function symbols, and a set of predicate sym-
bols. Each function symbol f has associated with it an arity of the form
01X ...X0op — 0, where 01,...,0,,0 are sorts. If n =0, we say f is a con-
stant symbol. Similarly, each predicate symbol p has associated with it an
arity of the form oy x ... x g,. If n =0, we say p is a propositional symbol.
We assume a set of variables X, where each variable is associated with a sort.
A term t with sort o has the form z or f(¢,...,t,), where x is a variable
with sort o, and f is a function symbol with arity o1 X. .. X0, — o, where for
each i € {1,...,n}, t; has sort o;. An atom is of the form p(t1,...,t,) where
p is a predicate symbol with arity o1 X ... X oy, and for each i € {1,...,n},
t; is a term with sort ;. A formula ¢ is an atom, or has the form -y,
wo A1, o V1, vo = 1, o < @1, (Va: o.¢g), or (3x: 0.pp), where
o, @1 are smaller formulas. A Y -formula ¢ is a formula where each symbol
in ¢ is in 3. We say a variable x is free in formula ¢ if it is not bound by
any quantifier 3,V. For example, z is free in (Vy: o.p(z,y)), but y is not.



A sentence is a formula without free variables. We use vars(¢) to denote
the set of free variables in ¢. A quantifier-free formula is a formula not
containing 3 or V.

A structure M for a signature ¥ and variables X consists of non-empty
domains |M |, for each sort in ¥, for each x € X with sort o, M (z) € |M|,,
for each function symbol f with arity o1 X ... X o, — o, M(f) is a total
map from |M|,, X ... x |M|,, to |M|,, and for each predicate symbol p
with arity o1 x ... X g,, M(p) is a subset of |M|,, X ... x |M]|,,. The
interpretation of a term ¢t is given by M[x] = M(x) and M[f(t1,...,t,)] =
M(f)(M[t1], ..., M[t,]). We assume that, for each sort o, the equality =,
is a builtin predicate symbol with arity o x ¢ that does not occur in any
signature and for every structure M, M(=,) is the identity relation over
|M|s x |M|s. As a notational convention, we will always omit the subscript.
We use M{x + v} to denote a structure where the variable symbol = with
sort o is interpreted as v, v € |M]|,, and all other variables, function and
predicate symbols have the same interpretation as in M. Given a formula
¢ and a structure M, satisfaction M |= ¢ is defined as:

Mty ta) = (M[ta],..., MIta]) € M(p)

M = —p = MFEyp

M @0 V1 = M por M [ ¢

M = o A @1 < M ¢oand M = ¢
ME3z:0.¢) <<= M{zxw— v}k pforsomere|M|,
MEWNz0yp) <<= M{z—viEgpforalve|M|,

Note that an implication @9 = ¢; is equivalent to =g V ¢1, and a bi-
implication @y < 1 is equivalent to (—gg V ¢1) A (po V —p1). A for-
mula ¢ is satisfiable if there is a structure M s.t. M | ¢, and is valid
if for all structures M, M E ¢. A structure M satisfies a set of for-
mulas S (M = S) if M = ¢ for every ¢ € S. A formula is in nega-
tion normal form (NNF) if the negation only occurs in literals of the form
—p(t1,...,ty). A formula can be converted to NNF by using the equiva-
lences such as: ——¢ = ¢, (@0 A p1) =~ V =1, (o V ¥1) = —wo A -1,
—(3z: 0.¢) = (Vi 0.7¢), and ~(Vz: 0.¢) = (3z: 0.7p). We use t[s/x]
to denote a term ¢ where the free variable z is replaced by the term s.
Skolemization converts an NNF formula ¢ into an equisatisfiable formula
¢’ not containing 3. It it is based on the observation that if ¢ is NNF,
then any subformula (Jz: 0.¢g) can be replaced by olf(z1,...,zn)/],
where vars(3z: 0.¢9) = {z1,...,2,}, and f is a new fresh function symbol.
The resulting formula can then be converted in linear time into CNF using
an approach similar to the one used for propositional formulas. The only



difference is that if a subformula contains free variables in the context of
universal quantifiers V, then the auxiliary clauses are universally quantified.
For example, let ¢ be the formula (Vz: 0. (Vy: 0. (¢(y) Ap(y)) V —r(x,y))),
the variable y is bound by an universal quantifier V, now suppose we want
to label the subformula ¢(y) A p(y), then we create a new fresh predicate
symbol s, and encode Vy: 0. s(y) < (¢(y) Ap(y)) using the auxiliary clauses
{(vy: 0. =s(y) Val(y), (Yy: o.=s(y) Vp(y)), (Yy: o.s(y) vV —q(y) vV —p(y))}-
In practice, solvers try to minimize the number of auxiliary clauses by using,
when feasible, the distributivity rule: oV (1 Ap2) = (o V1) A (o V ¢2).
Note that, in the worst case, the repeatedly application of the distributiv-
ity rule may exponentially increase the size of the resulting formula. From
now on, without loss of generality, we assume every formula that is being
checked for satisfiability is in CNF. We also use (Vx1: 01,...,Zpn: 0n. ) to
denote (Va1: o1. ... (Va,: on.¢)...), and V*p to denote a formula with zero
or more V.

3 Efficient Case-Analysis

Case-analysis is in the core of most automated deduction tools. Most SMT
solvers rely on SAT procedures for performing case-analysis efficiently. In
this section, we describe the basic techniques used in state-of-the-art SAT
solvers. Later, we describe how SMT specific solvers are combined with SAT
solvers.

Most successful SAT solvers are based on an approach called systematic
search. The search space is a tree with each vertex representing a proposi-
tional variable and the out edges representing the two choices (i.e., true and
false) for this variable. For a formula containing n variable, there are 2"
leaves in this tree. Each path from the root to a leaf corresponds to a truth
assignment. Given a formula ¢, a procedure, based on systematic search,
searches the tree for a truth assignment M that satisfies . Most search
based SAT solvers are based on the DPLL approach [4]. Given a CNF for-
mula, the DPLL algorithm tries to build a satisfying truth assignment using
three main operations: decide, propagate and backtrack. The operation de-
cide heuristically chooses an unassigned propositional variable and assigns
it to true or false. This operation is also called branching or case-splitting.
The operation propagate deduces the consequences of a partial truth assign-
ment using deduction rules. The most widely used deduction rule is the
unit-clause rule, which states that if a clause has all but one literal assigned
to false and the remaining literal [ is unassigned, then the only way for



this clause to evaluate to true is to assign [ to true. Let C be the clause
pV gV —r, and M the partial truth assignment {p — false, r — true}, then
the only way for C to evaluate to true is by assigning ¢ to false. Given a
partial truth assignment M and a clause C' in the CNF formula ¢ such that
all literals of C are assigned to false in M, then there is no way to extend
M to a complete truth assignment M’ that satisfies . We say this is a
conflict, and C'is a conflicting clause. A conflict indicates that some of the
earlier decisions cannot lead to a truth assignment that satisfies ¢, and the
DPLL procedure must backtrack and try a different branch value. If a con-
flict is detected and there are no decisions to backtrack, then the formula
 is unsatisfiable. Many significant improvements of this basic procedure
have been proposed over the years. The main improvements are: lemma
learning [5], non-chronological backtracking [5], efficient indexing techniques
for applying the unit-clause rule [6], and preprocessing techniques.

4 What is a Theory?

A theory is essentially a set of sentences. More formally, a X-theory is a
collection of sentences over a signature Y. Given a theory T, we say ¢ is
satisfiable modulo T if T'U {p} is satisfiable. We use M =7 ¢ to denote
M = {¢} UT. For example, let ¥ be the signature containing the symbols
0, 1, 4, — and <, and Z be the structure that interprets these symbols in
the usual way over the integers, then the theory of linear arithmetic is the
set of first-order sentences that are true in Z. Let ) be a class of structures
over a signature X, then we use Th(2) to denote the set of all sentences ¢
over ¥ such that M |= ¢ for every M in . In the literature, sometimes
a theory T is defined as a class of structures, and ¢ is satisfiable modulo
T if there is a structure M in T such that M = ¢. Note that these two
definitions are not equivalent when checking the satisfiability of a formula
¢ over an expanded signature (see discussion at [7]).

We say the satisfiability problem for theory T is decidable if there is a
procedure & that checks whether any quantifier-free formula is satisfiable or
not. In this case, we say & is a decision procedure for T'.

4.1 Theories

So which theories are integrated with SMT solves? The answer depends on
the SMT solver, yet some theories have gained more attention than others.
We summarize some of these here.
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Figure 1: Difference inequalities example

Linear Arithmetic: Linear arithmetic, also known as additive arithmetic,
is the theory where the only arithmetical functions are + and —. The func-
tions may be applied to either numerical constants or variables. Multiplica-
tion of a numerical constant with a variable is also allowed, so 5-z is a legal
term, and for arithmetic over the reals, % - x is allowed. The relations for
equality and inequalities (=, <, <) are used for forming atomic predicates.
A conjunction of = and < atoms can be decided using a procedure based
on the dual simplex algorithm [8]. A method for extending the procedure
to strict inequalities is by working with non-standard reals that contain in-
finitesimals. This is achieved by adding a symbolic infinitesimal constant e
to strict inequalities to make them non-strict.

Difference arithmetic: is a fragment of linear arithmetic where predicates
are restricted to be of the form x — y < ¢, for x,y variables and ¢ a numeric
constant. Conjunctions of difference arithmetic inequalities can be checked
very efficiently for satisfiability by searching for negative cycles in weighted
directed graphs. In the graph representation, each variable corresponds to
a node, and an inequality of the form x —y < ¢ corresponds to an edge from
y to & with weight c. Figure 1 shows a conjunction of difference inequalities
and the corresponding graph, the negative cycle, with weight —1, is shown
by dashed lines.

Non-linear arithmetic: The theory of quantifier-free non-linear arith-
metic over the reals is decidable. Tarski established a stronger result, that
the full first-order theory of reals with addition and multiplication is de-
cidable [9]. Modern methods for non-linear arithmetic over the reals use
algorithms from computer algebra, such as computing a Grobner basis from
equalities [10]. The situation is completely different for integers. Hilbert’s
famous 10th problem was to develop an algorithm for solving non-linear
equalities over the integers. Matiyasevich established that this problem was
undecidable That is, there is no algorithm for solving such equalities. It is
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Figure 2: Congruence closure example: a = b, b = ¢, f(a,g(a)) # f(b,g(c)).
(a) A DAG for all terms in the example. (b) Equivalences a = b and b = c are
shown by dashed lines. (c¢) Nodes g(a) and g(c) are congruent because a = ¢
is implied by first two equalities. (d) Nodes f(a, g(a)) and f(b, g(c)) are also
congruent, hence the example is unsatisfiable because f(a, g(a)) # f(b, g(c)).

much worse with quantifiers, which is also known as Peano arithmetic: Goédel
established there is not even a computable set of axioms for characterizing
Peano arithmetic.

Free functions: The free theory over a signature Y. is the first-order theory
with an empty set of sentences. The free theory was used in Section 1.1. It
is also known as the theory of uninterpreted functions. Decision procedures
for this theory are particularly important because the decision problem for
many theories (e.g., arrays) can be reduced to this one. Given a conjunction
of equalities between terms using free functions, a congruence closure can
be used for representing the smallest set of implied equalities. This repre-
sentation can be used to check if a mixture of equalities and disequalities
are satisfiable. Simply check that the terms on both sides of each disequal-
ity are in different equivalence classes. Efficient algorithms for computing
congruence closure has been the subject of long-running research [11]. In
these algorithms, terms are represented as directed acyclic graphs (DAGS).
Figure 2 shows the operation of a congruence closure algorithm in a small
example.

Bit-vectors: The arithmetic of machines is not the same as arithmetic
on mathematical integers. In machine arithmetic, integers fit in fixed size
registers. A more suitable domain for machine arithmetic is to represent
every number as a fixed-size sequences of bits. On a 64 bit CPU, for instance,



an integer is represented as a bit-vector with 64 bits. The theory of bit-vector
arithmetic also allows mixing bit-wise operations. For example, when x is
a 64-bit integer, then x is a power of two, if and only if 0 = ((z — 1)&x).
The theory of bit-vectors can be reduced to Boolean satisfiability by simply
blasting bit-vector formulas to Boolean formulas. For example, assume x
and y are bit-vectors of size 2, then the formula x + y = 0 can be blasted
into:

(o xor yo) < false

(x1 xor y1) xor (xg Ayg) < false

where xg, x1, Yo, Y1 are propositions corresponding to the bits of x and y, xor
is the exclusive-or operator, a xor b is defined as a < —b. In this example,
we are essentially encoding a carry look-ahead adder as a Boolean formula.
Current research into efficient decision procedures for bit-vectors seek taking
advantage of methods for modular arithmetic, methods for lazy bit-blasting,
and approximating long bit-vectors by short bit-vectors.

Arrays: We used the theory of (applicative) arrays in Section 1.1. The
theory is useful for encoding state changes to programs with arrays. When
a program updates an array a by setting the value of a field ¢ to v it induces
a state change. The side-effect can be encoded by referring to the updated
array as write(a,i,v). The problem of checking whether a quantifier-free
formula is satisfiable modulo the theory of arrays is decidable, and it allows
various extensions which have been pursued in recent literature [12, 13].
Other theories: There are several other theories of interest and relevance
in applications of SMT solvers. We cannot survey them all here, but mention
a just few to give an idea of the scope. These include the theory of pairs, or
more generally tuples, allows working with pairs and accessing components
within pairs after they have been built. The basic theory of acyclic finite
lists is tailored to the list data-structure found in functional programming
languages. A theory of strings is closely related to the theory of lists. It
is distinguished as concatenation is assumed as the basic way of building
strings, as opposed to consing new elements to the front of a list. Concate-
nation is found in programs that manipulate strings. Of equal relevance for
string-manipulating programs are operations for taking lengths of strings,
indexing into strings, and checking membership in regular and context-free
languages. Unfortunately not all combinations of these extensions remain
decidable. The theory of acyclic finite recursive data-types generalizes both
the theory of pairs and lists. It can be used for algebraic data-types, known
from functional programming.

10



5 SAT + Theory Solvers

The previous section summarized an array of different theories, and de-
scribed decision procedures for deciding the satisfiability of conjunction of
literals modulo a given theory. From now on, we say these procedures are
theory solvers. In practice, we are usually interested in deciding the satisfi-
ability of arbitrary quantifier-free formulas. One simple idea is to integrate
SAT techniques described in Section 3 with theory solvers [14, 15, 16, 17].
First, we introduce an abstraction function « that maps a quantifier-
free formula ¢ into a propositional formula a(¢) by replacing atoms in ¢
with (fresh) propositional variables. More formally, given a formula ¢ with
atoms A = {ay,...,a,} and a set of propositional variables P = {p1,...,pn}
not occurring in ¢, the mapping « from formulas over A to propositional
formulas over P is defined as the homomorphism induced by «(a;) = p;.
The inverse v of such an abstraction mapping « simply replaces propositional
variables p; with their associated atom a;. For instance, let ¢ be the formula
fx) 2 anf(f(@) ~ =z, alf(r) ~z) =p1 and a(f(f(z)) ~ z) = p2, then

a(p) = —p1 A ps. Moreover, the truth assignment M induces a set of literals

V(M) = {v(pi) | M(pi) = true} U{~y(pi) | M(p;) = false}

Now, given a truth assignment M = {p; — false,ps — true}, v(M) =
{f(2) # 3, f(f(z)) = x}.

Given an unsatisfiable set of literals S, we say a justification for S is
any unsatisfiable subset J of S. Of course, any unsatisfiable set S is a
justification for itself. We say a justification J is non-redundant if there is
no strict subset J’ of J that is also unsatisfiable.

The basic integration of a SAT solver with a theory solver is reported
in Figure 3. The procedure SAT(p) (satisfiability solver) returns a tuple
(r, M) where r is sat if ¢ is satisfiable and unsat otherwise, and M is a
truth assignment that satisfies ¢ if r is sat. The procedure T-Solver(S)
(theory solver) returns a tuple (r,J) where r is sat if the set of literals S is
satisfiable and unsat otherwise, and J is a justification for S if r is unsat.
Note that \/;c; ~a(l) is a new clause not in ¢, and we say it is a theory
lemma.

The algorithm described in Figure 3 is also known as the lazy offline
approach. There are many refinements for this basic algorithm. The basic
idea is to have a tighter integration between the two procedures, where the
T-solver is used to check partial truth assignments being explored by the
SAT solver (online integration). In this refinement, additional performance
gains can be obtained if the theory solver is incremental and backtrackable.
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SMT-Solver(p)

/

¢ = alyp)

loop

(r, M) := SAT(¢)

if r = unsat then return unsat
(r,J) := T-Solver(y(M))

if r = sat then return sat

C = \/leJ —a(l)

o= NC

Figure 3: Basic SAT + Theory Solver integration

Theory deduction rules can also be used to prune the search space being
explored by the DPLL solver (theory propagation). More formally, let M be
a partial truth assignment, and (M) implies v(;), then [; is assigned to true
by theory propagation. Finally, it is desirable to have a theory solver that
produces non-redundant justifications, because they may drastically reduce
the search space. This observation follows from the fact that if J C J’,
then the clause \/;c; —a(l) is smaller than \/,. ;, —«a(l), and consequently
the number of truth assignments that satisfy the first clause is smaller than
the second.

6 Combining Procedures

Section 4.1 summarized an array of different theories. Most of these the-
ories are decidable and their decision procedures use specialized efficient
algorithms. As the example in Section 1.1 illustrated, it does not always
suffice to use one theory in isolation. A fundamental question arises: is the
union of two solvable theories still solvable? If they are, how can proce-
dures be combined? Can the glue for combining two procedures be defined
without specific dependencies on the theories?

Given a Yi-theory T and a Ys-theory 75, we use 17 @ 15 to denote the
(X1 U Xy)-theory that is the union of the sentences of T and 7.

6.1 Strongly Disjoint Theories

We say Yi-theory T} and Yo-theory 15 are strongly disjoint if 31 and Yo
do not have sort symbols in common, and consequently no function and
predicate symbols in common. For example, the theory of arithmetic and
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bit-vectors are strongly disjoint. Let &; be a decision procedure for theory
T;, then it is very easy to build a procedure & for the (X; U ¥g)-theory
Ty ® Ts. It is based on the simple observation that any set S of 1 U 3o-
literals is of the form S7 U Sy where S; is a set of ¥;-literals for i = 1,2.
Hence, S is satisfiable iff 57 and S5 are satisfiable.

6.2 Nelson-Oppen Combination

We say Y1-theory 17 and Yo-theory T are disjoint if X1 and Yo do not have
function and predicate symbols in common. Note that ¥; and ¥ may have
sort symbols in common. The Nelson-Oppen procedure [18] gives a method
for combining decision procedures for disjoint theories 77 and 75 into one
for T1 & Ts.

A theory T is stably infinite with respect to sort o if for every formula ¢
satisfiable in T, there exists a structure M s.t. M =1 ¢ and | M|, is infinite.
We say a (X1 U Xg)-formula ¢ is pure if every literal [ in ¢ is a 3;-literal
for ¢ = 1,2. Every quantifier-free (37 U X)-formula ¢ can be purified into
a pure and equisatisfiable formula ¢,. The basic idea is to use the following
satisfiability preserving transformation:

F[t] ~ Flu] Au=t, where uis a fresh variable.

For example, let ¢ be the formula f(z —1) =1 =z A f(y) + 1 = y, then
after purification we obtain the equisatisfiable formula ¢p:

(ue—l=zAus+1l=yAu =2—1)A(uz = f(u1) ANuzg = f(y))

A partition II on a set of variables X is a disjoint collection of subsets
Xi,...,Xp st (U, X;) = X, and for all z,y € X;, z and y have the
same sort. Given a partition II, an arrangement Ar is a union of the set
of equalities {z ~ y | for some i s.t. x,y € X;} and disequalities {z %
y | for some 4, j s.t. i # j,x € X;,y € X;}.

Given two disjoint theories T} and T5 such that T; is stably infinite
with respect to each sort ¢ in ¥ and X9, for ¢ = 1,2. The Nelson-Oppen
combination theorem states that a pure formula 1 A o is satisfiable in
T & Ty iff there exists an arrangement Ap of the shared variables X =
vars(p1) Nwvars(ps) such that ¢; U Ay is satisfiable for ¢ = 1,2. The stable-
infiniteness requirement in the Nelson-Oppen framework is used to bring the
interpretation of the shared sorts to the same infinite cardinality.

A naive implementation of the Nelson-Oppen combination method sim-
ply tries all possible arrangements. There are many refinements for this basic
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approach: the SAT solver is used to “guess” the arrangement (delayed theory
combination [19]), candidate models (structures), produced by &;, are used
to “guess” the right arrangement (model-based theory combination [20]).

A theory T is convez iff for all finite sets S of literals and for all non-
empty disjunctions \/,.;u; ~ v; of variables, S implies \/,c; u; ~ v; in T
iff S implies u; >~ v; in T for some ¢ € I. Intuitively, a theory is convex
if for every satisfiable set of literals there is a model where variables not
implied to be equal have a distinct interpretation. The theory of linear
rational arithmetic is convex, but the theory of linear integer arithmetic
is not (e.g., if x, y and z are integers, then {x ~ 0,y ~ 1,0 < z < 1}
implies © ~ 2z Vy ~ z, but does not imply = ~ z or y ~ z). For convex
theories, instead of guessing a partition, one can deduce the equalities to
be shared. The key idea is to propagate z ~ y to @2 whenever 11 U ¢
implies © ~ y, and vice-versa. This process is repeated until no further
equations can be propagated. Then, the individual procedures are used to
decide whether ¢; is satisfiable. Sharing equalities in this case is sufficient,
because &1 can assume that in the structure Ms produced by G4 to satisfy
o, My(z) # My(y) whenever x ~ y was not propagated and vice versa. So,
for convex theories, there is an efficient way to construct a partition of the
set of shared variables.

There are many extensions for the Nelson-Oppen combination method.
For example, some of them are extensions for non-stably infinite theories [21,
22] and for non-disjoint theories [23].

7 Meta-Procedures

It is infeasible to implement a (semi-) decision procedure for every possible
theory that may be useful in practice. Thus, some SMT solvers implement
meta-procedures for classes of theories that can be described by a finite
number of sentences. A meta-procedure & is a (semi-) decision procedure
for a class of theories {2. Given a theory T' € ) and a formula ¢, & can
decide whether ¢ is satisfiable modulo 7" or not.

Instantiation Based Meta-Procedures: The effectively propositional
class, EPR, also known as the Bernays-Schonfinkel-Ramsey class of first-
order formulas, comprises of formulas of the form V*¢, where ¢ is a quantifier-
free formula with predicate symbols and constant symbols, but without non-
constant function symbols. The satisfiability problem for the EPR class can
be reduced to Boolean satisfiability problem by instantiating the quantified
formulas by all combinations of constants. Several useful theories, such as

14



the theory of partial orders, are in the EPR class. The satisfiability prob-
lem for many other classes of formulas can be decided using instantiation
methods [13, 7, 22].

Rewriting Based Meta-Procedures: An equational theory is a theory
containing only sentences of the form V*t = s. Given a finite equational the-
ory T', the Knuth-Bendix completion algorithm [24] is an algorithm for trans-
forming the equations in 7" into a confluent term rewriting system. When
the algorithm succeeds, it has effectively solved the satisfiability problem for
T. Similarly, a Superposition-Calculus procedure [25] is a semi-decision pro-
cedure for the satisfiability problem for a finite set of many-sorted sentences.
In many cases, superposition-calculus is a decision procedure [26].

8 Conclusion

In the last few years, satisfiability became the core engine underlying a
wide range of powerful technologies. SMT is an active and exciting area
of research with many practical applications [1]. We have presented some
of the basic ideas, but a real implementation requires careful attention to
a large number of details and heuristics that we have not covered. SAT
and SMT solving technologies are already making a profound impact on
a number of application areas. The theoretical challenges include better
representations and algorithms, efficient methods for combining procedures,
and various extensions to the basic search method.
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