Quantitative Logics and Automata

George Rahonis

Department of Mathematics
Aristotle University of Thessaloniki, Greece
RISC - Formal Methods seminar Linz-Hagenberg, July 2, 2012

Motivation

Why do we need a quantitative setup?

- Analysis of Quantitative Systems
- Probabilistic systems
- Minimization of costs
- Maximization of rewards
- Computation of reliability
- Optimization of energy consumption
- Natural language processing
- Speech recognition
- Digital image compression
- Fuzzy systems
- . .

Motivation

Models

Probabilistic automata
Transition systems with costs
Transition systems with rewards
Transducers with weights
Multi-valued automata

Motivation

Models

Probabilistic automata
Transition systems with costs
Transition systems with rewards Transducers with weights Multi-valued automata

Weighted Automata

Motivation

Weighted automata introduced by M. Schützenberger (1961)
Applications in:
Handbook of Weighted Automata,
Manfred Droste, Werner Kuich, and Heiko Vogler eds., Monographs in Theoretical Computer Science, An EATCS Series, Springer 2009.

Quantitative analysis: the specification languages (MSO, LTL, CTL, ...) should be also quantitative

Weighted Monadic Second Order (MSO) logic

State of the art

Weighted MSO logic over:
finite words Droste \& Gastin 2005, 2009,
infinite words Droste \& R 2006,
finite and infinite words with discounting Droste \& R 2007,
finite trees Droste \& Vogler 2006,
infinite trees R 2007,
finite and infinite trees with discounting Mandrali \& R 2009, unranked trees Droste \& Vogler 2009,
pictures Fichtner 2006,
texts Mathissen 2007,
traces Meinecke 2006,
distributed systems Bollig \& Meinecke 2007,
trees over valuation monoids Droste et al 2011, average and long time behaviors Droste \& Meinecke 2010 finite words and trees over infinite alphabets Mens \& R 2011

Multi-Valued Monadic Second Order (MSO) logic

State of the art
Multi-valued MSO logic over words and trees Droste, Kuich \& R 2008, Weighted automata and multi-valued logics over arbitrary bounded lattices Droste \& Vogler 2012

Weighted and Multi-Valued Liner Temporal Logic (LTL)

State of the art

Weighted LTL:
extended with discounting R 2009,
over max-plus semiring with discounthig, and
over arbitrary semirings Mandrali \& R (in progress),
transformation of weighted LTL formulas to automata
with discounting Mandrali 2012,
Multi-valued LTL Kupferman \& Lustig 2007,
Multi-valued MSO logic and LTL over bounded distributive lattices
Droste \& Vogler 2012
...

Overview

- Recall: finite automata over finite and infinite words, MSO logic

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words
- Multi-valued MSO logic

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words
- Multi-valued MSO logic
- Multi-valued LTL

Overview

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words
- Multi-valued MSO logic
- Multi-valued LTL
- Open problems and future work

Words

- an alphabet A is a finite set

Words

- an alphabet A is a finite set
- $A^{*}=\{\varepsilon\} \cup\left\{a_{0} \ldots a_{n-1} \mid n>1, a_{0}, \ldots, a_{n-1} \in A\right\}$: the set of all finite words over A (free monoid generated by A)

Words

- an alphabet A is a finite set
- $A^{*}=\{\varepsilon\} \cup\left\{a_{0} \ldots a_{n-1} \mid n>1, a_{0}, \ldots, a_{n-1} \in A\right\}$: the set of all finite words over A (free monoid generated by A)
- for $w=a_{0} \ldots a_{n-1}$ we let $|w|=n$,

Words

- an alphabet A is a finite set
- $A^{*}=\{\varepsilon\} \cup\left\{a_{0} \ldots a_{n-1} \mid n>1, a_{0}, \ldots, a_{n-1} \in A\right\}$: the set of all finite words over A (free monoid generated by A)
- for $w=a_{0} \ldots a_{n-1}$ we let $|w|=n$,
- $\operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$,

Words

- an alphabet A is a finite set
- $A^{*}=\{\varepsilon\} \cup\left\{a_{0} \ldots a_{n-1} \mid n>1, a_{0}, \ldots, a_{n-1} \in A\right\}$: the set of all finite words over A (free monoid generated by A)
- for $w=a_{0} \ldots a_{n-1}$ we let $|w|=n$,
- $\operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$,
- $A^{\omega}=\left\{a_{0} a_{1} \ldots \mid a_{0}, a_{1}, \ldots \in A\right\}$: the set of all infinite words over A

Words

- an alphabet A is a finite set
- $A^{*}=\{\varepsilon\} \cup\left\{a_{0} \ldots a_{n-1} \mid n>1, a_{0}, \ldots, a_{n-1} \in A\right\}$: the set of all finite words over A (free monoid generated by A)
- for $w=a_{0} \ldots a_{n-1}$ we let $|w|=n$,
- $\operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$,
- $A^{\omega}=\left\{a_{0} a_{1} \ldots \mid a_{0}, a_{1}, \ldots \in A\right\}$: the set of all infinite words over A
- for $w=a_{0} a_{1} \ldots$

Words

- an alphabet A is a finite set
- $A^{*}=\{\varepsilon\} \cup\left\{a_{0} \ldots a_{n-1} \mid n>1, a_{0}, \ldots, a_{n-1} \in A\right\}$: the set of all finite words over A (free monoid generated by A)
- for $w=a_{0} \ldots a_{n-1}$ we let $|w|=n$,
- $\operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$,
- $A^{\omega}=\left\{a_{0} a_{1} \ldots \mid a_{0}, a_{1}, \ldots \in A\right\}$: the set of all infinite words over A
- for $w=a_{0} a_{1} \ldots$
- $\operatorname{dom}(w)=\omega(=\mathbb{N})$,

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} \ldots a_{n-1} \in A^{*}$

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right) \in \Delta^{*}
$$

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right) \in \Delta^{*}
$$

- P_{w} : successful if $q_{0} \in I$ and $q_{n} \in F$

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right) \in \Delta^{*}
$$

- P_{w} : successful if $q_{0} \in I$ and $q_{n} \in F$
- $w \in A^{*}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_{w} of \mathcal{A} over w

Finite automata

- A finite automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right) \in \Delta^{*}
$$

- $P_{w}:$ successful if $q_{0} \in I$ and $q_{n} \in F$
- $w \in A^{*}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_{w} of \mathcal{A} over w
- $L(\mathcal{A})$: the language of (all words accepted by) \mathcal{A}

Recognizable languages

- $L \subseteq A^{*}$ is recognizable if there is an $\mathcal{A}=(Q, A, I, \Delta, F)$ such that $L=L(\mathcal{A})$

Recognizable languages

- $L \subseteq A^{*}$ is recognizable if there is an $\mathcal{A}=(Q, A, I, \Delta, F)$ such that $L=L(\mathcal{A})$
- $\operatorname{Rec}(A)$: the class of all recognizable languages over A

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots \in \Delta^{\omega}
$$

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots \in \Delta^{\omega}
$$

- $\ln ^{Q}\left(P_{w}\right)=\left\{q \in Q \mid \exists{ }^{\omega} i: t_{i}=\left(q, a_{i}, q_{i+1}\right)\right\}$

Büchi automata

- A (nondeterministic) Büchi automaton

$$
\mathcal{A}=(Q, A, I, \Delta, F)
$$

- Q : the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots \in \Delta^{\omega}
$$

- $\ln ^{Q}\left(P_{w}\right)=\left\{q \in Q \mid \exists{ }^{\omega} i: t_{i}=\left(q, a_{i}, q_{i+1}\right)\right\}$
- P_{w} : successful if $q_{0} \in I$ and $I^{Q}\left(P_{w}\right) \cap F \neq \varnothing$

Infinitary recognizable languages

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_{w} of \mathcal{A} over w

Infinitary recognizable languages

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_{w} of \mathcal{A} over w
- $L(\mathcal{A})$: the language of (all infinite words accepted by) \mathcal{A}

Infinitary recognizable languages

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_{w} of \mathcal{A} over w
- $L(\mathcal{A})$: the language of (all infinite words accepted by) \mathcal{A}
- $L \subseteq A^{\omega}$ is ω-recognizable if there is an $\mathcal{A}=(Q, A, I, \Delta, F)$ such that $L=L(\mathcal{A})$

Infinitary recognizable languages

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_{w} of \mathcal{A} over w
- $L(\mathcal{A})$: the language of (all infinite words accepted by) \mathcal{A}
- $L \subseteq A^{\omega}$ is ω-recognizable if there is an $\mathcal{A}=(Q, A, I, \Delta, F)$ such that $L=L(\mathcal{A})$
- ω - $\operatorname{Rec}(A)$: the class of all ω-recognizable languages over A

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false
- $\neg \neg \varphi=\varphi$

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false
- $\neg \neg \varphi=\varphi$
- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false
- $\neg \neg \varphi=\varphi$
- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false
- $\neg \neg \varphi=\varphi$
- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$
- $\forall X, \varphi=\neg(\exists X, \neg \varphi)$

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false
- $\neg \neg \varphi=\varphi$
- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi=\neg(\exists X \cdot \neg \varphi)$
- $M S O(A)$: the set of all MSO-formulas over A

MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A, x, y$ are first-order variables, and X is a second-order variable.

- \neg true $=$ false
- $\neg \neg \varphi=\varphi$
- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi=\neg(\exists X \cdot \neg \varphi)$
- $M S O(A)$: the set of all MSO-formulas over A
- Example: $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{a}(x)\right)$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ
- for instance $\varphi=P_{a}(x)$ will be satisfied by w if the letter of w at the position represented by x is a

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ
- for instance $\varphi=P_{a}(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x ?

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ
- for instance $\varphi=P_{a}(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x ?
- A first- or a second-order variable is called free it is not in the scope of any quantifier

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ
- for instance $\varphi=P_{a}(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x ?
- A first- or a second-order variable is called free it is not in the scope of any quantifier
- Example: $\varphi=\forall y \cdot(x \leq y) x$ is a free variable in φ but not in $\varphi^{\prime}=\exists x \cdot \varphi$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ
- for instance $\varphi=P_{a}(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x ?
- A first- or a second-order variable is called free it is not in the scope of any quantifier
- Example: $\varphi=\forall y \cdot(x \leq y) x$ is a free variable in φ but not in $\varphi^{\prime}=\exists x \cdot \varphi$
- Free (φ) : the set of free variables of φ

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A)$ and $w \in A^{*}$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- in this way we shall check if w "satisfies" φ
- for instance $\varphi=P_{a}(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x ?
- A first- or a second-order variable is called free it is not in the scope of any quantifier
- Example: $\varphi=\forall y \cdot(x \leq y) x$ is a free variable in φ but not in $\varphi^{\prime}=\exists x \cdot \varphi$
- Free (φ) : the set of free variables of φ
- In order to define the semantics of an MSO-formula φ we have to assign "truth values" to its free variables

MSO logic - Semantics (over finite words)

- $\varphi \in \operatorname{MSO}(A), w \in A^{*}, \operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$

MSO logic - Semantics (over finite words)

- $\varphi \in \operatorname{MSO}(A), w \in A^{*}, \operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$
- A $(w, \operatorname{Free}(\varphi))$-assignment σ is a mapping associating first order variables from $\operatorname{Free}(\varphi)$ to elements of $\operatorname{dom}(w)$, and second order variables from $\operatorname{Free}(\varphi)$ to subsets of $\operatorname{dom}(w)$

MSO logic - Semantics (over finite words)

- $\varphi \in \operatorname{MSO}(A), w \in A^{*}, \operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$
- A $(w, \operatorname{Free}(\varphi))$-assignment σ is a mapping associating first order variables from $\operatorname{Free}(\varphi)$ to elements of $\operatorname{dom}(w)$, and second order variables from $\operatorname{Free}(\varphi)$ to subsets of $\operatorname{dom}(w)$
- if x is a first order variable and $i \in \operatorname{dom}(w)$, then $\sigma[x \rightarrow i]$ denotes the $(w, \operatorname{Free}(\varphi) \cup\{x\})$-assignment which associates i to x and acts as σ on $\operatorname{Free}(\varphi) \backslash\{x\}$

MSO logic - Semantics (over finite words)

- $\varphi \in \operatorname{MSO}(A), w \in A^{*}, \operatorname{dom}(w)=\{0,1, \ldots,|w|-1\}$
- A $(w, \operatorname{Free}(\varphi))$-assignment σ is a mapping associating first order variables from $\operatorname{Free}(\varphi)$ to elements of $\operatorname{dom}(w)$, and second order variables from $\operatorname{Free}(\varphi)$ to subsets of $\operatorname{dom}(w)$
- if x is a first order variable and $i \in \operatorname{dom}(w)$, then $\sigma[x \rightarrow i]$ denotes the $(w, \operatorname{Free}(\varphi) \cup\{x\})$-assignment which associates i to x and acts as σ on $\operatorname{Free}(\varphi) \backslash\{x\}$
- if X is a second order variable and $I \subseteq \operatorname{dom}(w)$, then $\sigma[X \rightarrow I]$ denotes the $(w, \operatorname{Free}(\varphi) \cup\{X\})$-assignment which associates I to X and acts as σ on $\operatorname{Free}(\varphi) \backslash\{X\}$

MSO logic - Semantics (over finite words)

- we use the extended alphabet $A_{\text {Free }(\varphi)}=A \times\{0,1\}^{\operatorname{Free}(\varphi)}$

MSO logic - Semantics (over finite words)

- we use the extended alphabet $A_{\text {Free }(\varphi)}=A \times\{0,1\}^{\operatorname{Free}(\varphi)}$
- Example: $w=\operatorname{abbab}(\operatorname{dom}(w)=\{0,1,2,3,4\})$, $\operatorname{Free}(\varphi)=\{x, y, X\}$

MSO logic - Semantics (over finite words)

- we use the extended alphabet $A_{\text {Free }(\varphi)}=A \times\{0,1\}^{\operatorname{Free}(\varphi)}$
- Example: $w=a b b a b(\operatorname{dom}(w)=\{0,1,2,3,4\})$, $\operatorname{Free}(\varphi)=\{x, y, X\}$
- σ be a $(w, \operatorname{Free}(\varphi))$-assignment with $\sigma(x)=1, \sigma(y)=3, \sigma(X)=\{1,2,4\}$

MSO logic - Semantics (over finite words)

- we use the extended alphabet $A_{\text {Free }(\varphi)}=A \times\{0,1\}^{\operatorname{Free}(\varphi)}$
- Example: $w=\operatorname{abbab}(\operatorname{dom}(w)=\{0,1,2,3,4\})$, $\operatorname{Free}(\varphi)=\{x, y, X\}$
- σ be a $(w, \operatorname{Free}(\varphi))$-assignment with $\sigma(x)=1, \sigma(y)=3, \sigma(X)=\{1,2,4\}$
- we can represent the word $(w, \sigma) \in A_{\text {Free }(\varphi)}^{*}$ as follows:

MSO logic - Semantics (over finite words)

- we use the extended alphabet $A_{\text {Free }(\varphi)}=A \times\{0,1\}^{\operatorname{Free}(\varphi)}$
- Example: $w=\operatorname{abbab}(\operatorname{dom}(w)=\{0,1,2,3,4\})$, $\operatorname{Free}(\varphi)=\{x, y, X\}$
- σ be a $(w, \operatorname{Free}(\varphi))$-assignment with $\sigma(x)=1, \sigma(y)=3, \sigma(X)=\{1,2,4\}$
- we can represent the word $(w, \sigma) \in A_{\text {Free }(\varphi)}^{*}$ as follows:
$\begin{array}{llllll} & a & b & b & a & b \\ x & 0 & 1 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & 1 & 0 \\ X & 0 & 1 & 1 & 0 & 1\end{array}$

MSO logic - Semantics (over finite words)

- Example: $\varphi=P_{a}(x) \wedge P_{b}(y)$, $\operatorname{Free}(\varphi)=\{x, y\}$

MSO logic - Semantics (over finite words)

- Example: $\varphi=P_{a}(x) \wedge P_{b}(y), \operatorname{Free}(\varphi)=\{x, y\}$
- $w=a b b a b$,

MSO logic - Semantics (over finite words)

- Example: $\varphi=P_{a}(x) \wedge P_{b}(y), \operatorname{Free}(\varphi)=\{x, y\}$
- $w=a b b a b$,
- (w, σ) by $\quad \begin{array}{llllll}a & b & b & a & b \\ x & 0 & 1 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & 0 & 1\end{array}$

MSO logic - Semantics (over finite words)

- Example: $\varphi=P_{a}(x) \wedge P_{b}(y), \operatorname{Free}(\varphi)=\{x, y\}$
- $w=a b b a b$,
- (w, σ) by $\quad \begin{array}{llllll}x & 0 & 1 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & 0 & 1\end{array}$
- $(w, \sigma) \not \models \varphi$

MSO logic - Semantics (over finite words)

- Example: $\varphi=P_{a}(x) \wedge P_{b}(y), \operatorname{Free}(\varphi)=\{x, y\}$
- $w=a b b a b$,
- (w, σ) by $\quad \begin{array}{llllll}x & 0 & 1 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & 0 & 1\end{array}$
- $(w, \sigma) \not \models \varphi$
- $\left(w, \sigma^{\prime}\right)$ by $\quad \begin{array}{llllll}x & 1 & 0 & 0 & 0 & 0 \\ y & 0 & 0 & 1 & 0 & 0\end{array}$

MSO logic - Semantics (over finite words)

- Example: $\varphi=P_{a}(x) \wedge P_{b}(y), \operatorname{Free}(\varphi)=\{x, y\}$
- $w=a b b a b$,
- (w, σ) by $\quad \begin{array}{llllll}x & 0 & 1 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & 0 & 1\end{array}$
- $(w, \sigma) \not \models \varphi$
- $\left(w, \sigma^{\prime}\right)$ by $\quad \begin{array}{llllll}x & 1 & 0 & 0 & 0 & 0 \\ y & 0 & 0 & 1 & 0 & 0\end{array}$
- $\left(w, \sigma^{\prime}\right) \vDash \varphi$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \vDash$ true

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma) \models x \leq y$ iff $\sigma(x) \leq \sigma(y)$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \vDash$ true
- $(w, \sigma)=P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \vDash x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma) \vDash x \leq y$ iff $\sigma(x) \leq \sigma(y)$
- $(w, \sigma) \neq \neg \varphi$ iff $(w, \sigma) \not \models \varphi$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma) \models x \leq y$ iff $\sigma(x) \leq \sigma(y)$
- $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \nvdash \varphi$
- $(w, \sigma) \models \varphi \vee \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma)=x \leq y$ iff $\sigma(x) \leq \sigma(y)$
- $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not \models \varphi$
- $(w, \sigma) \models \varphi \vee \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
- $(w, \sigma) \vDash \exists x \cdot \varphi$ iff there exists an $i \in \operatorname{dom}(w)$ such that $(w, \sigma[x \rightarrow i]) \mid=\varphi$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma) \models x \leq y$ iff $\sigma(x) \leq \sigma(y)$
- $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \nvdash \varphi$
- $(w, \sigma) \models \varphi \vee \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
- $(w, \sigma) \models \exists x . \varphi$ iff there exists an $i \in \operatorname{dom}(w)$ such that $(w, \sigma[x \rightarrow i]) \mid=\varphi$
- $(w, \sigma) \models \exists X . \varphi$ iff there exists an $I \subseteq \operatorname{dom}(w)$ such that $(w, \sigma[X \rightarrow I]) \models \varphi$

MSO logic - Semantics (over finite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{*}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models$ true
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma) \models x \leq y$ iff $\sigma(x) \leq \sigma(y)$
- $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not \models \varphi$
- $(w, \sigma) \models \varphi \vee \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
- $(w, \sigma) \vDash \exists x . \varphi$ iff there exists an $i \in \operatorname{dom}(w)$ such that $(w, \sigma[x \rightarrow i]) \mid=\varphi$
- $(w, \sigma) \models \exists X \cdot \varphi$ iff there exists an $I \subseteq \operatorname{dom}(w)$ such that $(w, \sigma[X \rightarrow I]) \models \varphi$
- $L(\varphi)=\left\{(w, \sigma) \in A_{\text {Free }(\varphi)}^{*} \mid(w, \sigma) \models \varphi\right\}$ the language of (all words satisfying) φ

MSO logic - Semantics (over finite words)

- $\varphi \in M S O(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$

MSO logic - Semantics (over finite words)

- $\varphi \in M S O(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$
- if φ is a sentence, then $L(\varphi) \subseteq A^{*}$

MSO logic - Semantics (over finite words)

- $\varphi \in M S O(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$
- if φ is a sentence, then $L(\varphi) \subseteq A^{*}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{*}$

MSO logic - Semantics (over finite words)

- $\varphi \in M S O(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$
- if φ is a sentence, then $L(\varphi) \subseteq A^{*}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{*}$
- $L \subseteq A^{*}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$

MSO logic - Semantics (over finite words)

- $\varphi \in M S O(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$
- if φ is a sentence, then $L(\varphi) \subseteq A^{*}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{*}$
- $L \subseteq A^{*}$ is MSO-definable if there is a sentence $\varphi \in \operatorname{MSO}(A)$ such that $L=L(\varphi)$
- Mso (A) : the class of all MSO-definable languages over A

MSO logic - Semantics (over finite words)

- $\varphi \in \operatorname{MSO}(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$
- if φ is a sentence, then $L(\varphi) \subseteq A^{*}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{*}$
- $L \subseteq A^{*}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$
- Mso(A): the class of all MSO-definable languages over A
- J.R. Büchi 1960, C. Elgot 1961, B. Trakhtenbrot 1961:

MSO logic - Semantics (over finite words)

- $\varphi \in \operatorname{MSO}(A)$ is a sentence if $\operatorname{Free}(\varphi)=\varnothing$
- if φ is a sentence, then $L(\varphi) \subseteq A^{*}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{*}$
- $L \subseteq A^{*}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$
- Mso(A): the class of all MSO-definable languages over A
- J.R. Büchi 1960, C. Elgot 1961, B. Trakhtenbrot 1961:

$$
\operatorname{Rec}(A)=\operatorname{Mso}(A)
$$

MSO logic - Semantics (over infinite words)

- Let $\varphi \in \operatorname{MSO}(A), w \in A^{\omega}$, and σ a $(w, \operatorname{Free}(\varphi))$-assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
- $(w, \sigma) \models P_{a}(x)$ iff $w(\sigma(x))=a$
- $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
- $(w, \sigma) \models x \leq y$ iff $\sigma(x) \leq \sigma(y)$
- $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not \models \varphi$
- $(w, \sigma) \models \varphi \vee \psi$ iff $(w, \sigma)=\varphi$ or $(w, \sigma) \models \psi$
- $(w, \sigma) \vDash \exists x \cdot \varphi$ iff there exists an $i \geq 0$ such that $(w, \sigma[x \rightarrow i]) \models \varphi$
- $(w, \sigma) \vDash \exists X \cdot \varphi$ iff there exists an $I \subseteq \omega$ such that $(w, \sigma[X \rightarrow I]) \models \varphi$
- $L(\varphi)=\left\{(w, \sigma) \in A_{\text {Free }(\varphi)}^{\omega} \mid(w, \sigma) \models \varphi\right\}$ the language of (all infinite words satisfying) φ

MSO logic - Semantics (over infinite words)

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$

MSO logic - Semantics (over infinite words)

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{\omega}$

MSO logic - Semantics (over infinite words)

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{\omega}$
- $L \subseteq A^{\omega}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$

MSO logic - Semantics (over infinite words)

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{\omega}$
- $L \subseteq A^{\omega}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$
- ω - $\operatorname{Mso}(A)$: the class of all infinitary MSO-definable languages over A

MSO logic - Semantics (over infinite words)

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{\omega}$
- $L \subseteq A^{\omega}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$
- ω - $\operatorname{Mso}(A)$: the class of all infinitary MSO-definable languages over A
- J. R. Büchi 1962:

MSO logic - Semantics (over infinite words)

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi=\exists x \cdot\left(\forall y \cdot(x \leq y) \wedge P_{b}(x)\right)$, then $L(\varphi)=b A^{\omega}$
- $L \subseteq A^{\omega}$ is MSO-definable if there is a sentence $\varphi \in M S O(A)$ such that $L=L(\varphi)$
- ω - $\operatorname{Mso}(A)$: the class of all infinitary MSO-definable languages over A
- J. R. Büchi 1962:

$$
\omega-\operatorname{Rec}(A)=\omega-M s o(A)
$$

Semirings

- ($K,+, \cdot, 0,1$): semiring (simply denoted by K) where
- + is a binary associative and commutative operation on K with neutral element 0 , i.e.,
- $k+(I+m)=(k+I)+m$,
- $k+I=I+k$,
- $k+0=k$, for every $k, l, m \in K$
- . is a binary associative operation on K with neutral element 1 ,
- $k \cdot(I \cdot m)=(k \cdot l) \cdot m$,
- $k \cdot 1=1 \cdot k=1$,
- • distributes over + , i.e., $k \cdot(I+m)=k \cdot I+k \cdot m$, and
$(k+I) \cdot m=k \cdot m+l \cdot m$
for every $k, l, m \in K$, and
- $k \cdot 0=0 \cdot k=0$ for every $k \in K$.
- if . is commutative, then K is called commutative
- In the sequel: K a commutative semiring

Formal power series

- A finitary formal (power) series over A and K

$$
s: A^{*} \rightarrow K
$$

Formal power series

- A finitary formal (power) series over A and K

$$
s: A^{*} \rightarrow K
$$

- for $w \in A^{*}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)

Formal power series

- A finitary formal (power) series over A and K

$$
s: A^{*} \rightarrow K
$$

- for $w \in A^{*}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on series: let s_{1}, s_{2} series over A and K and $k \in K$

Formal power series

- A finitary formal (power) series over A and K

$$
s: A^{*} \rightarrow K
$$

- for $w \in A^{*}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on series: let s_{1}, s_{2} series over A and K and $k \in K$
- $\operatorname{sum} s_{1}+s_{2}, \quad\left(s_{1}+s_{2}, w\right)=\left(s_{1}, w\right)+\left(s_{2}, w\right)$

Formal power series

- A finitary formal (power) series over A and K

$$
s: A^{*} \rightarrow K
$$

- for $w \in A^{*}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on series: let s_{1}, s_{2} series over A and K and $k \in K$
- $\operatorname{sum} s_{1}+s_{2}, \quad\left(s_{1}+s_{2}, w\right)=\left(s_{1}, w\right)+\left(s_{2}, w\right)$
- scalar product $k \cdot s_{1}, \quad\left(k \cdot s_{1}, w\right)=k \cdot\left(s_{1}, w\right)$

Formal power series

- A finitary formal (power) series over A and K

$$
s: A^{*} \rightarrow K
$$

- for $w \in A^{*}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on series: let s_{1}, s_{2} series over A and K and $k \in K$
- $\operatorname{sum} s_{1}+s_{2}, \quad\left(s_{1}+s_{2}, w\right)=\left(s_{1}, w\right)+\left(s_{2}, w\right)$
- scalar product $k \cdot s_{1}, \quad\left(k \cdot s_{1}, w\right)=k \cdot\left(s_{1}, w\right)$
- Hadamard product $s_{1} \odot s_{2}, \quad\left(s_{1} \odot s_{2}, w\right)=\left(s_{1}, w\right) \cdot\left(s_{2}, w\right)$ for every $w \in A^{*}$

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- ter : $Q \rightarrow K$ the terminal distribution

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- ter : $Q \rightarrow K$ the terminal distribution
- $w=a_{0} \ldots a_{n-1} \in A^{*}$

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- ter : $Q \rightarrow K$ the terminal distribution
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right)
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $0 \leq i \leq n-1$

Weighted automata

- A weighted automaton over K :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- ter : $Q \rightarrow K$ the terminal distribution
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right)
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $0 \leq i \leq n-1$

- the weight of P_{w} :

$$
\begin{array}{r}
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right) \cdot w t\left(\left(q_{0}, a_{0}, q_{1}\right)\right) \cdot w t\left(\left(q_{1}, a_{1}, q_{2}\right)\right) \cdot \ldots \\
\cdot w t\left(\left(q_{n-1}, a_{n-1}, q_{n}\right)\right) \cdot \operatorname{ter}\left(q_{n}\right)
\end{array}
$$

Weighted automata

- the behavior of \mathcal{A} is the series

$$
\|\mathcal{A}\|: A^{*} \rightarrow K
$$

defined for every $w \in A^{*}$ by

$$
(\|\mathcal{A}\|, w)=\sum_{P_{w}} \text { weight }\left(P_{w}\right)
$$

Weighted automata

- Example: A finite automaton $\mathcal{A}=(Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}^{\prime}=(Q, A, i n, w t$, ter $)$ over the Boolean semiring $(\{0,1\},+, \cdot, 0,1)$, where:

Weighted automata

- Example: A finite automaton $\mathcal{A}=(Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}^{\prime}=(Q, A, i n, w t$, ter $)$ over the Boolean semiring $(\{0,1\},+, \cdot, 0,1)$, where:
- $\operatorname{in}(q)=\left\{\begin{array}{ll}1 & \text { if } q \in I \\ 0 & \text { otherwise }\end{array}\right.$,

Weighted automata

- Example: A finite automaton $\mathcal{A}=(Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}^{\prime}=(Q, A, i n, w t$, ter $)$ over the Boolean semiring $(\{0,1\},+, \cdot, 0,1)$, where:
- in $(q)=\left\{\begin{array}{ll}1 & \text { if } q \in I \\ 0 & \text { otherwise }\end{array}\right.$,
- $w t\left(\left(q, a, q^{\prime}\right)\right)=\left\{\begin{array}{ll}1 & \text { if }\left(q, a, q^{\prime}\right) \in \Delta \\ 0 & \text { otherwise }\end{array}\right.$, and

Weighted automata

- Example: A finite automaton $\mathcal{A}=(Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}^{\prime}=(Q, A, i n, w t$, ter $)$ over the Boolean semiring $(\{0,1\},+, \cdot, 0,1)$, where:
- in $(q)=\left\{\begin{array}{ll}1 & \text { if } q \in I \\ 0 & \text { otherwise }\end{array}\right.$,
- $w t\left(\left(q, a, q^{\prime}\right)\right)=\left\{\begin{array}{ll}1 & \text { if }\left(q, a, q^{\prime}\right) \in \Delta \\ 0 & \text { otherwise }\end{array}\right.$, and
- $\operatorname{ter}(q)= \begin{cases}1 & \text { if } q \in F \\ 0 & \text { otherwise }\end{cases}$

Weighted automata

- Example: A finite automaton $\mathcal{A}=(Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}^{\prime}=(Q, A, i n, w t$, ter $)$ over the Boolean semiring $(\{0,1\},+, \cdot, 0,1)$, where:
- $\operatorname{in}(q)=\left\{\begin{array}{ll}1 & \text { if } q \in I \\ 0 & \text { otherwise }\end{array}\right.$,
- $w t\left(\left(q, a, q^{\prime}\right)\right)=\left\{\begin{array}{ll}1 & \text { if }\left(q, a, q^{\prime}\right) \in \Delta \\ 0 & \text { otherwise }\end{array}\right.$, and
- $\operatorname{ter}(q)= \begin{cases}1 & \text { if } q \in F \\ 0 & \text { otherwise }\end{cases}$
- Then a word $w \in A^{*}$ is a accepted by \mathcal{A} iff $\left(\left\|\mathcal{A}^{\prime}\right\|, w\right)=1$

Recognizable series

- A series s over A and K is recognizable if there exists a weighted automaton \mathcal{A} over A and K such that $s=\|\mathcal{A}\|$

Recognizable series

- A series s over A and K is recognizable if there exists a weighted automaton \mathcal{A} over A and K such that $s=\|\mathcal{A}\|$
- $\operatorname{Rec}(A, K)$: the class of all recognizable series over A and K

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
- $(\{0,1\},+, \cdot, 0,1)$ the Boolean semiring,

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
- ($\{0,1\},+, \cdot, 0,1$) the Boolean semiring,
- ($\mathbb{N} \cup\{\infty\},+, \cdot, 0,1)$ the semiring of extended natural numbers,

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
- $(\{0,1\},+, \cdot, 0,1)$ the Boolean semiring,
- ($\mathbb{N} \cup\{\infty\},+, \cdot, 0,1)$ the semiring of extended natural numbers,
- $\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ where $\mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geq 0\}$ the min-plus semiring,

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
- $(\{0,1\},+, \cdot, 0,1)$ the Boolean semiring,
- ($\mathbb{N} \cup\{\infty\},+, \cdot, 0,1)$ the semiring of extended natural numbers,
- $\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ where $\mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geq 0\}$ the min-plus semiring,
- ($\mathbb{R}_{+} \cup\{-\infty, \infty\}$, sup, $\left.+,-\infty, 0\right)$ the max-plus semiring with infinity,

Semirings with infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
- $(\{0,1\},+, \cdot, 0,1)$ the Boolean semiring,
- ($\mathbb{N} \cup\{\infty\},+, \cdot, 0,1)$ the semiring of extended natural numbers,
- $\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ where $\mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geq 0\}$ the min-plus semiring,
- ($\mathbb{R}_{+} \cup\{-\infty, \infty\}$, sup, $\left.+,-\infty, 0\right)$ the max-plus semiring with infinity,
- $F=([0,1]$, sup, inf, 0,1$)$ the fuzzy semiring

Infinitary formal power series

- An infinitary formal (power) series over A and K

$$
s: A^{\omega} \rightarrow K
$$

Infinitary formal power series

- An infinitary formal (power) series over A and K

$$
s: A^{\omega} \rightarrow K
$$

- for $w \in A^{\omega}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)

Infinitary formal power series

- An infinitary formal (power) series over A and K

$$
s: A^{\omega} \rightarrow K
$$

- for $w \in A^{\omega}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on infinitary series: let s_{1}, s_{2} infinitary series over A and K and $k \in K$

Infinitary formal power series

- An infinitary formal (power) series over A and K

$$
s: A^{\omega} \rightarrow K
$$

- for $w \in A^{\omega}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on infinitary series: let s_{1}, s_{2} infinitary series over A and K and $k \in K$
- $\operatorname{sum} s_{1}+s_{2}, \quad\left(s_{1}+s_{2}, w\right)=\left(s_{1}, w\right)+\left(s_{2}, w\right)$

Infinitary formal power series

- An infinitary formal (power) series over A and K

$$
s: A^{\omega} \rightarrow K
$$

- for $w \in A^{\omega}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on infinitary series: let s_{1}, s_{2} infinitary series over A and K and $k \in K$
- sum $s_{1}+s_{2}, \quad\left(s_{1}+s_{2}, w\right)=\left(s_{1}, w\right)+\left(s_{2}, w\right)$
- scalar product $k \cdot s_{1}, \quad\left(k \cdot s_{1}, w\right)=k \cdot\left(s_{1}, w\right)$

Infinitary formal power series

- An infinitary formal (power) series over A and K

$$
s: A^{\omega} \rightarrow K
$$

- for $w \in A^{\omega}$ the value $s(w)$ is called the coefficient of s at w and denoted as (s, w)
- some operations on infinitary series: let s_{1}, s_{2} infinitary series over A and K and $k \in K$
- sum $s_{1}+s_{2}, \quad\left(s_{1}+s_{2}, w\right)=\left(s_{1}, w\right)+\left(s_{2}, w\right)$
- scalar product $k \cdot s_{1}, \quad\left(k \cdot s_{1}, w\right)=k \cdot\left(s_{1}, w\right)$
- Hadamard product $s_{1} \odot s_{2}, \quad\left(s_{1} \odot s_{2}, w\right)=\left(s_{1}, w\right) \cdot\left(s_{2}, w\right)$ for every $w \in A^{\omega}$

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in $: Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt: $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $i \geq 0$

Weighted Büchi automata

- A weighted Büchi automaton over K :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow K$ the initial distribution,
- wt: $Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $i \geq 0$

- the weight of P_{w} :

$$
\operatorname{weight}\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right) \cdot w t\left(\left(q_{0}, a_{0}, q_{1}\right)\right) \cdot w t\left(\left(q_{1}, a_{1}, q_{2}\right)\right) \cdot \ldots
$$

Weighted Büchi automata

- P_{w} : successful if $\ln ^{Q}\left(P_{w}\right) \cap F \neq \varnothing$

Weighted Büchi automata

- P_{w} : successful if $\ln ^{Q}\left(P_{w}\right) \cap F \neq \varnothing$
- observe that a successful path P_{w} can have weight $\left(P_{w}\right)=0$

Weighted Büchi automata

- P_{w} : successful if $\ln ^{Q}\left(P_{w}\right) \cap F \neq \varnothing$
- observe that a successful path P_{w} can have weight $\left(P_{w}\right)=0$
- the behavior of \mathcal{A} is the infinitary series

$$
\|\mathcal{A}\|: A^{\omega} \rightarrow K
$$

defined for every $w \in A^{\omega}$ by

$$
(\|\mathcal{A}\|, w)=\sum_{P_{w} \text { successful }} \text { weight }\left(P_{w}\right)
$$

Infinitary recognizable series

- An infintary series s over A and K is ω-recognizable if there exists a weighted Büchi automaton \mathcal{A} over A and K such that $s=\|\mathcal{A}\|$

Infinitary recognizable series

- An infintary series s over A and K is ω-recognizable if there exists a weighted Büchi automaton \mathcal{A} over A and K such that $s=\|\mathcal{A}\|$
- ω - $\operatorname{Rec}(A, K)$: the class of all recognizable series over A and K

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- Problem:

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- Problem:
- how can we define $\neg k$ for every $k \in K$?

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- Problem:
- how can we define $\neg k$ for every $k \in K$?
- Solution: we can set

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- Problem:
- how can we define $\neg k$ for every $k \in K$?
- Solution: we can set

$$
\text { - } \neg 0=1 \text { and } \neg k=0 \text { for } k \neq 0
$$

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- Problem:
- how can we define $\neg k$ for every $k \in K$?
- Solution: we can set
- $\neg 0=1$ and $\neg k=0$ for $k \neq 0$
- but then the relations

$$
\begin{aligned}
& \neg \neg \varphi=\varphi, \varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi), \\
& \forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi) \\
& \forall X: \varphi=\neg(\exists X \cdot \neg \varphi)
\end{aligned}
$$

Weighted MSO logic

- Recall the syntax of the MSO logic

$$
\varphi::=\operatorname{true}\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- We aim to define a weighted MSO logic ($w M S O$ for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

- Problem:
- how can we define $\neg k$ for every $k \in K$?
- Solution: we can set
- $\neg 0=1$ and $\neg k=0$ for $k \neq 0$
- but then the relations

$$
\begin{aligned}
& \neg \neg \varphi=\varphi, \varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi), \\
& \forall X \cdot \varphi=\neg(\exists x \cdot \neg \varphi) \\
& \forall X \cdot \varphi=\neg(\exists X \cdot \neg \varphi)
\end{aligned}
$$

- will not hold any more!

Weighted MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and K is given by

$$
\begin{aligned}
\varphi::=k\left|P_{a}(x)\right| x \in X \mid x \leq & y\left|\neg P_{a}(x)\right| \neg(x \in X) \mid \neg(x \leq y) \\
& |\varphi \vee \varphi| \varphi \wedge \varphi|\exists x \cdot \varphi| \exists X \cdot \varphi \mid \forall x \cdot \varphi
\end{aligned}
$$

where $a \in A$ and $k \in K$.

Weighted MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and K is given by

$$
\begin{aligned}
\varphi::=k\left|P_{a}(x)\right| x \in X \mid x \leq & y\left|\neg P_{a}(x)\right| \neg(x \in X) \mid \neg(x \leq y) \\
& |\varphi \vee \varphi| \varphi \wedge \varphi|\exists x \cdot \varphi| \exists X \cdot \varphi \mid \forall x \cdot \varphi
\end{aligned}
$$

where $a \in A$ and $k \in K$.

- We do not need $\forall X \cdot \varphi$

Weighted MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and K is given by

$$
\begin{aligned}
\varphi::=k\left|P_{a}(x)\right| x \in X \mid x \leq & y\left|\neg P_{a}(x)\right| \neg(x \in X) \mid \neg(x \leq y) \\
& |\varphi \vee \varphi| \varphi \wedge \varphi|\exists x \cdot \varphi| \exists X \cdot \varphi \mid \forall x \cdot \varphi
\end{aligned}
$$

where $a \in A$ and $k \in K$.

- We do not need $\forall X \cdot \varphi$
- wMSO (A, K) : the set of all wMSO-formulas over A and K

Weighted MSO logic - Semantics over finite words

Definition

Let $\varphi \in w M S O(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow K .
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$

Weighted MSO logic - Semantics over finite words

Definition

Let $\varphi \in w M S O(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow K
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$

Weighted MSO logic - Semantics over finite words

Definition

Let $\varphi \in w M S O(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow K
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$

Weighted MSO logic - Semantics over finite words

Definition

Let $\varphi \in w M S O(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow K
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \leq y\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \leq \sigma(y) \\ 0 & \text { otherwise }\end{cases}$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if }(\|\varphi\|,(w, \sigma))=0 \\ 0 & \text { if }(\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if } \\ 0 & \text { if }(\|\varphi\|,(w, \sigma))=0 \\ 0 & (\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if } \\ 0 & \text { if } \\ (\|\varphi\|,(w, \sigma))=0 \\ \hline\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$
- $(\|\varphi \wedge \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \cdot(\|\psi\|,(w, \sigma))$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if }(\|\varphi\|,(w, \sigma))=0 \\ 0 & \text { if }(\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$
- $(\|\varphi \wedge \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \cdot(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\sum_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if }(\|\varphi\|,(w, \sigma))=0 \\ 0 & \text { if }(\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$
- $(\|\varphi \wedge \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \cdot(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\sum_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\sum_{I \subseteq \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if }(\|\varphi\|,(w, \sigma))=0 \\ 0 & \text { if }(\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$
- $(\|\varphi \wedge \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \cdot(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\sum_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\sum_{I \subseteq \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$
- $(\|\forall x \cdot \varphi\|,(w, \sigma))=\prod_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$

Weighted MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if }(\|\varphi\|,(w, \sigma))=0 \\ 0 & \text { if }(\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$
- $(\|\varphi \wedge \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \cdot(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\sum_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\sum_{I \subseteq \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$
- $(\|\forall x \cdot \varphi\|,(w, \sigma))=\prod_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- where $\operatorname{dom}(w)=\{0, \ldots,|w|-1\}$

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$ - Example:

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$
- Example:
- Let $A=\{a, b, c\}$ and

$$
\varphi=\forall x \cdot\left(\left(\left(P_{a}(x) \wedge 1\right) \vee 0\right) \wedge\left(\left(P_{b}(x) \wedge 1\right) \vee 0\right)\right)
$$

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$
- Example:
- Let $A=\{a, b, c\}$ and $\varphi=\forall x \cdot\left(\left(\left(P_{a}(x) \wedge 1\right) \vee 0\right) \wedge\left(\left(P_{b}(x) \wedge 1\right) \vee 0\right)\right)$
- Consider the semiring $(\mathbb{N},+, \cdot, 0,1)$ of natural numbers. Then for every $w \in A^{*}$

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$
- Example:
- Let $A=\{a, b, c\}$ and $\varphi=\forall x \cdot\left(\left(\left(P_{a}(x) \wedge 1\right) \vee 0\right) \wedge\left(\left(P_{b}(x) \wedge 1\right) \vee 0\right)\right)$
- Consider the semiring $(\mathbb{N},+, \cdot, 0,1)$ of natural numbers. Then for every $w \in A^{*}$
- $(\|\varphi\|, w)=0$

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$
- Example:
- Let $A=\{a, b, c\}$ and $\varphi=\forall x \cdot\left(\left(\left(P_{a}(x) \wedge 1\right) \vee 0\right) \wedge\left(\left(P_{b}(x) \wedge 1\right) \vee 0\right)\right)$
- Consider the semiring $(\mathbb{N},+, \cdot, 0,1)$ of natural numbers. Then for every $w \in A^{*}$

$$
\text { - }(\|\varphi\|, w)=0
$$

- Now consider the max-plus semiring $\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$. For every $w \in A^{*}$

Weighted MSO logic - Semantics over finite words

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{*} \rightarrow K$
- Example:
- Let $A=\{a, b, c\}$ and
$\varphi=\forall x \cdot\left(\left(\left(P_{a}(x) \wedge 1\right) \vee 0\right) \wedge\left(\left(P_{b}(x) \wedge 1\right) \vee 0\right)\right)$
- Consider the semiring $(\mathbb{N},+, \cdot, 0,1)$ of natural numbers. Then for every $w \in A^{*}$

$$
\text { - }(\|\varphi\|, w)=0
$$

- Now consider the max-plus semiring $\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$. For every $w \in A^{*}$
- $(\|\varphi\|, w)=|w|_{a}+|w|_{b}$

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso (A, K) : the class of all wMSO-definable series over A and K

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso (A, K) : the class of all wMSO-definable series over A and K

Theorem (Droste \& Gastin 2005)

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso (A, K) : the class of all wMSO-definable series over A and K

Theorem (Droste \& Gastin 2005)

- $\operatorname{Rec}(A, K) \varsubsetneqq w M s o(A, K)$

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso (A, K) : the class of all wMSO-definable series over A and K

Theorem (Droste \& Gastin 2005)

- $\operatorname{Rec}(A, K) \varsubsetneqq w M s o(A, K)$
- $\operatorname{Rec}(A, K)=$ a fragment of $w M s o(A, K)$ (Büchi-type theorem)

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso (A, K) : the class of all wMSO-definable series over A and K

Theorem (Droste \& Gastin 2005)

- $\operatorname{Rec}(A, K) \varsubsetneqq w M s o(A, K)$
- $\operatorname{Rec}(A, K)=$ a fragment of $w \operatorname{Mso}(A, K)$ (Büchi-type theorem)
- If K is locally finite, i.e., the subsemiring generated by any finite subset of K is finite, then $\operatorname{Rec}(A, K)=w M s o(A, K)$

Recognizability and definability

- A series $s: A^{*} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso (A, K) : the class of all wMSO-definable series over A and K

Theorem (Droste \& Gastin 2005)

- $\operatorname{Rec}(A, K) \varsubsetneqq w M s o(A, K)$
- $\operatorname{Rec}(A, K)=$ a fragment of $w M s o(A, K)$ (Büchi-type theorem)
- If K is locally finite, i.e., the subsemiring generated by any finite subset of K is finite, then $\operatorname{Rec}(A, K)=w M s o(A, K)$
- Open: $w \operatorname{Mso}(A, K)=$?

Weighted MSO logic - Semantics over infinite words

Definition

Let $\varphi \in w M S O(A, K)$. The infinitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{\omega} \rightarrow K .
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \leq y\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \leq \sigma(y) \\ 0 & \text { otherwise }\end{cases}$

Weighted MSO logic - Semantics over infinite words

Definition

- $(\|\neg \varphi\|,(w, \sigma))=\left\{\begin{array}{ll}1 & \text { if } \quad(\|\varphi\|,(w, \sigma))=0 \\ 0 & \text { if } \\ (\|\varphi\|,(w, \sigma))=1\end{array}\right.$, provided that φ is of the form $P_{a}(x), x \leq y$ or $x \in X$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma))+(\|\psi\|,(w, \sigma))$
- $(\|\varphi \wedge \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \cdot(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\sum_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\sum_{I \subseteq \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$
- $(\|\forall x \cdot \varphi\|,(w, \sigma))=\prod_{i \in \operatorname{dom}(w)}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- where $\operatorname{dom}(w)=\omega$

Recognizability and definability

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{\omega} \rightarrow K$
- An infinitary series $s: A^{\omega} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω-wMso (A, K) : the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

Recognizability and definability

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{\omega} \rightarrow K$
- An infinitary series $s: A^{\omega} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω-wMso (A, K) : the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

Theorem (Droste \& R 2006)

$$
\omega-\operatorname{Rec}(A, K)=\text { a fragment of } \omega-w M s o(A, K)
$$

Recognizability and definability

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{\omega} \rightarrow K$
- An infinitary series $s: A^{\omega} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω-wMso (A, K) : the class of all infinitary $w M S O$-definable series over A and K
- Büchi type theorem:

Theorem (Droste \& R 2006)

$$
\omega-\operatorname{Rec}(A, K)=\text { a fragment of } \omega-w M \operatorname{so}(A, K)
$$

- Open:

Recognizability and definability

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{\omega} \rightarrow K$
- An infinitary series $s: A^{\omega} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω-wMso (A, K) : the class of all infinitary $w M S O$-definable series over A and K
- Büchi type theorem:

Theorem (Droste \& R 2006)

$$
\omega-\operatorname{Rec}(A, K)=\text { a fragment of } \omega-w M \operatorname{so}(A, K)
$$

- Open:
- $\omega-\operatorname{Rec}(A, K) \subseteq \omega-w M s o(A, K)$ is the inclusion proper? (guess: Yes)

Recognizability and definability

- If $\operatorname{Free}(\varphi)=\varnothing$, then φ is a sentence and $\|\varphi\|: A^{\omega} \rightarrow K$
- An infinitary series $s: A^{\omega} \rightarrow K$ is called $w M S O$-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω-wMso (A, K) : the class of all infinitary $w M S O$-definable series over A and K
- Büchi type theorem:

Theorem (Droste \& R 2006)

$$
\omega-\operatorname{Rec}(A, K)=\text { a fragment of } \omega-w \operatorname{Mso}(A, K)
$$

- Open:
- $\omega-\operatorname{Rec}(A, K) \subseteq \omega-\omega M$ so (A, K) is the inclusion proper? (guess: Yes)
- ω - $w M$ so $(A, K)=$?

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max $\left.,+,-\infty, 0\right)$ the max-plus semiring

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$ the min-plus semiring

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}\right.$, min, $\left.+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w. Then we should have

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w. Then we should have

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- but this infinite sum does not always exist!

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w. Then we should have

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- but this infinite sum does not always exist!
- Solution: discounting

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w. Then we should have

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- but this infinite sum does not always exist!
- Solution: discounting
- Motivation

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w. Then we should have

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- but this infinite sum does not always exist!
- Solution: discounting
- Motivation
- used in model checking (Henzinger et al 2003, Faella et al 2008)

Automata and logic over the max-plus and min-plus semirings

- $\mathbb{R}_{\max }=\left(\mathbb{R}_{+} \cup\{-\infty\}\right.$, max, $\left.+,-\infty, 0\right)$ the max-plus semiring
- $\mathbb{R}_{\text {min }}=\left(\mathbb{R}_{+} \cup\{\infty\}, \min ,+, \infty, 0\right)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over $\mathbb{R}_{\text {max }}$ and $\mathbb{R}_{\text {min }}$?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w. Then we should have

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- but this infinite sum does not always exist!
- Solution: discounting
- Motivation
- used in model checking (Henzinger et al 2003, Faella et al 2008)
- common in economical mathematics

Weighted Büchi automata with discounting

- $0 \leq d<1$ a discounting parameter

Weighted Büchi automata with discounting

- $0 \leq d<1$ a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w

Weighted Büchi automata with discounting

- $0 \leq d<1$ a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w
- The d-weight of P_{w}

$$
d \text {-weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} d^{i} \cdot w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

Weighted Büchi automata with discounting

- $0 \leq d<1$ a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w
- The d-weight of P_{w}

$$
d \text {-weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} d^{i} \cdot w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- This sum exists: let $C=\max \{i n(q), w t(t) \mid q \in Q, t \in Q \times A \times Q\}$

Weighted Büchi automata with discounting

- $0 \leq d<1$ a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q, A, i n, w t, F)$, a word $w=a_{0} a_{1} \ldots \in A^{\omega}$ and a path $P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots$ of \mathcal{A} over w
- The d-weight of P_{w}

$$
d \text {-weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right)+\sum_{i \geq 0} d^{i} \cdot w t\left(\left(q_{i}, a_{i}, q_{i+1}\right)\right)
$$

- This sum exists: let $C=\max \{i n(q), w t(t) \mid q \in Q, t \in Q \times A \times Q\}$
- d-weight $\left(P_{w}\right) \leq C+C \cdot \frac{1}{1-d}<\infty$

Weighted Büchi automata with discounting

- d-behavior of \mathcal{A} :

$$
\|\mathcal{A}\|_{d}: A^{\omega} \rightarrow \mathbb{R}_{\max }
$$

where for every $w \in A^{\omega}$

$$
\left(\|\mathcal{A}\|_{d}, w\right)=\sup _{P_{w} \text { successful }}\left(d \text {-weight }\left(P_{w}\right)\right)
$$

Weighted Büchi automata with discounting

- d-behavior of \mathcal{A} :

$$
\|\mathcal{A}\|_{d}: A^{\omega} \rightarrow \mathbb{R}_{\max }
$$

where for every $w \in A^{\omega}$

$$
\left(\|\mathcal{A}\|_{d}, w\right)=\sup _{P_{w} \text { successful }}\left(d \text {-weight }\left(P_{w}\right)\right)
$$

- A series $s: A^{\omega} \rightarrow \mathbb{R}_{\text {max }}$ is called d- ω-recognizable if there exists a weighted Büchi automaton over A and $\mathbb{R}_{\max }$, so that $s=\|\mathcal{A}\|_{d}$

Weighted Büchi automata with discounting

- d-behavior of \mathcal{A} :

$$
\|\mathcal{A}\|_{d}: A^{\omega} \rightarrow \mathbb{R}_{\max }
$$

where for every $w \in A^{\omega}$

$$
\left(\|\mathcal{A}\|_{d}, w\right)=\sup _{P_{w} \text { successful }}\left(d \text {-weight }\left(P_{w}\right)\right)
$$

- A series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called d- ω-recognizable if there exists a weighted Büchi automaton over A and $\mathbb{R}_{\max }$, so that $s=\|\mathcal{A}\|_{d}$
- ω - $\operatorname{Rec}\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all d - ω-recognizable series over A and $\mathbb{R}_{\text {max }}$

wMSO logic with discounting - d-semantics

Same syntax like in other wMSO

Definition

Let $\varphi \in w M S O\left(A, \mathbb{R}_{\max }\right)$. The infinitary d-semantics of φ is the series

$$
\|\varphi\|_{d}: A_{\text {Free }(\varphi)}^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $\left(\|\varphi\|_{d},(w, \sigma)\right)$ inductively by:

- $\left(\|k\|_{d},(w, \sigma)\right)=k$
- $\left(\left\|P_{a}(x)\right\|_{d},(w, \sigma)\right)=\left\{\begin{aligned} 0 & \text { if } w(\sigma(x))=a \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $\left(\|x \in X\|_{d},(w, \sigma)\right)=\left\{\begin{aligned} 0 & \text { if } \sigma(x) \in \sigma(X) \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $\left(\|x \leq y\|_{d},(w, \sigma)\right)=\left\{\begin{aligned} 0 & \text { if } \sigma(x) \leq \sigma(y) \\ -\infty & \text { otherwise }\end{aligned}\right.$

wMSO logic with discounting - d-semantics

Definition

- $\left(\|\neg \varphi\|_{d},(w, \sigma)\right)=\left\{\begin{aligned} 0 & \text { if }\left(\|\varphi\|_{d},(w, \sigma)\right)=-\infty \\ -\infty & \text { if }\left(\|\varphi\|_{d},(w, \sigma)\right)=0\end{aligned}\right.$, provided that φ is of the form $P_{\mathrm{a}}(x), x \leq y$ or $x \in X$
- $\left(\|\varphi \vee \psi\|_{d},(w, \sigma)\right)=\max \left(\left(\|\varphi\|_{d},(w, \sigma)\right),\left(\|\psi\|_{d},(w, \sigma)\right)\right)$
- $\left(\|\varphi \wedge \psi\|_{d},(w, \sigma)\right)=\left(\|\varphi\|_{d},(w, \sigma)\right)+\left(\|\psi\|_{d},(w, \sigma)\right)$
- $\left(\|\exists x \cdot \varphi\|_{d},(w, \sigma)\right)=\sup _{i \in \operatorname{dom}(w)}\left(\left(\|\varphi\|_{d},(w, \sigma[x \rightarrow i])\right)\right)$
- $\left(\|\exists X \cdot \varphi\|_{d},(w, \sigma)\right)=\sup _{I \subseteq \operatorname{dom}(w)}\left(\left(\|\varphi\|_{d},(w, \sigma[X \rightarrow I])\right)\right)$
- $\left(\|\forall x \cdot \varphi\|_{d},(w, \sigma)\right)=\sum_{i \in \operatorname{dom}(w)} d^{i} \cdot\left(\|\varphi\|_{d},(w, \sigma[x \rightarrow i])\right)$
- where $\operatorname{dom}(w)=\omega$

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$
- ω-wMso $\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all infinitary wMSO-d-definable series over A and $\mathbb{R}_{\text {max }}$

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$
- ω-wMso $\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all infinitary wMSO-d-definable series over A and $\mathbb{R}_{\text {max }}$
- Büchi type theorem:

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called $w M S O$-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$
- ω - $w M s o\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all infinitary wMSO- d-definable series over A and $\mathbb{R}_{\text {max }}$
- Büchi type theorem:

Theorem (Droste \& R 2007)

$$
\omega-\operatorname{Rec}\left(A, \mathbb{R}_{\max }, d\right)=\text { a fragment of } \omega-w \operatorname{Mso}\left(A, \mathbb{R}_{\max }, d\right)
$$

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called $w M S O$-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$
- ω - $w M s o\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all infinitary wMSO- d-definable series over A and $\mathbb{R}_{\text {max }}$
- Büchi type theorem:

Theorem (Droste \& R 2007)

$$
\omega-\operatorname{Rec}\left(A, \mathbb{R}_{\max }, d\right)=\text { a fragment of } \omega-w \operatorname{Mso}\left(A, \mathbb{R}_{\max }, d\right)
$$

- Open:

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$
- ω-wMso $\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all infinitary wMSO- d-definable series over A and $\mathbb{R}_{\text {max }}$
- Büchi type theorem:

Theorem (Droste \& R 2007)

$$
\omega-\operatorname{Rec}\left(A, \mathbb{R}_{\max }, d\right)=\text { a fragment of } \omega-w \operatorname{Mso}\left(A, \mathbb{R}_{\max }, d\right)
$$

- Open:
- $\omega-\operatorname{Rec}\left(A, \mathbb{R}_{\max }, d\right) \subseteq \omega-w \operatorname{Mso}\left(A, \mathbb{R}_{\max }, d\right)$ is the inclusion proper? (guess: Yes)

d-recognizability and d-definability

- An infinitary series $s: A^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and $\mathbb{R}_{\max }$ so that $s=\|\varphi\|_{d}$
- ω - $w M s o\left(A, \mathbb{R}_{\text {max }}, d\right)$: the class of all infinitary wMSO- d-definable series over A and $\mathbb{R}_{\text {max }}$
- Büchi type theorem:

Theorem (Droste \& R 2007)

$$
\omega-\operatorname{Rec}\left(A, \mathbb{R}_{\max }, d\right)=\text { a fragment of } \omega-w \operatorname{Mso}\left(A, \mathbb{R}_{\max }, d\right)
$$

- Open:
- $\omega-\operatorname{Rec}\left(A, \mathbb{R}_{\text {max }}, d\right) \subseteq \omega-w \operatorname{Mso}\left(A, \mathbb{R}_{\text {max }}, d\right)$ is the inclusion proper? (guess: Yes)
- ω - $w \operatorname{Mso}\left(A, \mathbb{R}_{\max }, d\right)=$?

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?
- The IEEE standarized Propert Spesification Language (PSL) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?
- The IEEE standarized Propert Spesification Language (PSL) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?
- The IEEE standarized Propert Spesification Language (PSL) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
- CBV from Motorola

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?
- The IEEE standarized Propert Spesification Language (PSL) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
- CBV from Motorola
- ForSpec from Intel

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?
- The IEEE standarized Propert Spesification Language (PSL) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
- CBV from Motorola
- ForSpec from Intel
- Temporal - e from Versity

Linear Temporal Logic (LTL) - Motivation

- Why we are still interested in LTL?
- The IEEE standarized Propert Spesification Language (PSL) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
- CBV from Motorola
- ForSpec from Intel
- Temporal -e from Versity
- Sugar from IBM.

LTL - Syntax

Definition

Let $A P$ be a finite set of atomic propositions. The syntax of the LTL-formulas over $A P$ is given by

$$
\varphi::=\text { true }|p| \neg \varphi|\varphi \vee \varphi| \bigcirc \varphi|\varphi \cup \varphi| \square \varphi|\diamond \varphi| \square \diamond \varphi
$$

where $p \in A P$.

LTL - Syntax

Definition

Let $A P$ be a finite set of atomic propositions. The syntax of the LTL-formulas over $A P$ is given by

$$
\varphi::=\operatorname{true}|p| \neg \varphi|\varphi \vee \varphi| \bigcirc \varphi|\varphi \cup \varphi| \square \varphi|\diamond \varphi| \square \diamond \varphi
$$

where $p \in A P$.

- $\operatorname{LTL}(A P)$: the set of all LTL-formulas over $A P$.

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \| \varphi$ of φ by w by induction on the structure of φ :

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \| \varphi$ of φ by w by induction on the structure of φ :
- $w \models$ true

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \mid=\varphi$ of φ by w by induction on the structure of φ :
- $w \vDash$ true
- $w \vDash p$ iff $p \in a_{0}$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \mid=\varphi$ of φ by w by induction on the structure of φ :
- $w l$ true
- $w=p$ iff $p \in a_{0}$
- $w \neq \neg \varphi$ iff $w \not \models \varphi$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \mid=\varphi$ of φ by w by induction on the structure of φ :
- $w \vDash$ true
- $w=p$ iff $p \in a_{0}$
- $w \neq \neg \varphi$ iff $w \not \models \varphi$
- $w \models \varphi \vee \psi$ iff $w \models \varphi$ or $w \models \psi$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \| \varphi$ of φ by w by induction on the structure of φ :
- $w \vDash$ true
- $w=p$ iff $p \in a_{0}$
- $w \vDash \neg \varphi$ iff $w \not \models \varphi$
- $w \models \varphi \vee \psi$ iff $w \models \varphi$ or $w \models \psi$
- $w \vDash \bigcirc \varphi$ iff $a_{1} a_{2} \ldots \models \varphi$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w \| \varphi$ of φ by w by induction on the structure of φ :
- $w \vDash$ true
- $w=p$ iff $p \in a_{0}$
- $w \models \neg \varphi$ iff $w \not \models \varphi$
- $w \models \varphi \vee \psi$ iff $w \models \varphi$ or $w \models \psi$
- $w=\bigcirc \varphi$ iff $a_{1} a_{2} \ldots \models \varphi$
- $w \models \varphi U \psi$ iff $\exists j \geq 0, a_{j} a_{j+1} \ldots \models \psi$ and for every $0 \leq i<j$, $a_{i} a_{i+1} \ldots \models \varphi$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w=\varphi$ of φ by w by induction on the structure of φ :
- $w=$ true
- $w=p$ iff $p \in a_{0}$
- $w \models \neg \varphi$ iff $w \not \models \varphi$
- $w \models \varphi \vee \psi$ iff $w \models \varphi$ or $w \models \psi$
- $w=\bigcirc \varphi$ iff $a_{1} a_{2} \ldots \models \varphi$
- $w \models \varphi U \psi$ iff $\exists j \geq 0, a_{j} a_{j+1} \ldots \models \psi$ and for every $0 \leq i<j$, $a_{i} a_{i+1} \ldots \models \varphi$
- $w \models \square \varphi$ iff $a_{i} a_{i+1} \ldots \models \varphi$ for every $i \geq 0$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w=\varphi$ of φ by w by induction on the structure of φ :
- $w l$ true
- $w=p$ iff $p \in a_{0}$
- $w \vDash \neg \varphi$ iff $w \not \models \varphi$
- $w \models \varphi \vee \psi$ iff $w \models \varphi$ or $w \models \psi$
- $w=\bigcirc \varphi$ iff $a_{1} a_{2} \ldots \models \varphi$
- $w \vDash \varphi U \psi$ iff $\exists j \geq 0, a_{j} a_{j+1} \ldots \models \psi$ and for every $0 \leq i<j$, $a_{i} a_{i+1} \ldots \models \varphi$
- $w \| \square \varphi$ iff $a_{i} a_{i+1} \ldots \models \varphi$ for every $i \geq 0$
- $w \models \diamond \varphi$ iff $\exists i \geq 0, a_{i} a_{i+1} \ldots \models \varphi$

LTL - Semantics

- Let $\varphi \in \operatorname{LTL}(A P)$ and $w=a_{0} a_{1} a_{2} \ldots \in\left(2^{A P}\right)^{\omega}$. We define the satisfaction $w=\varphi$ of φ by w by induction on the structure of φ :
- $w=$ true
- $w=p$ iff $p \in a_{0}$
- $w \models \neg \varphi$ iff $w \not \models \varphi$
- $w \models \varphi \vee \psi$ iff $w \models \varphi$ or $w \models \psi$
- $w=\bigcirc \varphi$ iff $a_{1} a_{2} \ldots \models \varphi$
- $w \models \varphi U \psi$ iff $\exists j \geq 0, a_{j} a_{j+1} \ldots \models \psi$ and for every $0 \leq i<j$, $a_{i} a_{i+1} \ldots \models \varphi$
- $w \models \square \varphi$ iff $a_{i} a_{i+1} \ldots \models \varphi$ for every $i \geq 0$
- $w \models \diamond \varphi$ iff $\exists i \geq 0, a_{i} a_{i+1} \ldots \models \varphi$
- $w \models \square \diamond \varphi$ iff for every $i \geq 0, \exists j \geq i$ such that $a_{j} a_{j+1} \ldots \vDash \varphi$.

LTL-definability and recognizability

- $\varphi \in \operatorname{LTL}(A P)$

LTL-definability and recognizability

- $\varphi \in \operatorname{LTL}(A P)$
- $L(\varphi)$: the language of (all infinite words over $2^{A P}$ satisfying) φ

LTL-definability and recognizability

- $\varphi \in \operatorname{LTL}(A P)$
- $L(\varphi)$: the language of (all infinite words over $2^{A P}$ satisfying) φ
- $L \subseteq\left(2^{A P}\right)^{\omega}$ is $L T L$-definable if there is a $\varphi \in L T L(A P)$ such that $L=L(\varphi)$

LTL-definability and recognizability

- $\varphi \in \operatorname{LTL}(A P)$
- $L(\varphi)$: the language of (all infinite words over $2^{A P}$ satisfying) φ
- $L \subseteq\left(2^{A P}\right)^{\omega}$ is $L T L$-definable if there is a $\varphi \in L T L(A P)$ such that $L=L(\varphi)$
- $\omega-L t /\left(2^{A P}\right)$: the class of all LTL-definable infinitary languages over $2^{A P}$

LTL-definability and recognizability

- $\varphi \in \operatorname{LTL}(A P)$
- $L(\varphi)$: the language of (all infinite words over $2^{A P}$ satisfying) φ
- $L \subseteq\left(2^{A P}\right)^{\omega}$ is $L T L$-definable if there is a $\varphi \in L T L(A P)$ such that $L=L(\varphi)$
- $\omega-L t /\left(2^{A P}\right)$: the class of all LTL-definable infinitary languages over $2^{A P}$
- Vardi and Wopler 1994:

$$
\omega-L t /\left(2^{A P}\right) \varsubsetneqq \omega-\operatorname{Rec}\left(2^{A P}\right)
$$

wLTL with discounting - Syntax

Definition

Let $A P$ be a finite set of atomic propositions. The syntax of the wLTL-formulas with discounting over $A P$ and $\mathbb{R}_{\text {max }}$ is given by

$$
\varphi::=k|p| \neg p|\varphi \vee \varphi| \varphi \wedge \varphi|\bigcirc \varphi| \varphi \cup \varphi|\square \varphi| \diamond \varphi \mid \square \diamond \varphi
$$

where $k \in \mathbb{R}_{\max }$ and $p \in A P$.

wLTL with discounting - Syntax

Definition

Let $A P$ be a finite set of atomic propositions. The syntax of the wLTL-formulas with discounting over $A P$ and $\mathbb{R}_{\text {max }}$ is given by

$$
\varphi::=k|p| \neg p|\varphi \vee \varphi| \varphi \wedge \varphi|\bigcirc \varphi| \varphi \cup \varphi|\square \varphi| \diamond \varphi \mid \square \diamond \varphi
$$

where $k \in \mathbb{R}_{\max }$ and $p \in A P$.

- $w L T L\left(A P, \mathbb{R}_{\max }\right)$ the class of all formulas of wLTL over $A P$ and $\mathbb{R}_{\text {max }}$.

wLTL with discounting - d-semantics

$0 \leq d<1$ a discounting parameter

Definition

Let $\varphi \in w L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary d-semantics of φ is the series

$$
\|\varphi\|_{d}:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $\left(\|\varphi\|_{d}, w\right)$ inductively by:

- $\left(\|k\|_{d}, w\right)=k$

wLTL with discounting - d-semantics

$0 \leq d<1$ a discounting parameter

Definition

Let $\varphi \in w L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary d-semantics of φ is the series

$$
\|\varphi\|_{d}:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $\left(\|\varphi\|_{d}, w\right)$ inductively by:

- $\left(\|k\|_{d}, w\right)=k$
- $\left(\|p\|_{d}, w\right)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$

wLTL with discounting - d-semantics

$0 \leq d<1$ a discounting parameter

Definition

Let $\varphi \in w L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary d-semantics of φ is the series

$$
\|\varphi\|_{d}:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $\left(\|\varphi\|_{d}, w\right)$ inductively by:

- $\left(\|k\|_{d}, w\right)=k$
- $\left(\|p\|_{d}, w\right)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $\left(\|\neg p\|_{d}, w\right)=\left\{\begin{aligned} 0 & \text { if } p \notin a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$

wLTL with discounting - d-semantics

$0 \leq d<1$ a discounting parameter

Definition

Let $\varphi \in w L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary d-semantics of φ is the series

$$
\|\varphi\|_{d}:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $\left(\|\varphi\|_{d}, w\right)$ inductively by:

- $\left(\|k\|_{d}, w\right)=k$
- $\left(\|p\|_{d}, w\right)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $\left(\|\neg p\|_{d}, w\right)=\left\{\begin{array}{rc}0 & \text { if } p \notin a_{0} \\ -\infty & \text { otherwise }\end{array}\right.$
- $\left(\|\varphi \vee \psi\|_{d}, w\right)=\max \left(\left(\|\varphi\|_{d}, w\right),\left(\|\psi\|_{d}, w\right)\right)$

wLTL with discounting - d-semantics

Definition (continued)

$$
\text { - }\left(\|\varphi \wedge \psi\|_{d}, w\right)=\left(\|\varphi\|_{d}, w\right)+\left(\|\psi\|_{d}, w\right)
$$

wLTL with discounting - d-semantics

Definition (continued)

- $\left(\|\varphi \wedge \psi\|_{d}, w\right)=\left(\|\varphi\|_{d}, w\right)+\left(\|\psi\|_{d}, w\right)$
- $\left(\|\bigcirc \varphi\|_{d}, w\right)=d \cdot\left(\|\varphi\|_{d}, a_{1} a_{2} \ldots\right)$

wLTL with discounting - d-semantics

Definition (continued)

- $\left(\|\varphi \wedge \psi\|_{d}, w\right)=\left(\|\varphi\|_{d}, w\right)+\left(\|\psi\|_{d}, w\right)$
- $\left(\|\bigcirc \varphi\|_{d}, w\right)=d \cdot\left(\|\varphi\|_{d}, a_{1} a_{2} \ldots\right)$
- $\left(\|\varphi \cup \psi\|_{d}, w\right)=$

$$
\sup _{i \geq 0}\left(\left(\sum_{0 \leq j<i} d^{j} \cdot\left(\|\varphi\|_{d}, a_{j} a_{j+1} \ldots\right)+d^{i} \cdot\left(\|\psi\|_{d}, a_{i} a_{i+1} \ldots\right)\right)\right)
$$

wLTL with discounting - d-semantics

Definition (continued)

- $\left(\|\varphi \wedge \psi\|_{d}, w\right)=\left(\|\varphi\|_{d}, w\right)+\left(\|\psi\|_{d}, w\right)$
- $\left(\|\bigcirc \varphi\|_{d}, w\right)=d \cdot\left(\|\varphi\|_{d}, a_{1} a_{2} \ldots\right)$
- $\left(\|\varphi \cup \psi\|_{d}, w\right)=$
$\sup _{i \geq 0}\left(\left(\sum_{0 \leq j<i} d^{j} \cdot\left(\|\varphi\|_{d}, a_{j} a_{j+1} \ldots\right)+d^{i} \cdot\left(\|\psi\|_{d}, a_{i} a_{i+1} \ldots\right)\right)\right)$
- $\left(\|\square \varphi\|_{d}, w\right)=\sum_{i \geq 0} d^{i} \cdot\left(\|\varphi\|_{d}, a_{i} a_{i+1} \ldots\right)$

wLTL with discounting - d-semantics

Definition (continued)

- $\left(\|\varphi \wedge \psi\|_{d}, w\right)=\left(\|\varphi\|_{d}, w\right)+\left(\|\psi\|_{d}, w\right)$
- $\left(\|\bigcirc \varphi\|_{d}, w\right)=d \cdot\left(\|\varphi\|_{d}, a_{1} a_{2} \ldots\right)$
- $\left(\|\varphi \cup \psi\|_{d}, w\right)=$
$\sup _{i \geq 0}\left(\left(\sum_{0 \leq j<i} d^{j} \cdot\left(\|\varphi\|_{d}, a_{j} a_{j+1} \ldots\right)+d^{i} \cdot\left(\|\psi\|_{d}, a_{i} a_{i+1} \ldots\right)\right)\right)$
- $\left(\|\square \varphi\|_{d}, w\right)=\sum_{i \geq 0} d^{i} \cdot\left(\|\varphi\|_{d}, a_{i} a_{i+1} \ldots\right)$
- $\left(\|\diamond \varphi\|_{d}, w\right)=\sup _{i \geq 0}\left(\left(\|\varphi\|_{d}, a_{i} a_{i+1} \ldots\right)\right)$

wLTL with discounting - d-semantics

Definition (continued)

- $\left(\|\varphi \wedge \psi\|_{d}, w\right)=\left(\|\varphi\|_{d}, w\right)+\left(\|\psi\|_{d}, w\right)$
- $\left(\|\bigcirc \varphi\|_{d}, w\right)=d \cdot\left(\|\varphi\|_{d}, a_{1} a_{2} \ldots\right)$
- $\left(\|\varphi \cup \psi\|_{d}, w\right)=$

$$
\sup _{i \geq 0}\left(\left(\sum_{0 \leq j<i} d^{j} \cdot\left(\|\varphi\|_{d}, a_{j} a_{j+1} \ldots\right)+d^{i} \cdot\left(\|\psi\|_{d}, a_{i} a_{i+1} \ldots\right)\right)\right)
$$

- $\left(\|\square \varphi\|_{d}, w\right)=\sum_{i \geq 0} d^{i} \cdot\left(\|\varphi\|_{d}, a_{i} a_{i+1} \ldots\right)$
- $\left(\|\diamond \varphi\|_{d}, w\right)=\sup _{i \geq 0}\left(\left(\|\varphi\|_{d}, a_{i} a_{i+1} \ldots\right)\right)$
- $\left(\|\square \diamond \varphi\|_{d}, w\right)=\sum_{i \geq 0} d^{i} \cdot\left(\sup _{k \geq i}\left(\left(\|\varphi\|_{d}, a_{k} a_{k+1} \ldots\right)\right)\right)$

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\text {max }}$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\text {max }}$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$
- $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all wLTL-d-definable infinitary series

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$
- $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all wLTL- d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment of $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)$.

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$
- $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all wLTL- d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment of $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)$.

- Open:

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$
- $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all wLTL- d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment of $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)$.

- Open:
- Is the above inclusion proper? (guess: Yes)

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$
- $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all wLTL- d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment of $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)$.

- Open:
- Is the above inclusion proper? (guess: Yes)
- Does the inclusion $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\text {max }}, d\right)$ hold true?
and if yes, is it proper?

LTL d-definability and d-recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called wLTL-d-definable if there is a wLTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|_{d}$
- $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all wLTL-d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment of $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)$.

- Open:
- Is the above inclusion proper? (guess: Yes)
- Does the inclusion $\omega-L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right) \subseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)$ hold true? and if yes, is it proper?
- A weighted LTL over commutative semirings with infinite sums and products is defined in a similar way. We just replace sum with product and sup with sum, above.

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0,1 \in L$, such that $0 \leq k \leq 1$ for every $k \in L$

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0,1 \in L$, such that $0 \leq k \leq 1$ for every $k \in L$
- Lattice L : distributive if for every $k, l, m \in L$:

$$
\begin{aligned}
k \wedge(I \vee m) & =(k \wedge I) \vee(k \wedge m) \\
(k \vee I) \wedge m) & =(k \wedge m) \vee(I \wedge m)
\end{aligned}
$$

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0,1 \in L$, such that $0 \leq k \leq 1$ for every $k \in L$
- Lattice L : distributive if for every $k, I, m \in L$:

$$
\begin{aligned}
k \wedge(I \vee m) & =(k \wedge I) \vee(k \wedge m) \\
(k \vee I) \wedge m) & =(k \wedge m) \vee(I \wedge m)
\end{aligned}
$$

- Every bounded distributive lattice L is a semiring with operations V and \wedge and neutral elements 0 and 1 .

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0,1 \in L$, such that $0 \leq k \leq 1$ for every $k \in L$
- Lattice L : distributive if for every $k, I, m \in L$:

$$
\begin{aligned}
k \wedge(I \vee m) & =(k \wedge I) \vee(k \wedge m) \\
(k \vee I) \wedge m) & =(k \wedge m) \vee(I \wedge m)
\end{aligned}
$$

- Every bounded distributive lattice L is a semiring with operations V and \wedge and neutral elements 0 and 1 .
- Bounded distributive lattice L : a mapping : $L \rightarrow L$ is a negation function if $\overline{0}=1$ and $\overline{1}=0$.

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0,1 \in L$, such that $0 \leq k \leq 1$ for every $k \in L$
- Lattice L : distributive if for every $k, I, m \in L$:

$$
\begin{aligned}
k \wedge(I \vee m) & =(k \wedge I) \vee(k \wedge m) \\
(k \vee I) \wedge m) & =(k \wedge m) \vee(I \wedge m)
\end{aligned}
$$

- Every bounded distributive lattice L is a semiring with operations \vee and \wedge and neutral elements 0 and 1 .
- Bounded distributive lattice L : a mapping : $L \rightarrow L$ is a negation function if $\overline{0}=1$ and $\overline{1}=0$.
- Bounded distributive lattice L : we can define a negation function by $\overline{0}=1$ and $\bar{x}=0$ for every $x \in L \backslash\{0\}$

Lattices

- A partially ordered set (L, \leq) or simply L is a lattice if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0,1 \in L$, such that $0 \leq k \leq 1$ for every $k \in L$
- Lattice L : distributive if for every $k, I, m \in L$:

$$
\begin{aligned}
k \wedge(I \vee m) & =(k \wedge I) \vee(k \wedge m) \\
(k \vee I) \wedge m) & =(k \wedge m) \vee(I \wedge m)
\end{aligned}
$$

- Every bounded distributive lattice L is a semiring with operations V and \wedge and neutral elements 0 and 1 .
- Bounded distributive lattice L : a mapping : $L \rightarrow L$ is a negation function if $\overline{0}=1$ and $\overline{1}=0$.
- Bounded distributive lattice L : we can define a negation function by $\overline{0}=1$ and $\bar{x}=0$ for every $x \in L \backslash\{0\}$
- In the sequel: L bounded distributive lattice with negation function

Multi-valued automata

- L: bounded distributive lattice

Multi-valued automata

- L: bounded distributive lattice
- A multi-valued automaton over L

$$
\mathcal{A}=(Q, A, \text { in, wt, ter })
$$

is just a weighted automaton over L.

Multi-valued automata

- L : bounded distributive lattice
- A multi-valued automaton over L

$$
\mathcal{A}=(Q, A, \text { in, wt, ter })
$$

is just a weighted automaton over L.

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

is just a weighted Büchi automaton over L.

Multi-valued automata

- L: bounded distributive lattice
- A multi-valued automaton over L

$$
\mathcal{A}=(Q, A, \text { in, wt, ter })
$$

is just a weighted automaton over L.

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

is just a weighted Büchi automaton over L.

- Considering the quantitative MSO logic and LTL over L, the problem of how to define the negation for enery formula remains!

De Morgan algebras

Definition

A De Morgan algebra is a bounded distributive lattice (L, \leq) equipped with a comlpement mapping

$$
: L \rightarrow L
$$

satisfying the involution law

$$
\overline{\bar{k}}=k
$$

and the De Morgan laws

$$
\overline{k \vee I}=\bar{k} \wedge \bar{l}, \quad \overline{k \wedge I}=\bar{k} \vee \bar{l}
$$

for every $k, l \in L$.

De Morgan algebras

Definition

A De Morgan algebra is a bounded distributive lattice (L, \leq) equipped with a comlpement mapping

$$
: L \rightarrow L
$$

satisfying the involution law

$$
\overline{\bar{k}}=k
$$

and the De Morgan laws

$$
\overline{k \vee I}=\bar{k} \wedge \bar{l}, \quad \overline{k \wedge l}=\bar{k} \vee \bar{l}
$$

for every $k, l \in L$.

- For instance the fuzzy semiring $F=([0,1]$, sup, inf, 0,1$)$ with $\bar{k}=1-k$ is a De Morgan algebra.

De Morgan algebras

Definition

A De Morgan algebra is a bounded distributive lattice (L, \leq) equipped with a comlpement mapping

$$
: L \rightarrow L
$$

satisfying the involution law

$$
\overline{\bar{k}}=k
$$

and the De Morgan laws

$$
\overline{k \vee I}=\bar{k} \wedge \bar{l}, \quad \overline{k \wedge l}=\bar{k} \vee \bar{l}
$$

for every $k, l \in L$.

- For instance the fuzzy semiring $F=([0,1]$, sup, inf, 0,1$)$ with $\bar{k}=1-k$ is a De Morgan algebra.
- In the sequel: L De Morgan algebra \qquad

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- ter : $Q \rightarrow L$ the terminal distribution

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- ter : $Q \rightarrow L$ the terminal distribution
- $w=a_{0} \ldots a_{n-1} \in A^{*}$

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- ter : $Q \rightarrow L$ the terminal distribution
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right)
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $0 \leq i \leq n-1$

Multi-valued automata over De Morgan algebras

- A multi-valued automaton over L :

$$
\mathcal{A}=(Q, A, \text { in, wt }, \text { ter })
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- ter : $Q \rightarrow L$ the terminal distribution
- $w=a_{0} \ldots a_{n-1} \in A^{*}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots\left(q_{n-1}, a_{n-1}, q_{n}\right)
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $0 \leq i \leq n-1$

- the weight of P_{w} :

$$
\left.\begin{array}{rl}
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right) \wedge w t\left(\left(q_{0},\right.\right. & \left.\left.a_{0}, q_{1}\right)\right) \\
& \wedge w t\left(\left(q_{1}, a_{1}, q_{2}\right)\right)
\end{array}\right) \ldots .
$$

Multi-valued automata over De Morgan algebras

- the behavior of \mathcal{A} is the series

$$
\|\mathcal{A}\|: A^{*} \rightarrow K
$$

defined for every $w \in A^{*}$ by

$$
(\|\mathcal{A}\|, w)=\bigvee_{P_{w}} \text { weight }\left(P_{w}\right)
$$

Multi-valued automata over De Morgan algebras

- Example: Let L be the fuzzy semiring.

Multi-valued automata over De Morgan algebras

- Example: Let L be the fuzzy semiring.
- $\mathcal{A}=(Q, A$, in, wt, ter $)$ with $A=\{a, b, c\}, Q=\{q\}$, $\operatorname{in}(q)=\operatorname{ter}(q)=1$, and

Multi-valued automata over De Morgan algebras

- Example: Let L be the fuzzy semiring.
- $\mathcal{A}=(Q, A$, in, wt, ter $)$ with $A=\{a, b, c\}, Q=\{q\}$, $\operatorname{in}(q)=\operatorname{ter}(q)=1$, and
- $w t((q, x, q))=\left\{\begin{array}{ll}0 & \text { if } x=a \\ 0,5 & \text { if } x=b \\ 1 & \text { if } x=c\end{array}\right.$.

Multi-valued automata over De Morgan algebras

- Example: Let L be the fuzzy semiring.
- $\mathcal{A}=(Q, A$, in, wt, ter $)$ with $A=\{a, b, c\}, Q=\{q\}$, $\operatorname{in}(q)=\operatorname{ter}(q)=1$, and
- $w t((q, x, q))=\left\{\begin{array}{ll}0 & \text { if } x=a \\ 0,5 & \text { if } x=b \\ 1 & \text { if } x=c\end{array}\right.$.
- Then for any word $w \in A^{*}$ we get $(\|\mathcal{A}\|, w)=0$ if w contains at least one occurrence of $a,(\|\mathcal{A}\|, w)=0,5$ if w contains at least one occurrence of b but not any a, and $(\|\mathcal{A}\|, w)=1$ if w contains only c or it is the empty word, i.e., $w=c^{n}$ for some $n \geq 0$.

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L :

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt : $Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in : $Q \rightarrow L$ the initial distribution,
- wt $: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $i \geq 0$

Multi-valued Büchi automata over De Morgan algebras

- A multi-valued Büchi automaton over L:

$$
\mathcal{A}=(Q, A, i n, w t, F)
$$

- Q the finite state set,
- A the input alphabet,
- in $: Q \rightarrow L$ the initial distribution,
- wt $: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set
- $w=a_{0} a_{1} \ldots \in A^{\omega}$
- a path of \mathcal{A} over w

$$
P_{w}=\left(q_{0}, a_{0}, q_{1}\right)\left(q_{1}, a_{1}, q_{2}\right) \ldots
$$

where $\left(q_{i}, a_{i}, q_{i+1}\right) \in Q \times A \times Q$ for every $i \geq 0$

- the weight of P_{w} :

$$
\text { weight }\left(P_{w}\right)=\operatorname{in}\left(q_{0}\right) \wedge w t\left(\left(q_{0}, a_{0}, q_{1}\right)\right) \wedge w t\left(\left(q_{1}, a_{1}, q_{2}\right)\right) \wedge \ldots
$$

Multi-valued Büchi automata over De Morgan algebras

- P_{w} : successful if $\ln ^{Q}\left(P_{w}\right) \cap F \neq \varnothing$

Multi-valued Büchi automata over De Morgan algebras

- P_{w} : successful if $\ln ^{Q}\left(P_{w}\right) \cap F \neq \varnothing$
- observe that a successful path P_{w} can have weight $\left(P_{w}\right)=0$

Multi-valued Büchi automata over De Morgan algebras

- P_{w} : successful if $\ln ^{Q}\left(P_{w}\right) \cap F \neq \varnothing$
- observe that a successful path P_{w} can have weight $\left(P_{w}\right)=0$
- the behavior of \mathcal{A} is the infinitary series

$$
\|\mathcal{A}\|: A^{\omega} \rightarrow K
$$

defined for every $w \in A^{\omega}$ by

$$
(\|\mathcal{A}\|, w)=\bigvee_{P_{w} \text { successful }} \text { weight }\left(P_{w}\right)
$$

Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A$ and $k \in K$.

Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A$ and $k \in K$.

- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$,

Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A$ and $k \in K$.

- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$,
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$

Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A$ and $k \in K$.

- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$,
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi=\neg(\exists X \cdot \neg \varphi)$

Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by

$$
\varphi::=k\left|P_{a}(x)\right| x \in X|x \leq y| \neg \varphi|\varphi \vee \varphi| \exists x \cdot \varphi \mid \exists X \cdot \varphi
$$

where $a \in A$ and $k \in K$.

- $\varphi \wedge \psi=\neg(\neg \varphi \vee \neg \psi)$,
- $\forall x \cdot \varphi=\neg(\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi=\neg(\exists X \cdot \neg \varphi)$
- $\operatorname{dmMSO}(A, L)$: the set of all multi-valued MSO-formulas over A and L

Multi-valued MSO logic - Semantics over finite words

Definition

Let $\varphi \in d m M S O(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow L
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$

Multi-valued MSO logic - Semantics over finite words

Definition

Let $\varphi \in d m M S O(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow L
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$

Multi-valued MSO logic - Semantics over finite words

Definition

Let $\varphi \in \operatorname{dmMSO}(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow L
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$

Multi-valued MSO logic - Semantics over finite words

Definition

Let $\varphi \in \operatorname{dmMSO}(A, K)$. The finitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{*} \rightarrow L
$$

For every $w \in A^{*}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \leq y\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \leq \sigma(y) \\ 0 & \text { otherwise }\end{cases}$

Multi-valued MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$

Multi-valued MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$

Multi-valued MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\underset{i \in \operatorname{dom}(w)}{\vee}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$

Multi-valued MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\underset{i \in \operatorname{dom}(w)}{\vee}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\underset{I \subseteq \operatorname{dom}(w)}{\vee}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$

Multi-valued MSO logic - Semantics over finite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\underset{i \in \operatorname{dom}(w)}{\vee}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\underset{I \subseteq \operatorname{dom}(w)}{\vee}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$
- where $\operatorname{dom}(w)=\{0, \ldots,|w|-1\}$

Multi-valued MSO logic - Semantics over infinite words

Definition

Let $\varphi \in d m M S O(A, K)$. The infinitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{\omega} \rightarrow L
$$

For every $w \in A^{\omega}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$

Multi-valued MSO logic - Semantics over infinite words

Definition

Let $\varphi \in d m M S O(A, K)$. The infinitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{\omega} \rightarrow L
$$

For every $w \in A^{\omega}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$

Multi-valued MSO logic - Semantics over infinite words

Definition

Let $\varphi \in d m M S O(A, K)$. The infinitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{\omega} \rightarrow L
$$

For every $w \in A^{\omega}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$

Multi-valued MSO logic - Semantics over infinite words

Definition

Let $\varphi \in d m M S O(A, K)$. The infinitary semantics of φ is the series

$$
\|\varphi\|: A_{\text {Free }(\varphi)}^{\omega} \rightarrow L
$$

For every $w \in A^{\omega}$ and $(w, \operatorname{Free}(\varphi))$-assignment σ, we define $(\|\varphi\|,(w, \sigma))$ inductively by:

- $(\|k\|,(w, \sigma))=k$
- $\left(\left\|P_{a}(x)\right\|,(w, \sigma)\right)= \begin{cases}1 & \text { if } w(\sigma(x))=a \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \in X\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \in \sigma(X) \\ 0 & \text { otherwise }\end{cases}$
- $(\|x \leq y\|,(w, \sigma))= \begin{cases}1 & \text { if } \sigma(x) \leq \sigma(y) \\ 0 & \text { otherwise }\end{cases}$

Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$

Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$

Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\bigvee_{i \in \omega}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$

Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\bigvee_{i \in \omega}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\underset{I \subseteq \omega}{\bigvee}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$

Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

- $(\|\neg \varphi\|,(w, \sigma))=\overline{(\|\varphi\|,(w, \sigma))}$
- $(\|\varphi \vee \psi\|,(w, \sigma))=(\|\varphi\|,(w, \sigma)) \vee(\|\psi\|,(w, \sigma))$
- $(\|\exists x \cdot \varphi\|,(w, \sigma))=\bigvee_{i \in \omega}(\|\varphi\|,(w, \sigma[x \rightarrow i]))$
- $(\|\exists X \cdot \varphi\|,(w, \sigma))=\underset{I \subseteq \omega}{\bigvee}(\|\varphi\|,(w, \sigma[X \rightarrow I]))$
- where $\operatorname{dom}(w)=\omega$

Recognizability and definability over De Morgan algebras

- dm-Mso (A, L) : the class of all finitary series over A and L definable by multi-valued MSO sentences.

Recognizability and definability over De Morgan algebras

- dm-Mso (A, L) : the class of all finitary series over A and L definable by multi-valued MSO sentences.
- ω-dm-Mso (A, L) : the class of all infinitary series over A and L definable by multi-valued MSO sentences.

Recognizability and definability over De Morgan algebras

- dm-Mso (A, L) : the class of all finitary series over A and L definable by multi-valued MSO sentences.
- ω-dm-Mso (A, L) : the class of all infinitary series over A and L definable by multi-valued MSO sentences.

Theorem (Droste, Kuich \& R 2008)

$$
\begin{gathered}
\operatorname{Rec}(A, L)=d m-M s o(A, L) \\
\omega-\operatorname{Rec}(A, L)=\omega-d m-M s o(A, L)
\end{gathered}
$$

Recognizability and definability over De Morgan algebras

- dm-Mso (A, L) : the class of all finitary series over A and L definable by multi-valued MSO sentences.
- ω-dm-Mso (A, L) : the class of all infinitary series over A and L definable by multi-valued MSO sentences.

Theorem (Droste, Kuich \& R 2008)

$$
\begin{gathered}
\operatorname{Rec}(A, L)=d m-M s o(A, L) \\
\omega-\operatorname{Rec}(A, L)=\omega-d m-M s o(A, L)
\end{gathered}
$$

- We do not require any fragments!

Multi-valued LTL - Syntax

Definition

Let $A P$ be a finite set of atomic propositions. The syntax of the multi-valued LTL-formulas over $A P$ and $\mathbb{R}_{\text {max }}$ is given by

$$
\varphi::=k|p| \neg \varphi|\varphi \vee \varphi| \bigcirc \varphi \mid \varphi \cup \varphi
$$

where $k \in \mathbb{R}_{\max }$ and $p \in A P$.

Multi-valued LTL - Syntax

Definition

Let $A P$ be a finite set of atomic propositions. The syntax of the multi-valued LTL-formulas over $A P$ and $\mathbb{R}_{\text {max }}$ is given by

$$
\varphi::=k|p| \neg \varphi|\varphi \vee \varphi| \bigcirc \varphi \mid \varphi \cup \varphi
$$

where $k \in \mathbb{R}_{\max }$ and $p \in A P$.

- $\operatorname{dmLTL}\left(A P, \mathbb{R}_{\max }\right)$ the class of all multi-valued LTL formulas over $A P$ and $\mathbb{R}_{\text {max }}$.

Multi-valued LTL - semantics

Definition

Let $\varphi \in d m L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary semantics of φ is the series

$$
\|\varphi\|:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

- $(\|k\|, w)=k$

Multi-valued LTL - semantics

Definition

Let $\varphi \in d m L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary semantics of φ is the series

$$
\|\varphi\|:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

- $(\|k\|, w)=k$
- $(\|p\|, w)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$

Multi-valued LTL - semantics

Definition

Let $\varphi \in d m L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary semantics of φ is the series

$$
\|\varphi\|:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

- $(\|k\|, w)=k$
- $(\|p\|, w)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $(\|\neg \varphi\|, w)=\overline{(\|\varphi\|, w)}$

Multi-valued LTL - semantics

Definition

Let $\varphi \in d m L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary semantics of φ is the series

$$
\|\varphi\|:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

- $(\|k\|, w)=k$
- $(\|p\|, w)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $(\|\neg \varphi\|, w)=\overline{(\|\varphi\|, w)}$
- $(\|\varphi \vee \psi\|, w)=(\|\varphi\|, w) \vee(\|\psi\|, w)$

Multi-valued LTL - semantics

Definition

Let $\varphi \in d m L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary semantics of φ is the series

$$
\|\varphi\|:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

- $(\|k\|, w)=k$
- $(\|p\|, w)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $(\|\neg \varphi\|, w)=\overline{(\|\varphi\|, w)}$
- $(\|\varphi \vee \psi\|, w)=(\|\varphi\|, w) \vee(\|\psi\|, w)$
- $(\|\bigcirc \varphi\|, w)=\left(\|\varphi\|, a_{1} a_{2} \ldots\right)$

Multi-valued LTL - semantics

Definition

Let $\varphi \in d m L T L\left(A P, \mathbb{R}_{\max }\right)$. The infinitary semantics of φ is the series

$$
\|\varphi\|:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }
$$

For every $w=a_{0} a_{1} \ldots \in\left(2^{A P}\right)^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

- $(\|k\|, w)=k$
- $(\|p\|, w)=\left\{\begin{aligned} 0 & \text { if } p \in a_{0} \\ -\infty & \text { otherwise }\end{aligned}\right.$
- $(\|\neg \varphi\|, w)=\overline{(\|\varphi\|, w)}$
- $(\|\varphi \vee \psi\|, w)=(\|\varphi\|, w) \vee(\|\psi\|, w)$
- $(\|\bigcirc \varphi\|, w)=\left(\|\varphi\|, a_{1} a_{2} \ldots\right)$
- $(\|\varphi \cup \psi\|, w)=\bigvee_{i \geq 0}\left(\left(\bigwedge_{0 \leq j<i}\left(\|\varphi\|, a_{j} a_{j+1} \ldots\right) \wedge\left(\|\psi\|, a_{i} a_{i+1} \ldots\right)\right)\right.$

Multi-valued LTL-definability and recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called dm-LTL-definable if there is a dm-LTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|$

Multi-valued LTL-definability and recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called dm-LTL-definable if there is a dm-LTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|$
- ω-dm- $L t /\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all dm-LTL-definable infinitary series

Multi-valued LTL-definability and recognizability

- An infinitary series $s:\left(2^{A P}\right)^{\omega} \rightarrow \mathbb{R}_{\max }$ is called dm-LTL-definable if there is a dm-LTL-formula φ over $A P$ and $\mathbb{R}_{\max }$ such that $s=\|\varphi\|$
- ω-dm-Ltl $\left(2^{A P}, \mathbb{R}_{\max }, d\right)$: the class of all dm-LTL-definable infinitary series

Theorem (Kupferman \& Lustig 2007, Mandrali 2012)

$$
\omega-d m-L t l\left(2^{A P}, \mathbb{R}_{\max }, d\right) \nsubseteq \omega-\operatorname{Rec}\left(2^{A P}, \mathbb{R}_{\max }, d\right)
$$

Work in Progress

- Star-free and ω-star-free series
- Counter-free weighted automata
- Weighted Monadic First Order logic

Future Work

- Decidability results
- Complexity results
- Weighted PSL?
- Application to Quantitative Model Checking

References

Unweighted setup

- J.R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Log. Grundl. Math. 6 (1960) 66-92.
- J.R. Büchi, On a decision method in restricted second order arithmetic, in: Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science, 1962, pp. 1-11.
- C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98 (1961) 21-52.
- M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1994) 1-37.
- U. Zimmermann, Combinatorial Optimization in Ordered Algebraic Structures, in: Annals of Discrete Mathematics, vol. 10, North-Holland, Amsterdam, 1981.

References

Weighted automata

- M. Schützenberger, On the definition of a family of automata, Inf. Control 4 (1961) 245-270.
- Handbook of Weighted Automata, M. Droste, W. Kuich and H. Vogler eds., Springer-Verlag 2009.

References

Discounting

- L. de Alfaro, T.A. Henzinger, R. Majumdar, Discounting the future in systems theory, in: Proceedings of ICALP 2003, LNCS 2719(2003) 1022-1037.
- L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, M. Stoelinga, Model checking discounted temporal properties, Theoret. Comput. Sci. 345(2005) 139-170.
- M. Faella, A. Legay, M. Stoelinga, Model checking quantitative linear time logic, Electron. Notes Theor. Comput. Sci. 220(2008) 61-77.

Weighted MSO logic

- M. Droste, P. Gastin, Weighted automata and weighted logics, Theoret. Comput. Sci. 380(2007) 69-86; extended abstract in: 32nd ICALP, LNCS 3580(2005) 513-525.
- M. Droste, G. Rahonis, Weighted automata and weighted logics on infinite words, Russian Mathematics (Iz. VUZ), 54(1) (2010) 26-45; extended abstract in: LNCS 4036(2006) 49-58.

References

Weighted MSO logic with discounting

- M. Droste, G. Rahonis, Weighted automata and weighted logics with discounting, Theoret. Comput. Sci. 410(2009) 3481-3494; extended abstract in: Proceedings of CIAA 2007, LNCS 4783(2007) 73-84.

Weighted LTL with discounting

- M. Mandrdali, Weighted LTL with discounting, to appear at CIAA 2012.

References

Multi-valued MSO logic

- M. Droste, W. Kuich and G. Rahonis, Multi-valued MSO logis over words and trees, Fundam. Inform. 84(2008) 305-327.
- G. Rahonis, Fuzzy languages, in: Handbook of Weighted Automata, M. Droste, W. Kuich and H. Vogler eds., Springer-Verlag 2009, pp. 481-517.

Weighted and multi-valued LTL

- O. Kupferman and Y. Lustig, Lattice automata, Lecture Notes in Comput. Sci. 4349(2007) 199-213.
- M. Droste and H. Vogler, Weighted automata and multi-valued logics over arbitrary bounded lattices, Theoret. Comput. Sci. 418(2012) 14-36 (lack of distributiveness and full complement function, requirement of definition of $\varphi \wedge \psi, \forall x, \varphi$, etc.)
- M. Mandrali, Weighted and multi-valued LTL, preprint.

Thank you

Semirings with infinite sums and products

- K is equipped with infinitary sum operations $\sum_{l}: K^{\prime} \rightarrow K$, for any index set I, such that for all I and all families $\left(a_{i} \mid i \in I\right)$ of elements of K such that
- $\sum_{i \in \varnothing} a_{i}=0, \quad \sum_{i \in\{j\}} a_{i}=a_{j}, \quad \sum_{i \in\{j, k\}} a_{i}=a_{j}+a_{k}$ for $j \neq k$,
- $\sum_{j \in J}\left(\sum_{i \in I_{j}} a_{i}\right)=\sum_{i \in I} a_{i}$, if $\cup_{j \in J} I_{j}=I$ and $I_{j} \cap I_{j^{\prime}}=\varnothing$ for $j \neq j^{\prime}$,
- $\sum_{i \in I}\left(c \cdot a_{i}\right)=c \cdot\left(\sum_{i \in I} a_{i}\right), \quad \sum_{i \in I}\left(a_{i} \cdot c\right)=\left(\sum_{i \in I} a_{i}\right) \cdot c$, and
- K is endowed with a countably infinite product operation satisfying for all sequences $\left(a_{i} \mid i \geq 0\right)$ of elements of K the following conditions:
- $\prod_{i \geq 0} 1=1, \quad \prod_{i \geq 0} a_{i}=\prod_{i \geq 0} a_{i}^{\prime}$,
- $a_{0} \cdot \prod_{i \geq 0} a_{i+1}=\prod_{i \geq 0} a_{i}, \quad \Pi_{j \geq 1} \sum_{i \in I_{j}} a_{i}=$ $\sum_{\left(i_{1}, i_{2}, \ldots\right) \in I_{1} \times I_{2} \times \ldots} \prod_{j \geq 1} a_{i_{j}}$,
- $\prod_{i \geq 0}\left(a_{i} \cdot b_{i}\right)=\left(\prod_{i \geq 0} a_{i}\right) \cdot\left(\prod_{i \geq 0} b_{i}\right)$ where in the second equation $a_{0}^{\prime}=a_{0} \cdot \ldots \cdot a_{n_{1}}, a_{2}^{\prime}=a_{n_{1}+1} \cdot \ldots \cdot a_{n_{2}}, \ldots$ for an increasing sequence $0<n_{1}<n_{2}<\ldots$, and in the last equation I_{1}, l_{2}, \ldots are arbitrary

