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Why do we need a quantitative setup?

@ Analysis of Quantitative Systems

o Probabilistic systems

e Minimization of costs

e Maximization of rewards

o Computation of reliability

o Optimization of energy consumption

Natural language processing
Speech recognition
Digital image compression

Fuzzy systems
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Motivation

Models
Probabilistic automata

Transition systems with costs
Transition systems with rewards
Transducers with weights
Multi-valued automata

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Motivation

Models
Probabilistic automata

Transition systems with costs
Transition systems with rewards
Transducers with weights
Multi-valued automata

Weighted Automata

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Weighted automata introduced by M. Schiitzenberger (1961)

Applications in:

Handbook of Weighted Automata,

Manfred Droste, Werner Kuich, and Heiko Vogler eds.,

Monographs in Theoretical Computer Science, An EATCS Series, Springer
2009.

Quantitative analysis: the specification languages (MSO, LTL, CTL, ...)
should be also quantitative
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Weighted Monadic Second Order (MSO) logic

State of the art
Weighted MSO logic over:
finite words  Droste & Gastin 2005, 2009,
infinite words  Droste & R 2006,
finite and infinite words with discounting  Droste & R 2007,
finite trees  Droste & Vogler 2006,
infinite trees R 2007,
finite and infinite trees with discounting  Mandrali & R 2009,
unranked trees Droste & Vogler 2009,
pictures  Fichtner 2006,
texts  Mathissen 2007,
traces  Meinecke 2006,
distributed systems  Bollig & Meinecke 2007,
trees over valuation monoids Droste et al 2011,
average and long time behaviors Droste & Meinecke 2010
finite words and trees over infinite alphabets Mens & R 2011

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 6 /83




Multi-Valued Monadic Second Order (MSO) logic

State of the art

Multi-valued MSO logic over words and trees  Droste, Kuich & R 2008,
Weighted automata and multi-valued logics over arbitrary bounded lattices
Droste & Vogler 2012
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Weighted and Multi-Valued Liner Temporal Logic (LTL)

State of the art
Weighted LTL:
extended with discounting R 2009,
over max-plus semiring with discounthig, and
over arbitrary semirings  Mandrali & R (in progress),
transformation of weighted LTL formulas to automata
with discounting  Mandrali 2012,
Multi-valued LTL  Kupferman & Lustig 2007,

Multi-valued MSO logic and LTL over bounded distributive lattices
Droste & Vogler 2012
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Overview

@ Recall: finite automata over finite and infinite words, MSO logic

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

@ Recall: finite automata over finite and infinite words, MSO logic

@ Weighted automata over finite and infinite words

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



@ Recall: finite automata over finite and infinite words, MSO logic

@ Weighted automata over finite and infinite words

@ Weighted MSO logic over finite and infinite words

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

@ Recall: finite automata over finite and infinite words, MSO logic
@ Weighted automata over finite and infinite words

@ Weighted MSO logic over finite and infinite words

@ Weighted automata and MSO logic with discounting

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

Recall: finite automata over finite and infinite words, MSO logic

Weighted automata over finite and infinite words

°
°

@ Weighted MSO logic over finite and infinite words

@ Weighted automata and MSO logic with discounting
°

Weighted LTL with discounting

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

Recall: finite automata over finite and infinite words, MSO logic

Weighted automata over finite and infinite words

Weighted automata and MSO logic with discounting
Weighted LTL with discounting

°
°

@ Weighted MSO logic over finite and infinite words
°

°

@ Multi-valued automata over finite and infinite words

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

Recall: finite automata over finite and infinite words, MSO logic
Weighted automata over finite and infinite words

Weighted MSO logic over finite and infinite words

Weighted LTL with discounting

°
°
°
@ Weighted automata and MSO logic with discounting
°
@ Multi-valued automata over finite and infinite words
°

Multi-valued MSO logic

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

Recall: finite automata over finite and infinite words, MSO logic
Weighted automata over finite and infinite words

Weighted MSO logic over finite and infinite words

Weighted LTL with discounting
Multi-valued automata over finite and infinite words
Multi-valued MSO logic

°
°
°
@ Weighted automata and MSO logic with discounting
°
°
°
o Multi-valued LTL

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Overview

Recall: finite automata over finite and infinite words, MSO logic
Weighted automata over finite and infinite words

Weighted MSO logic over finite and infinite words

Weighted automata and MSO logic with discounting

Weighted LTL with discounting

Multi-valued automata over finite and infinite words
Multi-valued MSO logic

Multi-valued LTL

Open problems and future work
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@ an alphabet A is a finite set

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July



@ an alphabet A is a finite set

o A={e}U{ap...ap—1 | n>1a,...,a,—1 € A}: the set of all
finite words over A (free monoid generated by A)
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an alphabet A is a finite set

A*={e}U{ap...ap—1|n>1a0,...,a,—1 € A}: the set of all
finite words over A (free monoid generated by A)

o forw=ap...a,—1 welet |w| =n,
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an alphabet A is a finite set

A*={e}U{ap...ap—1|n>1a0,...,a,—1 € A}: the set of all
finite words over A (free monoid generated by A)

forw=ap...ap—1 we let |w|=n,
dom(w) = {0,1,...,|w| —1},
AY = {apar...| a, a1, ... € A}: the set of all infinite words over A

for w = agay . ..
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@ an alphabet A is a finite set

o A*={e}U{ap...ap-1| n>1a0,...,ap—1 € A}: the set of all
finite words over A (free monoid generated by A)

o forw=ap...a,—1 welet |w| =n,

e dom(w) ={0,1,...,|w| -1},

o AY ={apa1...| ap, a1,... € A}: the set of all infinite words over A

o for w=aga; ...

e dom(w) = w(=N),
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Finite automata

@ A finite automaton

A= (Q,AIAF)
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Finite automata

@ A finite automaton

A=(QAIAF)

o @: the finite state set
o A: the input alphabet
o | C Q: the initial state set
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Finite automata

@ A finite automaton

A=(QAIAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

A C Q@ xAx Q: the set of transitions
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Finite automata

@ A finite automaton

A= (QAIAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

A C QxAXx Q: the set of transitions
F C Q: the final state set

@ wW=2ay...a,_1 € A*
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Finite automata

@ A finite automaton

A= (QAIAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

A C QxAXx Q: the set of transitions
F C Q: the final state set

@ W=2ap...a,_1 € A*
@ a path of A over w

PW - (quQOv ql)(qlvalr q2) ctt (qn71,an,1, Qn) E A*
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Finite automata

@ A finite automaton

A= (QAIAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set
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Finite automata

@ A finite automaton

A= (QAIAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

A C QxAXx Q: the set of transitions
F C Q: the final state set

W=ay...a,_1 € A*
a path of A over w

Pw = (90,20, 91)(q1,a1,92) ... (gn—1, an—1,qn) € A"

P, successful if gqg € | and g, € F

w € A* is accepted (or recognized) by A if there is a successful path
P, of A over w

o L(A): the language of (all words accepted by) A
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Recognizable languages

e L C A* is recognizable if there is an A = (Q, A, I, A, F) such that
L=L(A)
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Recognizable languages

e L C A* is recognizable if there is an A = (Q, A I, A, F) such that
L=1L(A)

@ Rec(A): the class of all recognizable languages over A
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Biichi automata

@ A (nondeterministic) Biichi automaton

A=(QAIAF)

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Biichi automata

@ A (nondeterministic) Biichi automaton
A= (Q A IAF)

e Q: the finite state set
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Biichi automata

@ A (nondeterministic) Biichi automaton
A= (Q A IAF)
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Biichi automata
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Biichi automata

@ A (nondeterministic) Biichi automaton

A= (QAIAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

AC Q@ xAx Q: the set of transitions
F C Q: the final state set
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Biichi automata

@ A (nondeterministic) Biichi automaton
A= (Q A IAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

AC Q@ xAx Q: the set of transitions
F C Q: the final state set

@ w=gpa... €AY
@ a path of A over w

w
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Biichi automata

@ A (nondeterministic) Biichi automaton
A= (Q A IAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

AC Q@ xAx Q: the set of transitions
F C Q: the final state set

@ w=gpa... €AY

@ a path of A over w
Py = (q0, 20, q1)(q1, 21, G2) ... € AY

o n?(P,)={qe Q|3 :ti=(q,a,qi+1)}
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Biichi automata

@ A (nondeterministic) Biichi automaton
A= (Q A IAF)

Q: the finite state set

A: the input alphabet

| C Q: the initial state set

AC Q@ xAx Q: the set of transitions
F C Q: the final state set

@ w=gpa... €AY

a path of A over w
Py = (q0, 20, q1)(q1, 21, G2) ... € AY

In?(Py) ={q € Q|3 :ti = (q,ai,qi+1)}
P,,: successful if qo € I and In®(P,)NF # @
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Infinitary recognizable languages

e w € AY is accepted (or recognized) by A if there is a successful path
P, of A over w
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Infinitary recognizable languages

e w € A% is accepted (or recognized) by A if there is a successful path
P, of A over w

L(A): the language of (all infinite words accepted by) A
L C AY is w-recognizable if there is an A = (Q, A, I, A, F) such that
L=1L(A)

w-Rec(A): the class of all w-recognizable languages over A
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MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by
pu=true | P,(x) [ x€eX | x<y|—-@|eVe|Ix.p|IX.9¢

where a € A, x, y are first-order variables, and X is a second-order variable.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 15 / 83



MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by
pu=true | P,(x) [ x€eX | x<y|—-@|eVe|Ix.p|IX.9¢

where a € A, x, y are first-order variables, and X is a second-order variable.

@ —itrue = false

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 15 / 83



MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by
pu=true | P,(x) [ x€eX | x<y|—-@|eVe|Ix.p|IX.9¢
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MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by
pu=true | P,(x) [ x€eX | x<y|—-@|eVe|Ix.p|IX.9¢

where a € A, x, y are first-order variables, and X is a second-order variable.

@ —true = false

o =9

°o pNY =(mgV )
o Vx.p=—(Ix.7g)
o VX.QD:—\(SX.ﬂ(p)

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 15 / 83



MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by
pu=true | P,(x) [ x€eX | x<y|—-@|eVe|Ix.p|IX.9¢

where a € A, x, y are first-order variables, and X is a second-order variable.

o —true = false

e =9

o pAPp=—(=9Vy)

o Vx.p=—(Ix.7g)

o VX.p=—(3X.9p)

@ MSO(A): the set of all MSO-formulas over A
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MSO logic - Syntax

Definition

The syntax of the MSO-formulas over A is given by
pu=true | P,(x) [ x€eX | x<y|—-@|eVe|Ix.p|IX.9¢

where a € A, x, y are first-order variables, and X is a second-order variable.

o —true = false

e =9

°o gAY =(mpVp)

o Vx.p=—(Ix.7g)

o VX.p=—(3X.9p)

@ MSO(A): the set of all MSO-formulas over A
@ Example: ¢ = Ix. (Vy.(x < y) A Py(x))

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 15 / 83



MSO logic - Semantics (over finite words)

o Let 9 € MSO(A) and w € A*
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o Let 9 € MSO(A) and w € A*

o First-order variables in ¢ represent positions in w and second-order
variables in ¢ represent set of positions in w
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MSO logic - Semantics (over finite words)

o Let 9 € MSO(A) and w € A*

o First-order variables in ¢ represent positions in w and second-order
variables in @ represent set of positions in w

@ in this way we shall check if w "satisfies" ¢
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o Let 9 € MSO(A) and w € A*

@ First-order variables in ¢ represent positions in w and second-order
variables in @ represent set of positions in w

@ in this way we shall check if w "satisfies" ¢

e for instance ¢ = P,(x) will be satisfied by w if the letter of w at the
position represented by x is a

@ but which position is represented by x?

@ A first- or a second-order variable is called free it is not in the scope
of any quantifier

e Example: ¢ =Vy.(x <y) xis a free variable in ¢ but not in
¢ =3Ix.¢
@ Free(): the set of free variables of ¢
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MSO logic - Semantics (over finite words)

o Let 9 € MSO(A) and w € A*

@ First-order variables in ¢ represent positions in w and second-order
variables in @ represent set of positions in w

@ in this way we shall check if w "satisfies" ¢

e for instance ¢ = P,(x) will be satisfied by w if the letter of w at the
position represented by x is a

@ but which position is represented by x?

@ A first- or a second-order variable is called free it is not in the scope
of any quantifier

e Example: ¢ =Vy.(x <y) xis a free variable in ¢ but not in
¢ =3Ix.¢

o Free(¢): the set of free variables of ¢

@ In order to define the semantics of an MSO-formula ¢ we have to
assign "truth values" to its free variables
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MSO logic - Semantics (over finite words)

e p € MSO(A), w € A*, dom(w) ={0,1,...,|w| —1}
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MSO logic - Semantics (over finite words)

e ¢ € MSO(A), w € A*, dom(w) ={0,1,...,|w| —1}

o A (w, Free(¢))-assignment o is a mapping associating first order
variables from Free(¢) to elements of dom(w), and second order
variables from Free(¢) to subsets of dom(w)
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MSO logic - Semantics (over finite words)

e ¢ € MSO(A), w € A*, dom(w) ={0,1,...,|w| —1}

o A (w, Free(¢))-assignment o is a mapping associating first order
variables from Free(¢) to elements of dom(w), and second order
variables from Free(¢) to subsets of dom(w)

e if x is a first order variable and i € dom(w), then o[x — i]| denotes
the (w, Free(¢) U {x})-assignment which associates i to x and acts
as 0 on Free(p) \ {x}
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MSO logic - Semantics (over finite words)

e ¢ € MSO(A), w € A*, dom(w) ={0,1,...,|w| —1}

o A (w, Free(¢))-assignment o is a mapping associating first order
variables from Free(¢) to elements of dom(w), and second order
variables from Free(¢) to subsets of dom(w)

e if x is a first order variable and i € dom(w), then o[x — i] denotes
the (w, Free(¢) U {x})-assignment which associates i to x and acts
as 0 on Free(p) \ {x}

e if X is a second order variable and | C dom(w), then o[X — /]
denotes the (w, Free(¢) U {X})-assignment which associates / to X
and acts as o on Free(¢) \ {X}
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MSO logic - Semantics (over finite words)

@ we use the extended alphabet Afee(y) = A X {0, 1}F’ee(‘P)
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MSO logic - Semantics (over finite words)

o we use the extended alphabet Ar..(y) = A x {0, 1} Free(e)

e Example: w = abbab (dom(w) ={0,1,2,3,4}),
Free(p) = {x,y, X}
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MSO logic - Semantics (over finite words)

o we use the extended alphabet Ar..(y) = A x {0, 1} Free(e)
e Example: w = abbab (dom(w) ={0,1,2,3,4}),

Free(p) = {x,y, X}
@ 0 be a (w, Free(¢))-assignment with

c(x)=1,0(y) =3,0(X) ={1,24}
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MSO logic - Semantics (over finite words)

o we use the extended alphabet Ar..(y) = A x {0, 1} Free(e)
e Example: w = abbab (dom(w) ={0,1,2,3,4}),

Free(p) = {x,y, X}
@ 0 be a (w, Free(¢))-assignment with

c(x)=1,0(y) =3,0(X) ={1,24}

* .
@ we can represent the word (w,0) € Alree(q) @S follows:

?)
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MSO logic - Semantics (over finite words)

we use the extended alphabet Ag.e(,) = A X {0, 1} Free(e)
Example: w = abbab (dom(w) = {0,1,2,3,4}),
Free() = {x.y, X}

o be a (w, Free(¢))-assignment with
c(x)=1,0(y) =3,0(X) ={1,24}

@ we can represent the word (w, o) € A}“_.,ee(q)) as follows:
a b b a b
0 * 01 0 0O
y 0 0 0 1 0
X 0 1 1 0 1
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MSO logic - Semantics (over finite words)

e Example: ¢ = P,(x) A Py(y), Free(¢) = {x,y}
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MSO logic - Semantics (over finite words)

e Example: ¢ = P,(x) A Py(y), Free(¢) = {x,y}
@ w = abbab,
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MSO logic - Semantics (over finite words)

e Example: ¢ = P,(x) A Py(y), Free(¢) = {x,y}
@ w = abbab,

b
e (w,0) by 0
1

O O w
o~ o
O O o
O O w

< X
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MSO logic - Semantics (over finite words)

e Example: ¢ = P,(x) A Py(y), Free(p) = {x,y}

@ w = abbab,
a b b a b
e (wo)by x 0 1 0 0 O
y 0 0 0 0 1

o (w,0)F ¢
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MSO logic - Semantics (over finite words)

e Example: ¢ = P,(x) A Py(y), Free(p) = {x,y}

@ w = abbab,
a b b a b
e (wo)by x 0 1 0 0 O
y 000 0 1

o (w,0)F ¢
a b b a b
e (w,o )by x 1 0 0 0 O
y 00 1 00
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MSO logic - Semantics (over finite words)

e Example: ¢ = P,(x) A Py(y), Free(p) = {x,y}

@ w = abbab,
a b b a b
e (wo)by x 0 1 0 0 O
y 000 0 1

o (w,0)F ¢
a b b a b
e (wo)by x 1 0 0 0 O
y 00100

o (w, o) = ¢
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MSO logic - Semantics (over finite words)

@ Let 9 € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, ) by induction on
the structure of ¢:
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

o (w,0) [= true
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

o (w,0) [ true
o (w,0) E Py(x) iff w(o(x))=a
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment
@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

o (w,0) [ true
o (w,0) = Pa(x) iff w(o(x)) =a
o (w,0) Exe€ X iff o(x) € c(X)

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 20 / 83



MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

(w,0) | true

(w,0) = Pa(x) iff w(o(x)) =a
(w,0) = x € X iff o(x) € o(X)
(w.0) Ex <y iff o(x) < o))
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

0) [ Pa(x) iff w(o(x)) =2
W(T) Exe X iff o(x) € a(X)
w,0) Ex <y iff o(x) <c(y)
w,o) e iff (w,0)F ¢
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

(w,0) | true

w,0) = Pa(x) iff w(o(x)) =a

w,0) = x € X iff o(x) € o(X)

w,0) Ex <y iff o(x) <c(y)

w,0) = e iff (w,0)E ¢

w.0) £ @V it (w.0) = g or (w,0) ¢

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

w,0) | true

= Pa(x) iff w(o(x)) =a
o) Exe X iff o(x) € a(X)
Ex<y iff o(x) <o(y)

7)
|
: ;lzﬁ(p iff (w,0)F ¢
)
[

FEEEEE
SIS

EoeVvy iff (w,o)=g¢or(w,o)Ey
E dx.¢ iff there exists an i € dom(w ) such that

x—il) =g

=

o

=<
N

® ©6 6 6 © o ¢
NN N TN TN TN TN T
Q
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

w,0) | true

o) | Pa(x) iff w(o(x))=a

) Ex e X iff g(x) € g(X)

YEXx <y iff o(x) <o(y)

) = e iff (w,0)E ¢

;)Z(p\/l[) iff (w,0)=¢or(w,o)Ey
[

)

[

FEE

o

<
Q

® 6 6 6 6 o o
2
Q

=
Q

= dx.¢ iff there exists an i € dom(w ) such that
x— i) e

E3X.e |fF there exists an /| C dom(w) such that
X=1)Fe¢

[
s s S
999 9
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MSO logic - Semantics (over finite words)

o Let p € MSO(A), w € A*, and 0 a (w, Free(¢))-assignment

@ We define the satisfaction (w, o) |= ¢ of ¢ by (w, o) by induction on
the structure of ¢:

w,0) | true

o) | Pa(x) iff w(o(x))=a

) Ex e X iff g(x) € g(X)

YEXx <y iff o(x) <o(y)

) = e iff (w,0)E ¢

;)Z(p\/l[) iff (w,0)=¢or(w,o)Ey
[

)

[

FEE

o

<
Q

® 6 6 6 6 o o
2
Q

=
Q

= dx.¢ iff there exists an i € dom(w ) such that
x— i) e

E3X.e |fF there exists an | C dom(w) such that
X—=1)Fe¢

[
ss s S
9 9 9 9

L(p) ={(w,0) € Abree() | (w,0) |= ¢} the language of (all words
satisfying) ¢
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MSO logic - Semantics (over finite words)

@ ¢ € MSO(A) is a sentence if Free(¢) =@
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MSO logic - Semantics (over finite words)

e ¢ € MSO(A) is a sentence if Free(¢) =@
e if ¢ is a sentence, then L(¢p) C A*
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MSO logic - Semantics (over finite words)

e ¢ € MSO(A) is a sentence if Free(¢) =@
e if ¢ is a sentence, then L(¢) C A*
e Example: Let ¢ = Ix. (Vy.(x <y) A Py(x)), then L(¢) = bA*
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MSO logic - Semantics (over finite words)

@ € MSO(A) is a sentence if Free(¢) =@
if ¢ is a sentence, then L(¢) C A*
Example: Let ¢ = Ix. (Vy.(x < y) A Pp(x)), then L(¢) = bA*

L C A* is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)
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MSO logic - Semantics (over finite words)

@ € MSO(A) is a sentence if Free(¢) =@

if ¢ is a sentence, then L(¢) C A*

Example: Let ¢ = Ix. (Vy.(x < y) A Pp(x)), then L(¢) = bA*
L C A* is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)

Mso(A): the class of all MSO-definable languages over A
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MSO logic - Semantics (over finite words)

@ € MSO(A) is a sentence if Free(¢) =@

if ¢ is a sentence, then L(¢) C A*

Example: Let ¢ = Ix. (Vy.(x <y) A Pp(x)), then L(¢) = bA*
L C A* is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)

Mso(A): the class of all MSO-definable languages over A

J.R. Biichi 1960, C. Elgot 1961, B. Trakhtenbrot 1961:
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MSO logic - Semantics (over finite words)

@ € MSO(A) is a sentence if Free(¢) =@

if ¢ is a sentence, then L(¢) C A*

Example: Let ¢ = Ix. (Vy.(x <y) A Pp(x)), then L(¢) = bA*
L C A* is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)

Mso(A): the class of all MSO-definable languages over A

J.R. Biichi 1960, C. Elgot 1961, B. Trakhtenbrot 1961:

Rec(A) = Mso(A)
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MSO logic - Semantics (over infinite words)

o Let 9 € MSO(A), w € A¥, and 0 a (w, Free(¢))-assignment

o We define the satisfaction (w, o) = ¢ of ¢ by (w, ) by induction on
the structure of ¢:

(w,a) = Palx) iff w(o(x) =

(w,0) Ex e X iff o(x)€a(X)

(w,0) Ex <y iff o(x) <o(y)

(w,0) =g iff (w,0)F¢

(w,0) E@Vy iff (w,0)Egor(wo)Ey

( ) = Ix. ¢ iff there exists an i > 0 such that (w,c[x — i]) = ¢
(w,0) = 3X . ¢ iff there exists an | C w such that

(w,of

X—=1Fe¢
o L(¢)={(w,0) € A‘,f.’ree((P) | (w,0) = @} the language of (all infinite

words satisfying) ¢
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MSO logic - Semantics (over infinite words)

e if ¢ is a sentence, then L(¢) C AY
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MSO logic - Semantics (over infinite words)

e if ¢ is a sentence, then L(¢) C AY
e Example: Let ¢ = Ix. (Vy.(x < y) A Pp(x)), then L(¢) = bAY
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MSO logic - Semantics (over infinite words)

e if ¢ is a sentence, then L(¢) C AY
e Example: Let ¢ = Ix. (Vy.(x < y) A Pp(x)), then L(¢) = bAY

o L C A“ is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)
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MSO logic - Semantics (over infinite words)

e if ¢ is a sentence, then L(¢) C AY

o Example: Let ¢ = Ix. (Vy.(x < y) A Py(x)), then L(@) = bAY

o L C A% is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)

@ w-Mso(A): the class of all infinitary MSO-definable languages over A
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MSO logic - Semantics (over infinite words)

if ¢ is a sentence, then L(¢) C A%

Example: Let ¢ = 3x. (Vy.(x <y) A Py(x)), then L(¢p) = bA®

L C AY is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)

w-Mso(A): the class of all infinitary MSO-definable languages over A
J. R. Biichi 1962:
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MSO logic - Semantics (over infinite words)

if ¢ is a sentence, then L(¢) C A%

Example: Let ¢ = 3x. (Vy.(x <y) A Py(x)), then L(¢p) = bA®

L C AY is MSO-definable if there is a sentence ¢ € MSO(A) such
that L = L(¢)

w-Mso(A): the class of all infinitary MSO-definable languages over A
J. R. Biichi 1962:

w-Rec(A) = w-Mso(A)
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e (K,+,-,0,1): semiring (simply denoted by K) where
e + s a binary associative and commutative operation on K with
neutral element 0, i.e.,
o k+(I+m)=(k+1)+m,
o k+I1=1+k,
o k+0=k,
for every k,I,me K
e - is a binary associative operation on K with neutral element 1,
o k-(I-m)=(k-I)-m,
e k-1=1-k=1,
e - distributes over +, i.e.,
k-(I+m)=k-I+k-m, and
(k+!) - m=k-m+1-m
for every k,I,m € K, and
e k-0=0-k=0 forevery k € K.
@ if - is commutative, then K is called commutative
@ In the sequel: K a commutative semiring
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Formal power series

@ A finitary formal (power) series over A and K

s: A" = K
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Formal power series

@ A finitary formal (power) series over A and K
s: A" = K

e for w € A* the value s(w) is called the coefficient of s at w and
denoted as (s, w)
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Formal power series

@ A finitary formal (power) series over A and K
s: A" = K

e for w € A* the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on series: let si, s, series over A and K and k € K
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Formal power series

@ A finitary formal (power) series over A and K
s: A" = K

e for w € A* the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on series: let si, s, series over A and K and k € K

o sums; +s, (s1+s,w)=(s1,w)+ (s2, w)
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Formal power series

@ A finitary formal (power) series over A and K
s: A" = K
e for w € A* the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on series: let si, s, series over A and K and k € K

o sumsy +s, (s1+s,w)=(s1,w)+ (s, w)
o scalar product k-sy, (k-s;,w) =k-(s1,w)
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Formal power series

@ A finitary formal (power) series over A and K
s: A" = K

e for w € A* the value s(w) is called the coefficient of s at w and
denoted as (s, w)
@ some operations on series: let si, s, series over A and K and k € K
o sumsy +s, (s1+s,w)=(s1,w)+ (s, w)
o scalar product k-s1, (k-s;,w)=k-(s;,w)
o Hadamard product s1 ©® 55, (51 @ s, w) = (s1,w) - (sp, w)
for every w € A*

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 25 /83



Weighted automata

@ A weighted automaton over K:

A= (Q,A, in, wt, ter)
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

o @ the finite state set,
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

o @ the finite state set,
o A the input alphabet,
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

o @ the finite state set,
o A the input alphabet,
e in: Q — K the initial distribution,
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — K the initial distribution,

wt: Q X AX Q@ — K the weight assignment mapping,
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — K the initial distribution,

wt: Q X AX Q@ — K the weight assignment mapping,
ter : Q — K the terminal distribution
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — K the initial distribution,

wt: Q X AX Q@ — K the weight assignment mapping,
ter : @ — K the terminal distribution

@ wW=2ay...a,_1 € A"
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — K the initial distribution,

wt: Q X AX Q@ — K the weight assignment mapping,
ter : @ — K the terminal distribution

@ wW=2ay...a,_1 € A*
@ a path of A over w

Pw = (g0, a0, 91)(q1, a1, G2) - .- (Gn—1, @3n—1, qGn)
where (g, a;,qi+1) € Q x AX Q forevery 0 <i<n-—1
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Weighted automata

@ A weighted automaton over K:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — K the initial distribution,

wt: Q X AX Q@ — K the weight assignment mapping,
ter : @ — K the terminal distribution

@ wW=2ay...a,_1 € A*
@ a path of A over w
Pw = (qo. a0, 91)(q1, a1, G2) - .- (Gn—1, @3n—1, Gn)
where (g, a;,qi+1) € Q X AX Q forevery 0 <i<n-—1
o the weight of Py,:
Weight(PW) = in(qo) . Wt'((CIOv ao, ql)) . Wt((Ql, ai, CIQ)) .
- wt((gn—1,an—1,qn)) - ter(qn)
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Weighted automata

@ the behavior of A is the series
|A] : A* — K
defined for every w € A* by

(Al w) =), weight(Py)
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Weighted automata

e Example: A finite automaton A = (Q, A, I, A, F) can be considered
as a weighted automaton A" = (Q, A, in, wt, ter) over the Boolean
semiring ({0,1}, +,-,0,1), where:
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Weighted automata

e Example: A finite automaton A = (Q, A, I, A, F) can be considered
as a weighted automaton A" = (Q, A, in, wt, ter) over the Boolean
semiring ({0,1}, +,-,0,1), where:

. 1 iftqgel
° in(q) = { 0 otherwise
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Weighted automata

e Example: A finite automaton A = (Q, A, I, A, F) can be considered
as a weighted automaton A" = (Q, A, in, wt, ter) over the Boolean
semiring ({0,1}, +,-,0,1), where:

. 1 iftqgel
° in(q) = { 0 otherwise
1 if(gq,a,q) €A

. , and
0 otherwise

o wi((0.2.9) = {
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Weighted automata

@ Example: A finite automaton A = (Q, A, I, A, F) can be considered
as a weighted automaton A" = (Q, A, in, wt, ter) over the Boolean
semiring ({0,1}, +,-,0,1), where:

oin(q):{ 1 ifgel

0 otherwise
o wt((g,a,q)) = { 1 if(q,a4¢) €A
o ter(q) = {

. , and
0 otherwise

1 ifgeF
0 otherwise
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Weighted automata

@ Example: A finite automaton A = (Q, A, I, A, F) can be considered
as a weighted automaton A" = (Q, A, in, wt, ter) over the Boolean
semiring ({0,1}, +,-,0,1), where:

. 1 iftqgel
o in(q) = { 0 otherwise
o wt((q.2.4)) = {
1 ifgeF

1 if(gq,a,q¢)eA
° ter(q) :{ 0 otherwise

0 otherwise - and
@ Then a word w € A* is a accepted by A iff (|| A|| . w) =1
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Recognizable series

@ A series s over A and K is recognizable if there exists a weighted
automaton A over A and K such that s = || Al
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Recognizable series

@ A series s over A and K is recognizable if there exists a weighted
automaton A over A and K such that s = || A]|

@ Rec(A, K): the class of all recognizable series over A and K
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Semirings with infinite sums and products

@ In order to compute the weights of infinite paths as well as the
behavior over infinite words, we assume in the sequel that the
semiring K permits infinite sums and products

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 30 / 83



Semirings with infinite sums and products

@ In order to compute the weights of infinite paths as well as the
behavior over infinite words, we assume in the sequel that the
semiring K permits infinite sums and products

@ Examples of such semirings:

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Semirings with infinite sums and products
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o ({0,1},+,-,0,1) the Boolean semiring,
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@ In order to compute the weights of infinite paths as well as the
behavior over infinite words, we assume in the sequel that the
semiring K permits infinite sums and products

@ Examples of such semirings:
o ({0,1},+,-,0,1) the Boolean semiring,
o (INU{oo},+,-,0,1) the semiring of extended natural numbers,
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Semirings with infinite sums and products

@ In order to compute the weights of infinite paths as well as the
behavior over infinite words, we assume in the sequel that the
semiring K permits infinite sums and products

@ Examples of such semirings:
o ({0,1},+,-,0,1) the Boolean semiring,
o (INU{oo},+,-,0,1) the semiring of extended natural numbers,

o (R4 U{oo}, min, +,00,0) where Ry = {r € R|r >0} the min-plus
semiring,
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Semirings with infinite sums and products

@ In order to compute the weights of infinite paths as well as the
behavior over infinite words, we assume in the sequel that the
semiring K permits infinite sums and products

@ Examples of such semirings:
o ({0,1},+,-,0,1) the Boolean semiring,
o (INU{oo},+,-,0,1) the semiring of extended natural numbers,

o (R4 U{oo}, min,+,00,0) where R = {r € R|r >0} the min-plus
semiring,

o (RyU{—o00,00},sup, +, —00,0) the max-plus semiring with infinity,
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Semirings with infinite sums and products

@ In order to compute the weights of infinite paths as well as the
behavior over infinite words, we assume in the sequel that the
semiring K permits infinite sums and products

@ Examples of such semirings:

o ({0,1},+,-,0,1) the Boolean semiring,

(NU{eo},+,-,0,1) the semiring of extended natural numbers,

(R4 U {oo}, min, +,00,0) where Ry = {r € R| r > 0} the min-plus
semiring,

(R4 U {—o00,00},sup, +, —00,0) the max-plus semiring with infinity,

F = ([0, 1],sup,inf,0,1) the fuzzy semiring
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Infinitary formal power series

@ An infinitary formal (power) series over A and K

s:AY = K
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Infinitary formal power series

@ An infinitary formal (power) series over A and K
s:AY - K

e for w € A“ the value s(w) is called the coefficient of s at w and
denoted as (s, w)
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Infinitary formal power series

@ An infinitary formal (power) series over A and K
s:AY - K

e for w € A“ the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on infinitary series: let si, sy infinitary series over A
and K and k € K

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



Infinitary formal power series

@ An infinitary formal (power) series over A and K
s:AY - K

e for w € A“ the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on infinitary series: let s1, s, infinitary series over A
and K and k € K

o sums +s, (s1+s,w)=(s1,w)+ (s2, w)
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Infinitary formal power series

@ An infinitary formal (power) series over A and K
s:AY - K

e for w € A“ the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on infinitary series: let s1, s, infinitary series over A
and K and k € K

o sumsy +s, (si+s,w)=(s1,w)+ (s, w)
o scalar product k-sy, (k-s;,w) =k-(s;,w)
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Infinitary formal power series

@ An infinitary formal (power) series over A and K
s:AY - K

e for w € A“ the value s(w) is called the coefficient of s at w and
denoted as (s, w)

@ some operations on infinitary series: let s1, s, infinitary series over A
and K and k € K

o sumsy +s, (si+s,w)=(s1,w)+ (s, w)

o scalar product k-s1, (k-s;,w)=k- (s, w)

o Hadamard product s1 ©® 55, (51 @ s, w) = (s1,w) - (sp, w)
for every w € A¥
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Weighted Biichi automata

@ A weighted Biichi automaton over K:

A=(Q,A, in wt, F)
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

o @ the finite state set,

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 32



Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

o @ the finite state set,
o A the input alphabet,
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

o @ the finite state set,
o A the input alphabet,
e in: Q — K the initial distribution,
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

Q@ the finite state set,

A the input alphabet,

in: @ — K the initial distribution,

wt: Q@ X AxX Q — K the weight assignment mapping,
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

Q@ the finite state set,

A the input alphabet,

in: @ — K the initial distribution,

wt: Q@ X AxX Q — K the weight assignment mapping,
F the final state set
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

o @ the finite state set,

o A the input alphabet,

e in: Q@ — K the initial distribution,

e wt: QX AX Q — K the weight assignment mapping,
o F the final state set

@ w=apa;... € A¥
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

o @ the finite state set,
o A the input alphabet,
e in: Q@ — K the initial distribution,
e wt: QX AX Q — K the weight assignment mapping,
o F the final state set
@ w=3a... €AY
@ a path of A over w

Pw = (qo,a0,q1)(q1, a1, q2) . ..
where (g, ai,qi+1) € @ x Ax Q forevery i >0
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Weighted Biichi automata

@ A weighted Biichi automaton over K:
A= (Q, A in wt F)

o @ the finite state set,
o A the input alphabet,
e in: @ — K the initial distribution,
e wt: QX AX Q — K the weight assignment mapping,
o F the final state set
@ w=3a... €AY
@ a path of A over w

Py = (qo,a0,q1)(q1, a1, q2) . ..

where (g, ai,gi+1) € @ x Ax Q forevery i >0
@ the weight of P,,:

weight(P,,) = in(qo) - wt((qo, a0, q1)) - wt((q1, a1, q2)) - - ..
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Weighted Biichi automata

o P, successful if In®(P,)NF # @
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Weighted Biichi automata

o P, successful if In®(P,)NF # @

@ observe that a successful path P, can have weight(P,) =0
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Weighted Biichi automata

o P,: successful if In?(P,)NF # @
@ observe that a successful path P, can have weight(P,) =0

@ the behavior of A is the infinitary series

I|A] : AY — K

defined for every w € A“ by

(AL w) =}, weight(Pu)

P,, successful

Linz-Hagenberg, July 2, 2012 33 /83
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Infinitary recognizable series

@ An infintary series s over A and K is w-recognizable if there exists a
weighted Biichi automaton A over A and K such that s = || A||
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Infinitary recognizable series

@ An infintary series s over A and K is w-recognizable if there exists a
weighted Biichi automaton A over A and K such that s = || A||

@ w-Rec(A, K): the class of all recognizable series over A and K
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) | x e X |x<y|—-@|eVe|Ix.p|IX.q
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

@ We aim to define a weighted MSO logic (wMSO for short) over the
semiring K, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|-¢@|loeVe|Ix.p|IX.q

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 35 /83



Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

e We aim to define a weighted MSO logic (wMSO for short) over the
semiring K|, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|¢@|leVe|Ix.@o|IX.q

@ Problem:
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

e We aim to define a weighted MSO logic (wMSO for short) over the
semiring K|, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|¢@|leVe|Ix.@o|IX.q

@ Problem:

e how can we define =k for every k € K?
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

e We aim to define a weighted MSO logic (wMSO for short) over the
semiring K|, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|¢@|leVe|Ix.@o|IX.q

@ Problem:

e how can we define —k for every k € K?

@ Solution: we can set
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

e We aim to define a weighted MSO logic (wMSO for short) over the
semiring K|, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|¢@|leVe|Ix.@o|IX.q

@ Problem:

e how can we define —k for every k € K?

@ Solution: we can set
o =0=1 and —k=0for k #0
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

e We aim to define a weighted MSO logic (wMSO for short) over the
semiring K|, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|¢@|leVe|Ix.@o|IX.q

@ Problem:

e how can we define —k for every k € K?

@ Solution: we can set
e 0=1 and -k=0for k#0
o but then the relations
TP =@ gAY =(meV oY),
Vx.@ =—(3x.79)
VX9 =-(3X.p)
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Weighted MSO logic

@ Recall the syntax of the MSO logic
pu=true | P,(x) [ x e X |x<y|-¢@|oVe|Ix.@|IX.¢

e We aim to define a weighted MSO logic (wMSO for short) over the
semiring K|, i.e, to replace true (and false) with any value k € K

pu=k|P,(x) | xeX|x<y|¢@|leVe|Ix.@o|IX.q

@ Problem:
e how can we define —k for every k € K?

@ Solution: we can set
e 0=1 and -k=0for k#0
o but then the relations
"9 =9, 9AY=(mgVp),
Vx.p = —(3x.¢)
VX p=-(3X.79)
o will not hold any more!
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Weighted MSO logic - Syntax

The syntax of the wMSO-formulas over A and K is given by

pu=k|Py(x) | xeX|x<y]|Pi(x)|(xeX)|(x<y)
oV |lohe|Ix.@|3X.@|Vx.p

where a € A and k € K.
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Weighted MSO logic - Syntax

The syntax of the wMSO-formulas over A and K is given by

pu=k|Py(x) | xeX|x<y]|Pi(x)|(xeX)|(x<y)
oV |lohe|Ix.@|3X.@|Vx.p

where a € A and k € K.

@ We do not need VX . ¢
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Weighted MSO logic - Syntax

The syntax of the wMSO-formulas over A and K is given by

pu=k|Py(x) | xeX|x<y]|Pi(x)|(xeX)|(x<y)
oV |lohe|Ix.@|3X.@|Vx.p

where a € A and k € K.

@ We do not need VX . ¢
e wMSO(A, K): the set of all wWMSO-formulas over A and K
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Weighted MSO logic - Semantics over finite words

Let ¢ € wMSO(A, K). The finitary semantics of ¢ is the series

19l Abree(p) = K-

Free(

For every w € A* and (w, Free(¢))-assignment o, we define
([l , (w, o)) inductively by:

o (IKl. (w,0)) = k
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Weighted MSO logic - Semantics over finite words

Let ¢ € wMSO(A, K). The finitary semantics of ¢ is the series

19l Abree(p) = K-

Free(
For every w € A* and (w, Free(¢))-assignment o, we define
([l , (w, o)) inductively by:
o ([[k][,(w, o)) =k

o (|IP.(x)], (w, ) _{ 1 ifw(o(x)) =a

0 otherwise
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Weighted MSO logic - Semantics over finite words

Let ¢ € wMSO(A, K). The finitary semantics of ¢ is the series

HgDH : Ai’ree((p) — K.

For every w € A* and (w, Free(¢))-assignment o, we define
([l , (w, o)) inductively by:

o (Kl (w.2)) = &
o (1P (wo)) = { § FelobD) =2

0 otherwise

{ 1 if o(x) € o(X)

o ([[xeX]|,(w,o0)) 0 otherwise

George Rahonis (University of Thessaloniki)
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Weighted MSO logic - Semantics over finite words

(Definiton |

Let ¢ € wMSO(A, K). The finitary semantics of ¢ is the series

HgDH : Ai’ree((p) — K.

For every w € A* and (w, Free(¢))-assignment o, we define
([l , (w, o)) inductively by:

o (Kl (w.2)) = &
o (1P (wo)) = { § FelobD) =2

0 otherwise

o (e X)) = { § e "

o<kgn«mﬂ»_{éi;$ﬁja@>

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata

Linz-Hagenberg, July 2, 2012
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Weighted MSO logic - Semantics over finite words

Definition (continued)
_J 1 it (el (w,0)) =0
0 o

x <

o ([-ell. (w, o)) , provided that ¢ is

of the form P,(x),

it (loll, (w,0)) =1
yorxeX

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 38 /83



Weighted MSO logic - Semantics over finite words

Definition (continued)

{ (Il (w, ) =0

° ([[=ell.( oll, (w, o)) =1 provided that ¢ is
of the form P,(x), x <yorx€X

° (levoll, (w,a)) = (el (w, o)) + (¢l (w,0))
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Weighted MSO logic - Semantics over finite words

Definition (continued)

{ (Il (w, ) =0

° ([[=ell.( oll, (w, o)) =1 provided that ¢ is
of the form P,(x), x <yorx€X

° (levyll.(w,a)) = (el (w, o)) + (¢l (w,0))
° (lenwll. (w,a)) = (el (w, ) - (¢l (w,0))
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Weighted MSO logic - Semantics over finite words

Definition (continued)

o (||l ( { HZZH ;g ;(1) , provided that ¢ is
of the form P,(x), <yorx€X

° (levyll.(w,a)) = (el (w, o)) + (¢l (w,0))

° (lenwll. (w,a)) = (el (w, ) - (¢l (w,0))
(3ol (wo)) =} (ol (w.olx— i)

iedom(w)
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Weighted MSO logic - Semantics over finite words

Definition (continued)

o (gl () = { 5 HEL 0D =0 providea that ¢ s
of the form P,(x), <yorx€X
° (levyll.(w,a)) = (el (w, o)) + (¢l (w,0))
° (lenwll. (w,a)) = (el (w, ) - (¢l (w,0))
o (3ol (no) = 3 ol (ot = )
o ([3X.0l. (w,0))= ) (ol (w,a[X—1])
ICdom(w)
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Weighted MSO logic - Semantics over finite words

Definition (continued)

o (||l ( {1 i HZZH ;gicl) , provided that ¢ is
of the form P,(x) x<yorx€X
o (loVvyl. (w, o)) = (lloll. (w.o)) + (¥l (w,0))
o (lo Ayl (w, o)) = (lloll. (w,0)) - (¢l (w,0))
° (|[Bx- ¢l (w,0)) = E( )(HGDH  (w,olx —i]))
i€edom(w
o (I3X. ol (w,0)) = Z( )(||<0||,(W'U[X—>/]))
ICdom(w
o ([[Vx. ol (w, 0)) = H( )(HgoH,(W,(T[X—H']))
iedom(w
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Weighted MSO logic - Semantics over finite words

Definition (continued)

o (gl () = { 5 HEL 0D =0 providea that ¢ s
of the form P,(x) x<yorx€X
o (loVvyl. (w, o)) = (lloll. (w.o)) + (¥l (w,0))
o (lo Ayl (w, o)) = (lloll. (w,0)) - (¢l (w,0))
o ([3x.qll, (w,0)) = E( )(HGDH  (w,olx —i]))
i€edom(w
o (I3X. ol (w,0)) = Z( )(II(PII,(W,U[X—W]))
ICdom(w
o ([[Vx.ql.(w,0)) = H( )(II(PII,(W-U[X—W]))
iedom(w
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Weighted MSO logic - Semantics over finite words

o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K
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o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K

@ Example:
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Weighted MSO logic - Semantics over finite words

o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K
@ Example:

o Let A= {a, b,c} and
¢ =Vx. (((Pa(x) A1) VO) A ((Ps(x) A1) V0))
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Weighted MSO logic - Semantics over finite words

o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K
@ Example:
o Let A={a, b c} and

@ = Vx. (((Pa(x) A1) V0) A ((Pp(x) A1)V 0))
e Consider the semiring (IN, +, -, 0, 1) of natural numbers. Then for
every w € A*
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Weighted MSO logic - Semantics over finite words

o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K
@ Example:
o Let A={a, b c} and

¢ = Vx« ((Pa(x) A1) VO) A ((Py(x) A1) V0))
o Consider the semiring (IN, +, -, 0, 1) of natural numbers. Then for
every w € A*

° (Il w)=0
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Weighted MSO logic - Semantics over finite words

o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K
@ Example:
o Let A={a, b c} and

¢ = Vx« ((Pa(x) A1) VO) A ((Py(x) A1) V0))
o Consider the semiring (IN, +, -, 0, 1) of natural numbers. Then for
every w € A*

° (Il w)=0

@ Now consider the max-plus semiring (R4 U {—o0}, max, 4+, —o0, 0).
For every w € A*
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Weighted MSO logic - Semantics over finite words

o If Free(¢p) = @, then ¢ is a sentence and ||¢|| : A* — K

@ Example:

o Let A= {a, b,c} and
¢ = Vx« ((Pa(x) A1) VO) A ((Py(x) A1) V0))

o Consider the semiring (IN, +, -, 0, 1) of natural numbers. Then for
every w € A*

° (Il w)=0

e Now consider the max-plus semiring (R4 U {—o0}, max, 4+, —o0, 0).
For every w € A*

o (lloll, w) = [wl,+|wl,

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 39 /83



Recognizability and definability

@ A series s : A* — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||
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@ A series s : A* — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e wMso(A, K): the class of all WMSO-definable series over A and K

Theorem (Droste & Gastin 2005)
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Recognizability and definability

@ A series s : A* — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e wMso(A, K): the class of all WMSO-definable series over A and K

Theorem (Droste & Gastin 2005)

o Rec(A, K) & wMso(A, K)
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Recognizability and definability

@ A series s : A* — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e wMso(A, K): the class of all WMSO-definable series over A and K

Theorem (Droste & Gastin 2005)

o Rec(A K) & wMso(A, K)
o Rec(A, K) = a fragment of wMso(A, K) (Biichi-type theorem)
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Recognizability and definability

@ A series s : A* — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e wMso(A, K): the class of all WMSO-definable series over A and K

Theorem (Droste & Gastin 2005)

o Rec(A K) & wMso(A, K)
o Rec(A, K) = a fragment of wMso(A, K) (Biichi-type theorem)

e If K is locally finite, i.e., the subsemiring generated by any finite subset of K
is finite, then Rec(A, K) = wMso(A, K)
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Recognizability and definability

@ A series s : A* — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e wMso(A, K): the class of all WMSO-definable series over A and K

Theorem (Droste & Gastin 2005)

Rec(A, K) & wMso(A, K)
o Rec(A, K) = a fragment of wMso(A, K) (Biichi-type theorem)

If K is locally finite, i.e., the subsemiring generated by any finite subset of K
is finite, then Rec(A, K) = wMso(A, K)

Open: wMso(A, K) =?
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Weighted MSO logic - Semantics over infinite words

Let ¢ € wMSO(A, K). The infinitary semantics of ¢ is the series

19l Abree(g) — K-

Free(

For every w € A* and (w, Free(¢))-assignment o, we define
(el , (w, o)) inductively by:

o (K] (w.0)) = k |
o (IP(IIl. (w,e)) :{ 1 ifw(o(x) =a

0 otherwise

o (xe Xl ) ={ 5 e O

0 otherwise

o (Ix <yl oy ={ § Bt <o)
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Weighted MSO logic - Semantics over infinite words

o (gl (o) ={ o 1§ (o (w2 =0 providea thae ¢ s
of the form P,(x), x <y or x € X
° (levyll, (w.a)) = (lell (w.a)) + (¢l (w o))
o (lerygll, (w.a)) = (lell (w.a))- (¢l (w. o))
° ([I3x.oll. (w,0)) = Z( )(H(PH (w, ol — i)
i€dom(w
o ([I3X. ¢l (w,0)) = Z( )(||€0||1(W1‘7[X—>/]))
ICdom(w
° ([[vVx.oll.(w,0)) = H( )(HGDH,(W'U[X*"]))
iedom(w

e where dom(w) = w
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Recognizability and definability

o If Free(¢p) = @, then ¢ is a sentence and ||¢| : AY — K

@ An infinitary series s : AY — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e w-wMso(A, K): the class of all infinitary wMSO-definable series over
Aand K

@ Biichi type theorem:
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Recognizability and definability

o If Free(¢p) = @, then ¢ is a sentence and ||¢| : AY — K

@ An infinitary series s : AY — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e w-wMso(A, K): the class of all infinitary wMSO-definable series over
Aand K

o Biichi type theorem:

Theorem (Droste & R 2006)

w-Rec(A, K) = a fragment of w-wMso(A, K)
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Recognizability and definability

o If Free(¢p) = @, then ¢ is a sentence and ||¢| : AY — K

@ An infinitary series s : AY — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e w-wMso(A, K): the class of all infinitary wMSO-definable series over
Aand K

o Biichi type theorem:

Theorem (Droste & R 2006)

w-Rec(A, K) = a fragment of w-wMso(A, K)

e Open:
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Recognizability and definability

o If Free(¢p) = @, then ¢ is a sentence and ||¢| : AY — K

@ An infinitary series s : AY — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e w-wMso(A, K): the class of all infinitary wMSO-definable series over
Aand K

o Biichi type theorem:

Theorem (Droste & R 2006)

w-Rec(A, K) = a fragment of w-wMso(A, K)

@ Open:
o w-Rec(A, K) C w-wMso(A, K) is the inclusion proper? (guess: Yes)
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Recognizability and definability

o If Free(¢p) = @, then ¢ is a sentence and ||¢| : AY — K

@ An infinitary series s : AY — K is called wMSO-definable if there is a
wMSO-sentence ¢ over A and K so that s = ||¢||

e w-wMso(A, K): the class of all infinitary wMSO-definable series over
Aand K

o Biichi type theorem:

Theorem (Droste & R 2006)

w-Rec(A, K) = a fragment of w-wMso(A, K)

@ Open:

o w-Rec(A, K) C w-wMso(A, K) is the inclusion proper? (guess: Yes)
o w-wMso(A, K) =?
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Automata and logic over the max-plus and min-plus

semirings

@ Riax = (Ry U{—00}, max,+, —c0,0) the max-plus semiring
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Automata and logic over the max-plus and min-plus

semirings

@ Ryax = (Ry U{—00}, max, +, —00,0) the max-plus semiring
@ Rpin = (R U {00}, min, +,00,0) the min-plus semiring
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Automata and logic over the max-plus and min-plus

semirings

@ Ryax = (Ry U{—00}, max, +, —c0,0) the max-plus semiring

@ Rpin = (Ry U {00}, min, +,00,0) the min-plus semiring

@ Why should we consider weighted automata and wMSO logic over
Rmax and Rppin?
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Automata and logic over the max-plus and min-plus

semirings

@ Ryax = (Ry U{—00}, max, +, —00,0) the max-plus semiring

@ Rpin = (Ry U {00}, min, +,00,0) the min-plus semiring

@ Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

@ Zimmermann 1981: applications in optimization problems
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Automata and logic over the max-plus and min-plus

semirings

Rmax = (R4y U{—0c0}, max, 4+, —c0,0) the max-plus semiring
Rmin = (R4 U {oo}, min, +,00,0) the min-plus semiring

Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

Zimmermann 1981: applications in optimization problems

Consider a weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apa ... € AY and a path P, = (g0, 0,91)(q1,a1,¢2) ... of A
over w. Then we should have

weight(P,,) = in(qo) + Zwt((q;, aj, Git1))
i>0
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Automata and logic over the max-plus and min-plus

semirings

Rmax = (R4y U{—0c0}, max, 4+, —c0,0) the max-plus semiring
Rmin = (R4 U {oo}, min, +,00,0) the min-plus semiring

Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

Zimmermann 1981: applications in optimization problems

Consider a weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apay ... € AY and a path P, = (q0,0,91)(q1,a1,¢2) ... of A
over w. Then we should have

weight(P,) = in(qo) + Y _wt((qi, ai, gi1))
i>0

@ but this infinite sum does not always exist!
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Automata and logic over the max-plus and min-plus

semirings

Rmax = (R4y U{—0c0}, max, 4+, —c0,0) the max-plus semiring
Rmin = (R4 U {oo}, min, +,00,0) the min-plus semiring

Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

Zimmermann 1981: applications in optimization problems

Consider a weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apay ... € AY and a path P, = (q0,0,91)(q1,a1,¢2) ... of A
over w. Then we should have

weight(P,) = in(qo) + Y _wt((qi, ai, gi1))
i>0

but this infinite sum does not always exist!
Solution: discounting
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Automata and logic over the max-plus and min-plus

semirings

Rmax = (R4y U{—0c0}, max, 4+, —c0,0) the max-plus semiring
Rmin = (R4 U {oo}, min, +,00,0) the min-plus semiring

Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

Zimmermann 1981: applications in optimization problems

Consider a weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apay ... € AY and a path P, = (q0,0,91)(q1,a1,¢2) ... of A
over w. Then we should have

weight(P,) = in(qo) + Y _wt((qi, ai, gi1))
i>0

but this infinite sum does not always exist!
Solution: discounting
Motivation
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Automata and logic over the max-plus and min-plus

semirings

Rmax = (R4y U{—0c0}, max, 4+, —c0,0) the max-plus semiring
Rmin = (R4 U {oo}, min, +,00,0) the min-plus semiring

Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

Zimmermann 1981: applications in optimization problems

Consider a weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apay ... € AY and a path P, = (q0,0,91)(q1,a1,¢2) ... of A
over w. Then we should have

weight(P,) = in(qo) + Y _wt((qi, ai, gi1))
i>0

but this infinite sum does not always exist!
Solution: discounting
Motivation
o used in model checking (Henzinger et al 2003, Faella et al 2008)
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Automata and logic over the max-plus and min-plus

semirings

Rmax = (R4y U{—0c0}, max, 4+, —c0,0) the max-plus semiring
Rmin = (R4 U {oo}, min, +,00,0) the min-plus semiring

Why should we consider weighted automata and wMSO logic over
]Rmax and ]Rmin?

Zimmermann 1981: applications in optimization problems

Consider a weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apay ... € AY and a path P, = (q0,0,91)(q1,a1,¢2) ... of A
over w. Then we should have

weight(P,) = in(qo) + Y _wt((qi, ai, gi1))
i>0

but this infinite sum does not always exist!
Solution: discounting
Motivation

o used in model checking (Henzinger et al 2003, Faella et al 2008)
e common in economical mathematics
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Weighted Biichi automata with discounting

o 0 < d <1 adiscounting parameter
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Weighted Biichi automata with discounting

o 0 < d <1 adiscounting parameter

@ A weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apa ... € AY and a path P, = (g0, 20, 91)(q1,a1,q2) ... of A
over w
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Weighted Biichi automata with discounting

o 0 < d <1 adiscounting parameter

o A weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apa ... € AY and a path P, = (g0, 0, 91)(q1,a1,q2) ... of A
over w

@ The d-weight of P,

d-weight(P,,) = in(qo) + ) _d' - wt((qi, ai, gi+1))
=0
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Weighted Biichi automata with discounting

0 < d <1 a discounting parameter

A weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apa ... € AY and a path P, = (g0, 0, 91)(q1,a1,q2) ... of A
over w

The d-weight of P,

d-weight(P,,) = in(qo) + Zdi -wt((qi, ai, gi+1))

i>0

@ This sum exists: let C = max{in(q),wt(t) | g€ Q,t € Q x Ax Q}
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Weighted Biichi automata with discounting

0 < d <1 a discounting parameter

A weighted Biichi automaton A = (Q, A, in, wt, F), a word
w = apa ... € AY and a path P, = (g0, 0, 91)(q1,a1,q2) ... of A
over w

The d-weight of P,

d-weight(P,,) = in(qo) + Zdi -wt((qi, ai, gi+1))

i>0

@ This sum exists: let C = max{in(q), wt(t) |g€ Q. t € Q x Ax Q}
d-weight(P,) < C+ C- 15 < o0
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Weighted Biichi automata with discounting

@ d-behavior of A:
[All4 : A — Rmax,

where for every w € A¥

(IAllg.w) = sup  (d-weight(Pw))

P., successful
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Weighted Biichi automata with discounting

@ d-behavior of A:
[All4 : A — Rmax,

where for every w € A¥

(IAllg. w) = sup  (d-weight(Pw))

P., successful

@ A series s : AY — Rphay is called d-w-recognizable if there exists a
weighted Biichi automaton over A and Rpyax, so that s = || A,
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Weighted Biichi automata with discounting

@ d-behavior of A:
[All4 : A — Rmax,

where for every w € A¥

(IAllg. w) = sup  (d-weight(Pw))

P., successful

@ A series s : AY — Rpax is called d-w-recognizable if there exists a
weighted Biichi automaton over A and Rpax, so that s = || Af|,

° w-Rec(A, Rmax, d): the class of all d-w-recognizable series over A
and Rax
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wMSO logic with discounting - d-semantics

Same syntax like in other wMSO

Let ¢ € wMSO(A, Rmax). The infinitary d-semantics of ¢ is the series

||g0||d : Aw ) = IRmax-

Free(¢p

For every w € A* and (w, Free(¢))-assignment o, we define
(lellg. (w, o)) inductively by:

o (Iklly. (w,0)) =k
o (IP(¥)l. (w,0)) = { 0 ifw(o(x)) =a

—oo otherwise

o (e Xl (o ={ _ 2 009 <o

° (Ix<ylly (w,0)) = { —og iitf(;(r)\jv)isf v
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wMSO logic with discounting - d-semantics

o (gl twe) = { _ 0 & {0l 070 = 0 proviec

that ¢ is of the form P,(x), x <y orx € X
° (levolly. (w o)) =max((lllly, (w. o)), ([l (w,)))
° (leAdlly. (w,0)) = (llgllg, (w.o)) + (¢l (w. )
° ([Fx.9ly (w,0)) = sup ((llglly. (w,olx =)

iedom(w
° ([3X.9lly. (w,0)) = oup )((Hq)Hd'(W'U[X_) 1))
o ([vx.qly. (w,0)) = Z( )di'(Hq)Hd'(W'U[X_)i]))
i€edom(w

e where dom(w) = w
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d-recognizability and d-definability

@ An infinitary series s : AY — Rpayx is called wMSO-d-definable if
there is a wMSO-sentence ¢ over A and Rpax so that s = ||¢]|,
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d-recognizability and d-definability

@ An infinitary series s : AY — Ry ax is called wMSO-d-definable if
there is a wMSO-sentence ¢ over A and Ryax so that s = | @],

@ w-wMso(A, Rmax, d): the class of all infinitary wMSO-d-definable
series over A and IRy, ax
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o w-wMso(A, Rmax, d): the class of all infinitary wMSO-d-definable
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o Biichi type theorem:
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d-recognizability and d-definability

@ An infinitary series s : AY — Ry ax is called wMSO-d-definable if
there is a wMSO-sentence ¢ over A and Ryax so that s = | @],

o w-wMso(A, Rmax, d): the class of all infinitary wMSO-d-definable
series over A and IRyax

o Biichi type theorem:

Theorem (Droste & R 2007)

w-Rec(A, Ryax, d) = a fragment of w-wMso(A, Riax, d)

@ Open:

o w-Rec(A, Rmax, d) C w-wMso(A, Rmax, d) is the inclusion proper?
(guess: Yes)
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d-recognizability and d-definability

@ An infinitary series s : AY — Ry ax is called wMSO-d-definable if
there is a wMSO-sentence ¢ over A and Ryax so that s = | @],

o w-wMso(A, Rmax, d): the class of all infinitary wMSO-d-definable
series over A and IRyax

o Biichi type theorem:

Theorem (Droste & R 2007)

w-Rec(A, Ryax, d) = a fragment of w-wMso(A, Riax, d)

@ Open:

o w-Rec(A, Rpax, d) C w-wMso(A, Rmax, d) is the inclusion proper?
(guess: Yes)
o w-wMso(A Rmax, d) =?
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Linear Temporal Logic (LTL) - Motivation

@ Why we are still interested in LTL?
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@ Why we are still interested in LTL?

e The |IEEE standarized Propert Spesification Language (PSL) is an
extension of LTL, and is increasingly used in many steps of the
hardware design, from specification to verification

@ Version of PSL used in the industry

e CBV from Motorola
e ForSpec from Intel
e Temporal — e from Versity
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Linear Temporal Logic (LTL) - Motivation

@ Why we are still interested in LTL?

e The |IEEE standarized Propert Spesification Language (PSL) is an
extension of LTL, and is increasingly used in many steps of the
hardware design, from specification to verification

@ Version of PSL used in the industry

e CBV from Motorola
e ForSpec from Intel

e Temporal — e from Versity
e Sugar from IBM.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 50 / 83



LTL - Syntax

Let AP be a finite set of atomic propositions. The syntax of the
LTL-formulas over AP is given by

pu=true|p| -9 |eVe|Og¢|eUe|Op| 0| O0e
where p € AP.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata
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LTL - Syntax

Let AP be a finite set of atomic propositions. The syntax of the
LTL-formulas over AP is given by

pu=true|p| -9 |eVe|Og¢|eUe|Op| 0| O0e
where p € AP.

@ LTL(AP): the set of all LTL-formulas over AP.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata

Linz-Hagenberg, July 2, 2012 51 /83



LTL - Semantics

o Let 9 € LTL(AP) and w = aa1a; ... € (2Ap)w. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

o w = true
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

o w = true
o wlEp iff p€ag
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:
o w = true
o whkp iff peag
o wl= g iff wE¢
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aparar ... € (24P)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

w = true

wl=p iff p€ag

w =g iff wkEe

wkEeVY iff wiEg@orwkE=y
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aparar ... € (24P)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

w = true

wl=p iff p€ag

w =g iff wkEe

wEeVYy iff wiEgorwlE=y

w |: Ogo iff diaz... ‘: @
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

o w = true

o w=p iff p€a

o wl= g iff wE¢

owlEoVy iff wiEgporwgEY

o wl= Qe iff ajar...F¢

o wl=oUy iff 3j>0, ajaji1... =1 and for every 0 < i <,
ajdj+1---F— @
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

o w = true

o whkp iff peag

o wl= g iff wE¢

owlEoVy iff wiEgporwgEY

o wl= Qe iff ajar...F¢

o wk Uy iff 3j >0, ajaj11... = ¢ and for every 0 < i <,
ajaji1--- F @

o wi=Ug iff aja;,1... = ¢ foreveryi>0
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

o w = true

o whkp iff peag

o wl= g iff wE¢

owlEoVy iff wiEgporwgEY

o wl= Qe iff ajar...F¢

o wk Uy iff 3j >0, ajaj11... = ¢ and for every 0 < i <,
ajaji1--- F @

o wl=0g iff aaj,1... = ¢ foreveryi >0

o wl=0g¢ iff 3i>0,aa3,1...F¢
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LTL - Semantics

o Let ¢ € LTL(AP) and w = aga1az... € (247)“. We define the
satisfaction w = ¢ of ¢ by w by induction on the structure of ¢:

o w = true

o whkp iff peag

o wl= g iff wE¢

owlEoVy iff wiEgporwgEY

o wl= Qe iff ajar...F¢

o wk Uy iff 3j >0, ajaj11... = ¢ and for every 0 < i <,
ajaji1--- F @

o wl=0g iff aaj,1... = ¢ foreveryi >0

o wl=0g¢ iff 3i>0, aa31...F¢

o w =0 iff for every i >0, 3j > i such that ajaj1... = ¢.
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LTL-definability and recognizability

o ¢ € LTL(AP)
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LTL-definability and recognizability

o ¢ € LTL(AP)

o L(@): the language of (all infinite words over 247

satisfying) ¢
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LTL-definability and recognizability

o ¢ € LTL(AP)
o L(@): the language of (all infinite words over 247 satisfying) ¢
° L C (2AP)@ is LTL-definable if there is a ¢ € LTL(AP) such that

(2"
L(e)
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LTL-definability and recognizability

¢ € LTL(AP)

L(g): the language of (all infinite words over 247 satisfying) ¢

L C (2P)% is LTL-definable if there is a ¢ € LTL(AP) such that
L=L(e)

w-Ltl(24F): the class of all LTL-definable infinitary languages over
2AP
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LTL-definability and recognizability

¢ € LTL(AP)
L(g): the language of (all infinite words over 247 satisfying) ¢
L C (2P)% is LTL-definable if there is a ¢ € LTL(AP) such that

L=L(9)
w-Ltl(24P): the class of all LTL-definable infinitary languages over
2AP

Vardi and Wopler 1994:

w-LtI(2F) ¢ w-Rec(24F)
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wLTL with discounting - Syntax

Let AP be a finite set of atomic propositions. The syntax of the
wLTL-formulas with discounting over AP and R.,.x is given by

pu=kl|p|l-ploeVve|lene|O¢l|eUe|Op| e | O0¢

where k € R, and p € AP.
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wLTL with discounting - Syntax

Let AP be a finite set of atomic propositions. The syntax of the
wLTL-formulas with discounting over AP and R.,.x is given by

pu=kl|p|l-ploeVve|lene|O¢l|eUe|Op| e | O0¢

where k € R, and p € AP.

@ WLTL (AP, Rpmax) the class of all formulas of wLTL over AP and
Rmax-
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wLTL with discounting - d-semantics

0 < d <1 a discounting parameter

Let ¢ € wLTL (AP, Rmax) . The infinitary d-semantics of ¢ is the series

Iolly = (2%)" = R

For every w = aga; ... € (2A'D)w we define (@], w) inductively by:
° (l[kllg.w) =k
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wLTL with discounting - d-semantics

0 < d <1 a discounting parameter

Let ¢ € wLTL (AP, Rmax) . The infinitary d-semantics of ¢ is the series

Iolly = (2%)" = R

For every w = aga; ... € (2A'D)w we define (@], w) inductively by:
° (l[kllg.w) =k

0 ifpé€ag
o (|lplly. w) _{ —oco otherwise
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wLTL with discounting - d-semantics

0 < d <1 a discounting parameter

Let ¢ € wLTL (AP, Rmax) . The infinitary d-semantics of ¢ is the series

Iolly = (2%)" = R

For every w = aga; ... € (2A'D)w we define (@], w) inductively by:
° (l[kllg.w) =k

0 ifpea
ouwumo={ 0

—oo otherwise

0 if
o(hmdmoz{ * b & a

—oo otherwise
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wLTL with discounting - d-semantics

0 < d <1 a discounting parameter

Let ¢ € wLTL (AP, Rmax) . The infinitary d-semantics of ¢ is the series

Iolly = (2%)" = R

For every w = aga; ... € (2A'D)w we define (@], w) inductively by:
° (l[kllg.w) =k

0 ifpea
o (loll, . w) ={ 0

—oo otherwise

0 if
o(Hﬁpud,w):{ i p & a

—oo  otherwise

° (loVvollg, w)=max((lglly w) (

$llg w))
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wLTL with discounting - d-semantics

Definition (continued)
o (leAyglly w)=(lollg, w)+(l¢ly w)
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wLTL with discounting - d-semantics

Definition (continued)

° (loryglly w)=(lellg, w)+¢ly w)
° (1Oollg.w)=d-(lollg,aa...)
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wLTL with discounting - d-semantics

Definition (continued)

° (loryglly w)=(lellg, w)+¢ly w)
° ([O¢lly w)=d-(lglly ara...)
° (loUplly, w) =

sup (( L d-(lollg 2a..)+d (¢l afaf+1---)>>

i>0 0<j<i
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wLTL with discounting - d-semantics

Definition (continued)

° (loryglly w)=(lellg, w)+¢ly w)
° ([O¢lly w)=d-(lglly ara...)
° (loUylly, w) =

sup (( L &-(lollg.aaj1--) +d - (¢l aiais )))

i>0 0<j<i

° (I0¢lly. w) = Ed"- (g aiais1 )
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wLTL with discounting - d-semantics

Definition (continued)

° (loryglly w)=(lellg, w)+¢ly w)
° ([O¢lly w)=d-(lglly ara...)
° (loUylly, w) =

sup (( L &-(lollg.aaj1--) +d - (¢l aiais )))

i>0 0<j<i

° (I0¢lly. w) = Ld"-(ollg aiairr --.)

° (10¢lly. w) =sue((llglly. aiais--.))
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wLTL with discounting - d-semantics

Definition (continued)

° (loryglly w)=(lellg, w)+¢ly w)
° ([O¢lly w)=d-(lglly ara...)
° (loUylly, w) =

sup (( L &-(lollg.aaj1--) +d - (¢l aiais )))

i>0 0<j<i

° (I0¢lly. w) = Ld"-(ollg aiairr --.)

° (10¢lly. w) =sue((llglly. aiais---))

o (I80¢lly.w) = £d' (sug«wud,akakﬂ...>>)

k>
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LTL d-definability and d-recognizability

@ An infinitary series s : (2AP)“’ — Rpmax is called wlLTL-d-definable if
there is a wLTL-formula ¢ over AP and R, such that s = ||¢]|,
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LTL d-definability and d-recognizability

e An infinitary series s : (247)% — Ry, is called wLTL-d-definable if
there is a wLTL-formula ¢ over AP and Rp,x such that s = ||¢||,

o w-LtI(2AP Rpax, d): the class of all wLTL-d-definable infinitary series
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LTL d-definability and d-recognizability

e An infinitary series s : (247)% — Ry, is called wLTL-d-definable if
there is a wLTL-formula ¢ over AP and Rp,x such that s = ||¢||,

° w-Ltl(2AP, Rmax, d): the class of all wLTL-d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment ofcu—Ltl(2AP,lRmaX, d) C w—Rec(2AP,]RmaX, d).

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 57 / 83
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Theorem (Mandrali 2010, 2012)
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LTL d-definability and d-recognizability

e An infinitary series s : (247)% — Ry, is called wLTL-d-definable if
there is a wLTL-formula ¢ over AP and Rp,x such that s = ||¢||,

° w-Ltl(2AP, Rmax, d): the class of all wLTL-d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment ofcu—Ltl(2AP,lRmaX, d) C w—Rec(2AP,]RmaX, d).

@ Open:

o Is the above inclusion proper? (guess: Yes)

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 57 / 83



LTL d-definability and d-recognizability

e An infinitary series s : (247)% — Ry, is called wLTL-d-definable if
there is a wLTL-formula ¢ over AP and Rp,x such that s = ||¢||,

° w-Ltl(2AP, Rmax, d): the class of all wLTL-d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment ofcu—Ltl(2AP,lRmaX, d) C w—Rec(2AP,]RmaX, d).

@ Open:
o Is the above inclusion proper? (guess: Yes)
e Does the inclusion w-Lt/(24P Rpax, d) C w-Rec(24P Rmax, d)
hold true?
and if yes, is it proper?
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LTL d-definability and d-recognizability

e An infinitary series s : (247)% — Ry, is called wLTL-d-definable if
there is a wLTL-formula ¢ over AP and Rp,x such that s = ||¢||,

° w-Ltl(2AP, Rmax, d): the class of all wLTL-d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment ofcu—Ltl(2AP,lRmaX, d) C w—Rec(2AP,]RmaX, d).

@ Open:
o Is the above inclusion proper? (guess: Yes)
o Does the inclusion w-Lt/(24P Rpax, d) C w-Rec (24P Rmax, d)
hold true?
and if yes, is it proper?

@ A weighted LTL over commutative semirings with infinite sums and
products is defined in a similar way. We just replace sum with product
and sup with sum, above.
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@ A partially ordered set (L, <) or simply L is a /attice if the supremum
k V I and the infimium k A [ exist in L for every k,/ € L.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012



o A partially ordered set (L, <) or simply L is a /attice if the supremum
k V I and the infimium k A/ exist in L for every k,/ € L.

@ Lattice L : bounded if there are 0,1 € L, such that 0 < k < 1 for
every k € L
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every k € L
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every k € L

o Lattice L: distributive if for every k, I, m € L:
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(kvVIyAm) = (kAm)V (IAm)

@ Every bounded distributive lattice L is a semiring with operations V
and A and neutral elements 0 and 1.
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o A partially ordered set (L, <) or simply L is a /attice if the supremum
k V I and the infimium k A/ exist in L for every k,/ € L.

o Lattice L : bounded if there are 0,1 € L, such that 0 < k <1 for
every k € L

o Lattice L: distributive if for every k, I, m € L:
kA (IVm)=(kNI)V (kA m)
(kvVIyAm) = (kAm)V (IAm)

@ Every bounded distributive lattice L is a semiring with operations V
and A and neutral elements 0 and 1.

@ Bounded distributive lattice L: a mapping : L — L is a negation
function if 0 =1 and 1 = 0.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 58 / 83



o A partially ordered set (L, <) or simply L is a /attice if the supremum
k V I and the infimium k A/ exist in L for every k,/ € L.

o Lattice L : bounded if there are 0,1 € L, such that 0 < k <1 for
every k € L

o Lattice L: distributive if for every k, I, m € L:
kA (IVm)=(kNI)V (kA m)
(kvVIyAm) = (kAm)V (IAm)
@ Every bounded distributive lattice L is a semiring with operations V

and A and neutral elements 0 and 1.

@ Bounded distributive lattice L: a mapping : L — L is a negation
function if 0 =1 and 1 = 0.

@ Bounded distributive lattice L: we can define a negation function by
0=1and x =0 for every x € L\ {0}
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o A partially ordered set (L, <) or simply L is a /attice if the supremum
k V I and the infimium k A/ exist in L for every k,/ € L.

o Lattice L : bounded if there are 0,1 € L, such that 0 < k <1 for
every k € L

o Lattice L: distributive if for every k, I, m € L:
kA (IVm)=(kNI)V (kA m)
(kvVIyAm) = (kAm)V (IAm)
@ Every bounded distributive lattice L is a semiring with operations V

and A and neutral elements 0 and 1.

@ Bounded distributive lattice L: a mapping : L — L is a negation
function if 0 =1 and 1 = 0.

@ Bounded distributive lattice L: we can define a negation function by
0=1and x =0 for every x € L\ {0}

@ In the sequel: L bounded distributive lattice with negation function
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Multi-valued automata

@ [: bounded distributive lattice
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Multi-valued automata

@ [: bounded distributive lattice

o A multi-valued automaton over L
A= (Q, A, in, wt, ter)

is just a weighted automaton over L.
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Multi-valued automata

L: bounded distributive lattice

@ A multi-valued automaton over L
A= (Q,A, in, wt, ter)

is just a weighted automaton over L.

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt,F)

is just a weighted Biichi automaton over L.

o Considering the quantitative MSO logic and LTL over L, the problem
of how to define the negation for enery formula remains!
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De Morgan algebras

A De Morgan algebra is a bounded distributive lattice (L, <) equipped
with a comlpement mapping

L— L
satisfying the involution law _
k =k
and the De Morgan laws
kVIi=knNI, kNT=kVI

for every k, I € L.

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 60 / 83



De Morgan algebras

A De Morgan algebra is a bounded distributive lattice (L, <) equipped
with a comlpement mapping

L— L
satisfying the involution law _
k =k
and the De Morgan laws
kVIi=knNI, kNT=kVI

for every k, I € L.

e For instance the fuzzy semiring F = ([0, 1], sup, inf, 0, 1) with
k =1—k is a De Morgan algebra.
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De Morgan algebras

A De Morgan algebra is a bounded distributive lattice (L, <) equipped
with a comlpement mapping

L— L
satisfying the involution law _
k =k
and the De Morgan laws
kVIi=knNI, kNT=kVI

for every k, I € L.

e For instance the fuzzy semiring F = ([0, 1], sup, inf, 0, 1) with
k =1—k is a De Morgan algebra.
@ In the sequel: L De Morgan algebra
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Multi-valued automata over De Morgan algebras

@ A multi-valued automaton over L:

A= (Q,A, in, wt, ter)
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o @ the finite state set,
o A the input alphabet,
e in: Q — L the initial distribution,
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Multi-valued automata over De Morgan algebras

@ A multi-valued automaton over L:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — L the initial distribution,

wt: Q X AxX @ — L the weight assignment mapping,
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@ A multi-valued automaton over L:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — L the initial distribution,

wt: Q X AxX @ — L the weight assignment mapping,
ter : @ — L the terminal distribution

@ wW=2ay...a,_1 € A"
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Multi-valued automata over De Morgan algebras

@ A multi-valued automaton over L:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — L the initial distribution,

wt: Q X AxX @ — L the weight assignment mapping,
ter : @ — L the terminal distribution

@ wW=2ay...a,_1 € A*
@ a path of A over w

Pw = (qo. a0, 91)(q1, a1, G2) - .. (Gn—1, @3n—1, Gn)
where (g;,a;,qi+1) € Q x AX Q forevery 0 <i<n-—1
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Multi-valued automata over De Morgan algebras

@ A multi-valued automaton over L:
A= (Q,A, in, wt, ter)

Q the finite state set,

A the input alphabet,

in: Q@ — L the initial distribution,

wt: Q X AxX @ — L the weight assignment mapping,
ter : @ — L the terminal distribution

@ w=ay...a,-1 € A"
@ a path of A over w
Py = (g0, a0, q1)(q1, a1, q2) - - - (Gn—1, 3n—1, Gn)
where (g, a;,qi+1) € Q X AX Q forevery 0 <i<n-—1
o the weight of Py,:
Weight(PW) = in(qo) A Wf(((]o, ao, ql)) A Wt((Ql, ar, q2)) A
A Wt((qnflv an—1, qn)) A tef(CIn)
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Multi-valued automata over De Morgan algebras

@ the behavior of A is the series
| Al : A — K
defined for every w € A* by

(

= \/weight(P,)
Puw
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Multi-valued automata over De Morgan algebras

@ Example: Let L be the fuzzy semiring.
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in(q) = ter(q) =1, and
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Multi-valued automata over De Morgan algebras

@ Example: Let L be the fuzzy semiring.

o A=(Q, A, in, wt, ter) with A= {a, b, c}, Q ={q},
in(q) = ter(q) =1, and

0 if x=a
o wt((g,x,q9)) =< 0,5 ifx=5b
1 if x=rc
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Multi-valued automata over De Morgan algebras

@ Example: Let L be the fuzzy semiring.

o A=(Q, A, in, wt, ter) with A= {a, b, c}, Q ={q},
in(q) = ter(q) =1, and

0 if x=a
o wt((g,x,q)) =% 0,5 ifx=5b
1 if x=c

@ Then for any word w € A* we get (|| A||, w) = 0 if w contains at
least one occurrence of a, (||.A||, w) = 0,5 if w contains at least one
occurrence of b but not any a, and (|| A||, w) = 1 if w contains only
c or it is the empty word, i.e., w = ¢" for some n > 0.
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Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:

A=(Q,A, in wt, F)
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Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt, F)

o @ the finite state set,
o A the input alphabet,
e in: Q — L the initial distribution,
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Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt, F)

Q@ the finite state set,

A the input alphabet,

in: Q@ — L the initial distribution,

wt: Q@ X AxX Q — L the weight assignment mapping,
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Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt, F)

Q@ the finite state set,

A the input alphabet,

in: Q@ — L the initial distribution,

wt: Q@ X Ax Q — L the weight assignment mapping,
F the final state set
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Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt, F)

o @ the finite state set,

o A the input alphabet,

e in: @ — L the initial distribution,

e wt: QX AX Q — L the weight assignment mapping,
o F the final state set

@ w=apa;... € A¥
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Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt, F)

o @ the finite state set,
o A the input alphabet,
e in: @ — L the initial distribution,
e wt: QX AX Q — L the weight assignment mapping,
o F the final state set
@ w=3a... €AY
@ a path of A over w

Pw = (qo,a0,q1)(q1, a1, q2) . ..
where (g, ai,qi+1) € @ x Ax Q forevery i >0

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 64 / 83



Multi-valued Biichi automata over De Morgan algebras

@ A multi-valued Biichi automaton over L:
A=(Q,A, in wt, F)

o @ the finite state set,
o A the input alphabet,
e in: @ — L the initial distribution,
e wt: QX AX Q — L the weight assignment mapping,
o F the final state set
@ w=3a... €AY
@ a path of A over w

Py = (qo,a0,q1)(q1, a1, q2) . ..

where (g, ai,gi+1) € @ x Ax Q forevery i >0
@ the weight of P,,:

weight(P,,) = in(qo) A wt((qo. a0, q1)) A wt((q1, a1, q2)) A ...
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Multi-valued Biichi automata over De Morgan algebras

o P,: successful if In?(P,)NF # @
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Multi-valued Biichi automata over De Morgan algebras

o P, successful if In®(P,)NF # @

@ observe that a successful path P, can have weight(P,) =0
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Multi-valued Biichi automata over De Morgan algebras

o P, successful if In®(P,)NF # @
@ observe that a successful path P, can have weight(P,) =0

@ the behavior of A is the infinitary series

I|A] : AY — K

defined for every w € A¥ by

Al w) =\ weight(Py)

P,, successful

Linz-Hagenberg, July 2, 2012 65 / 83
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Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by
pu=k|P(x) [ xeX|x<y|-¢|loVe|Ix.o[IX.q

where a € A and k € K.
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where a € A and k € K.
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Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by
pu=k|P(x) [ xeX|x<y|-¢|loVe|Ix.o[IX.q

where a € A and k € K.

° pAp=(=9Vy),
° Vx.¢p = —(Ix.p)
(] VX.go:ﬂ(EIX.ﬂgo)
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Multi-valued MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and L is given by
pu=k|P(x) [ xeX|x<y|-¢|loVe|Ix.o[IX.q

where a € A and k € K.

° pAp=(=9Vy),
° Vx.¢p = —(Ix.p)
(] VX.QD: —\<E|X.ﬂq))

e dmMSO(A, L): the set of all multi-valued MSO-formulas over A and
L
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Multi-valued MSO logic - Semantics over finite words

Definition

Let ¢ € dmMSO(A, K). The finitary semantics of ¢ is the series

”(P” : A);-'ree(q)) — L.

For every w € A* and (w, Free(¢))-assignment o, we define
([l|l, (w, o)) inductively by:

o (IKl. (w,0)) = k

George Rahonis (University of Thessaloniki)

Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 67 / 83
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Definition

Let ¢ € dmMSO(A, K). The finitary semantics of ¢ is the series

”(P” : A);-'ree(q)) — L.

For every w € A* and (w, Free(¢))-assignment o, we define
([l|l, (w, o)) inductively by:

o ([ (w, o)) =k
o (|IP.(x)], (w, ) _{ 1 ifw(o(x)) =a

0 otherwise
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Multi-valued MSO logic - Semantics over finite words

Let ¢ € dmMSO(A, K). The finitary semantics of ¢ is the series

”(P” : A);-'ree(q)) — L.

For every w € A* and (w, Free(¢))-assignment o, we define
([l|l, (w, o)) inductively by:

o (Kl (w.2)) = &
o (1P (wo)) = { § FelobD) =2

0 otherwise

{ 1 if o(x) € o(X)

o ([[xeX]|,(w,o0)) 0 otherwise
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Multi-valued MSO logic - Semantics over finite words

Definition

Let ¢ € dmMSO(A, K). The finitary semantics of ¢ is the series

”(P” : A);-'ree(q)) — L.

For every w € A* and (w, Free(¢))-assignment o, we define
([l|l, (w, o)) inductively by:

o (Kl (w.2)) = &
o (1P (wo)) = { § FelobD) =2

0 otherwise

o (e X)) = { § e "

0 otherwise

] (|X§va(W,O'))—{ 1 if O'(X) So'(y)
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Multi-valued MSO logic - Semantics over finite words

Definition (continued)

° ([=oll. (w,a)) = (¢l (w,0))
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Multi-valued MSO logic - Semantics over finite words

Definition (continued)

° ([=oll, (w,a)) = (¢l (w,0))
° (levyll.(w,a)) = (el (w,a) v (¢l (w, )
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Multi-valued MSO logic - Semantics over finite words

Definition (continued)

° ([=oll, (w,a)) = (¢l (w,0))
o (levyll,(w,a)) = (el (w, o)V ¢l (w, )
o (|Bx.oll.(w.0))= "V (lol (wolx—1i]))

i€dom(w)
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Multi-valued MSO logic - Semantics over finite words

Definition (continued)

° ([=oll, (w,a)) = (¢l (w,0))
o (levyll,(w,a)) = (el (w, o)V ¢l (w, )
° (3.9l (w,0))= 'V )(Ilcpll,(w,a[x—> i1))

iedom(w

o (I3X.oll.(w,0)) =V (ol (w.oX—=1]))

ICdom(w)
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Multi-valued MSO logic - Semantics over finite words

Definition (continued)

° ([=oll, (w,a)) = (¢l (w,0))
o (levyll,(w,a)) = (el (w, o)V ¢l (w, )
° (3.9l (w,0))= 'V )(Ilcpll,(w,a[x—> i1))

iedom(w

o (I3X.oll.(w.0))= "V (l¢ll (w,olX—1]))

ICdom(w)

@ where dom(w) = {0, ..., lw| —1}
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Multi-valued MSO logic - Semantics over infinite words

Definition
Let ¢ € dmMSO(A, K). The infinitary semantics of ¢ is the series

o]l + Abree(g) = L-

Free(¢p

For every w € A and (w, Free(¢))-assignment o, we define
(Ilell . (w, o)) inductively by:

o (&Il (w.0)) = k
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Definition
Let ¢ € dmMSO(A, K). The infinitary semantics of ¢ is the series

o]l + Abree(g) = L-

Free(¢p

For every w € A and (w, Free(¢))-assignment o, we define
(Ilell . (w, o)) inductively by:

o ([lKll. (w.0)) = k |
o (IP(x)]|. (w.,0)) = { 1 if w(o(x) = a

0 otherwise
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Multi-valued MSO logic - Semantics over infinite words

Let ¢ € dmMSO(A, K). The infinitary semantics of ¢ is the series

o]l + Abree(g) = L-

Free(¢p

For every w € A and (w, Free(¢))-assignment o, we define
(Ilell . (w, o)) inductively by:

o (IK|l. (w. @) = k |
o (IP(IIl. (w, @) :{ 1 ifw(o(x) =a

0 otherwise
{ 1 if o(x) € o(X)

o ([[xeX|l,(w,0)) 0 otherwise
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Multi-valued MSO logic - Semantics over infinite words

Let ¢ € dmMSO(A, K). The infinitary semantics of ¢ is the series

o]l + Abree(g) = L-

Free(¢p

For every w € A and (w, Free(¢))-assignment o, we define
(Ilell . (w, o)) inductively by:

o ([[k][.(w,0)) =k |
o (1PN W) ={ § oD =2
S R T
L if o(x) <a(y)
0 otherwise

o ([[x<y|.(wo))= {
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Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

 (w,0)) = (loll, (w, 7))

° ([l=¢]
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Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

° (I=¢ll (w,0)) = (llgll . (w, )
° (levyll, (w.a)) = (lell, (w.a)) Vv (¢l (w o))
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Multi-valued MSO logic - Semantics over infinite words

Definition (continued)
° (I=¢ll (w,0)) = (llgll . (w, )
(

° (levyll (w,0)) = (el (w.a)) vV (¥l (w, o))
o (I3x-¢ll.(w.o)) = V (llgll. (w.olx = )
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Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

° (I=¢ll (w,0)) = (llgll . (w, )
° (levyll (w,0)) = (el (w.a)) vV (¥l (w, o))
° (I3x-¢ll. (w.a)) = V (llgll. (w.olx = )

(13X - oll. (w.0)) = V (llell. (w,olX = 1))
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Multi-valued MSO logic - Semantics over infinite words

Definition (continued)

° (I=¢ll (w,0)) = (llgll . (w, )
° (levyll (w,0)) = (el (w.a)) vV (¥l (w, o))
° (I3x-¢ll. (w.a)) = V (llgll. (w.olx = )

° (I3X-oll. (w.0)) = V (el (w.olX =)

@ where dom(w) = w
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Recognizability and definability over De Morgan algebras

e dm-Mso(A, L): the class of all finitary series over A and L definable
by multi-valued MSO sentences.
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Recognizability and definability over De Morgan algebras

e dm-Mso(A, L): the class of all finitary series over A and L definable
by multi-valued MSO sentences.

@ w-dm-Mso(A, L): the class of all infinitary series over A and L
definable by multi-valued MSO sentences.
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Recognizability and definability over De Morgan algebras

e dm-Mso(A, L): the class of all finitary series over A and L definable
by multi-valued MSO sentences.

@ w-dm-Mso(A, L): the class of all infinitary series over A and L
definable by multi-valued MSO sentences.

Theorem (Droste, Kuich & R 2008 )
Rec(A, L) = dm-Mso(A, L)

w-Rec(A, L) = w-dm-Mso(A, L)

George Rahonis (University of Thessaloniki) Quantitative Logics and Automata Linz-Hagenberg, July 2, 2012 71/ 83



Recognizability and definability over De Morgan algebras

e dm-Mso(A, L): the class of all finitary series over A and L definable
by multi-valued MSO sentences.

@ w-dm-Mso(A, L): the class of all infinitary series over A and L
definable by multi-valued MSO sentences.

Theorem (Droste, Kuich & R 2008 )
Rec(A, L) = dm-Mso(A, L)

w-Rec(A, L) = w-dm-Mso(A, L)

@ We do not require any fragments!
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Multi-valued LTL - Syntax

Definition
Let AP be a finite set of atomic propositions. The syntax of the
multi-valued LTL-formulas over AP and IR, is given by

pu=k|plapleVve|OpleUe

where k € R, and p € AP.

72/ 83
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Multi-valued LTL - Syntax

Let AP be a finite set of atomic propositions. The syntax of the
multi-valued LTL-formulas over AP and IR, is given by

pu=k|plapleVve|OpleUe

where k € R, and p € AP.

@ dmLTL (AP, Rpax) the class of all multi-valued LTL formulas over
AP and Ry ax.

72/ 83
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Multi-valued LTL - semantics

Let ¢ € dmLTL (AP, Rmax) . The infinitary semantics of ¢ is the series

ol = (2%7)" = R

For every w = agai ... € (247)“ we define (|| ¢||, w) inductively by:
o ([[k][,w) =k
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Multi-valued LTL - semantics

Let ¢ € dmLTL (AP, Rmax) . The infinitary semantics of ¢ is the series
w
loll = (27)" = Rinax

For every w = agai ... € (247)“ we define (|| ¢||, w) inductively by:
o (k][ w) =k

°(MLM—{ 0 ¥ p € a

—oo0  otherwise
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Multi-valued LTL - semantics

Let ¢ € dmLTL (AP, Rmax) . The infinitary semantics of ¢ is the series
w
loll = (27)" = Rinax

For every w = agai ... € (247)“ we define (|| ¢||, w) inductively by:
o (k][ w) =k

o<wwm={ 0 ¥ p €

—oo otherwise

° ([l=ell w) = (el w)
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Multi-valued LTL - semantics

Let ¢ € dmLTL (AP, Rmax) . The infinitary semantics of ¢ is the series
w
loll = (27)" = Rinax
For every w = agai ... € (247)“ we define (|| ¢||, w) inductively by:
o (k][ w) =k

o<wwm={ 0 ¥ p €

—oo otherwise
o ([[=¢ll . w) = (llell w)
o (leveyl.w)=(lell.w)Vv (vl w)
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Multi-valued LTL - semantics

Let ¢ € dmLTL (AP, Rmax) . The infinitary semantics of ¢ is the series
w
loll = (27)" = Rinax

For every w = agai ... € (247)“ we define (|| ¢||, w) inductively by:
o (k][ w) =k

o<wwm={ 0 ¥ p €

—oo otherwise
o ([[=ell,w) = (el w)

° (levoll,w)= (el w)V (Il w)
° (|Oell w)=(l¢ll ara2...)
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George Rahonis (University of Thessaloniki)

Multi-valued LTL - semantics

Let ¢ € dmLTL (AP, Rmax) . The infinitary semantics of ¢ is the series
w
loll = (27)" = Rinax

For every w = agai ... € (247)“ we define (|| ¢||, w) inductively by:
o (k][ w) =k

o<wwm={ 0 ¥ p €

—oo otherwise
o ([[=ell,w) = (el w)

° (levoll,w)= (el w)V (Il w)
° ([O¢ll,w) = (lell aras-..)

o ([oUpll, w) =V (( A (el ajajra-..) A (]
i>0 0<5<i

,didi41 .- )))
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Multi-valued LTL-definability and recognizability

@ An infinitary series s : (24P)% — Rpax is called dm-LTL-definable if
there is a dm-LTL-formula ¢ over AP and Rpax such that s = ||¢]|
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Multi-valued LTL-definability and recognizability

@ An infinitary series s : (24P)% — Rpax is called dm-LTL-definable if
there is a dm-LTL-formula ¢ over AP and Ry ax such that s = ||¢]|

o w-dm-Lt/(2A7 Rpyax, d): the class of all dm-LTL-definable infinitary
series
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Multi-valued LTL-definability and recognizability

@ An infinitary series s : (24P)% — Rpax is called dm-LTL-definable if
there is a dm-LTL-formula ¢ over AP and Ry ax such that s = ||¢]|

o w-dm-LtI(2AP Rpax, d): the class of all dm-LTL-definable infinitary
series

Theorem (Kupferman & Lustig 2007, Mandrali 2012)

w-dm-Lt1(22P  Rpmax, d) & w-Rec(2*” Rppax, d).
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o Star-free and w-star-free series
@ Counter-free weighted automata
o Weighted Monadic First Order logic
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Decidability results
Complexity results
Weighted PSL?

Application to Quantitative Model Checking
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Semirings with infinite sums and products

o K is equipped with infinitary sum operations ¥, : K! — K, for any
index set /, such that for all / and all families (a; | i € I) of elements
of K such that

° Zi€® aj = 0, Zle{j} aj = aj, Zie{j,k} aj = a; + ak fOI’_j # k,
o ZJGJ(z,-E,j a,-) = Yicrai if Ujey =1 and [0 [y = @ for j # ',

o Yieilc-a)=c- (Zie/ 3/), Yiel(ai-c) = (Zie/ ai) -¢, and
@ K is endowed with a countably infinite product operation satisfying for
all sequences (a; | i > 0) of elements of K the following conditions:
o [Tix01 =1 Tliz0a =1Ili»0a}
° ag-[lizoait1 =1Iliz0ai Iljz1Xieai =
Y(ivip,)ehxlx... LT Ij>1 i,

o [Tixo(ai- bj) = (Hc‘h’) - (TTi»o bi)

i>0
where in the second equation
36 =ag-...-an, a3 = A+l Amy e for an increasing sequence
0 < n <np<...,and in the last equation-/y, Iy,... are arbitrar
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