Quantitative Logics and Automata

George Rahonis

Department of Mathematics Aristotle University of Thessaloniki, Greece

RISC - Formal Methods seminar Linz-Hagenberg, July 2, 2012

Why do we need a quantitative setup?

- Analysis of Quantitative Systems
 - Probabilistic systems
 - Minimization of costs
 - Maximization of rewards
 - Computation of reliability
 - Optimization of energy consumption
- Natural language processing
- Speech recognition
- Digital image compression
- Fuzzy systems
- . . .

Models

Probabilistic automata Transition systems with costs Transition systems with rewards Transducers with weights

Multi-valued automata

. . .

Models

Probabilistic automata
Transition systems with costs
Transition systems with rewards
Transducers with weights
Multi-valued automata

Weighted Automata

Weighted automata introduced by M. Schützenberger (1961)

Applications in:

Handbook of Weighted Automata,

Manfred Droste, Werner Kuich, and Heiko Vogler eds.,

Monographs in Theoretical Computer Science, An EATCS Series, Springer 2009.

Quantitative analysis: the specification languages (MSO, LTL, CTL, ...) should be also quantitative

Weighted Monadic Second Order (MSO) logic

State of the art

Weighted MSO logic over: finite words Droste & Gastin 2005, 2009, infinite words Droste & R 2006. finite and infinite words with discounting Droste & R 2007. finite trees Droste & Vogler 2006, infinite trees R 2007. finite and infinite trees with discounting Mandrali & R 2009. unranked trees Droste & Vogler 2009, pictures Fichtner 2006. texts Mathissen 2007. traces Meinecke 2006. distributed systems Bollig & Meinecke 2007, trees over valuation monoids Droste et al 2011. average and long time behaviors Droste & Meinecke 2010 finite words and trees over infinite alphabets Mens & R 2011

Multi-Valued Monadic Second Order (MSO) logic

State of the art

Multi-valued MSO logic over words and trees Droste, Kuich & R 2008, Weighted automata and multi-valued logics over arbitrary bounded lattices Droste & Vogler 2012

. . .

Weighted and Multi-Valued Liner Temporal Logic (LTL)

State of the art

```
Weighted LTL:
    extended with discounting R 2009,
    over max-plus semiring with discounthig, and
        over arbitrary semirings Mandrali & R (in progress),
    transformation of weighted LTL formulas to automata
        with discounting Mandrali 2012,
Multi-valued LTL Kupferman & Lustig 2007,
Multi-valued MSO logic and LTL over bounded distributive lattices
Droste & Vogler 2012
```

• Recall: finite automata over finite and infinite words, MSO logic

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words
- Multi-valued MSO logic

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words
- Multi-valued MSO logic
- Multi-valued LTL

- Recall: finite automata over finite and infinite words, MSO logic
- Weighted automata over finite and infinite words
- Weighted MSO logic over finite and infinite words
- Weighted automata and MSO logic with discounting
- Weighted LTL with discounting
- Multi-valued automata over finite and infinite words
- Multi-valued MSO logic
- Multi-valued LTL
- Open problems and future work

• an alphabet A is a finite set

- an alphabet A is a finite set
- $A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid n > 1, a_0, \dots, a_{n-1} \in A\}$: the set of all finite words over A (free monoid generated by A)

- an alphabet A is a finite set
- $A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid n > 1, a_0, \dots, a_{n-1} \in A\}$: the set of all *finite words* over A (free monoid generated by A)
- for $w = a_0 \dots a_{n-1}$ we let |w| = n,

- an alphabet A is a finite set
- $A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid n > 1, a_0, \dots, a_{n-1} \in A\}$: the set of all *finite words* over A (free monoid generated by A)
- for $w = a_0 \dots a_{n-1}$ we let |w| = n,
- $dom(w) = \{0, 1, ..., |w| 1\},\$

- an alphabet A is a finite set
- $A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid n > 1, a_0, \dots, a_{n-1} \in A\}$: the set of all finite words over A (free monoid generated by A)
- for $w = a_0 \dots a_{n-1}$ we let |w| = n,
- $dom(w) = \{0, 1, ..., |w| 1\},$
- $A^{\omega} = \{a_0 a_1 \dots \mid a_0, a_1, \dots \in A\}$: the set of all *infinite words* over A

- an alphabet A is a finite set
- $A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid n > 1, a_0, \dots, a_{n-1} \in A\}$: the set of all *finite words* over A (free monoid generated by A)
- for $w = a_0 \dots a_{n-1}$ we let |w| = n,
- $dom(w) = \{0, 1, ..., |w| 1\},$
- $A^{\omega} = \{a_0 a_1 \dots \mid a_0, a_1, \dots \in A\}$: the set of all *infinite words* over A
- for $w = a_0 a_1 \dots$

- an alphabet A is a finite set
- $A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid n > 1, a_0, \dots, a_{n-1} \in A\}$: the set of all *finite words* over A (free monoid generated by A)
- for $w = a_0 \dots a_{n-1}$ we let |w| = n,
- $dom(w) = \{0, 1, ..., |w| 1\},$
- $A^{\omega} = \{a_0 a_1 \dots \mid a_0, a_1, \dots \in A\}$: the set of all *infinite words* over A
- for $w = a_0 a_1 \dots$
- $dom(w) = \omega(= \mathbb{N})$,

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

A finite automaton

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

• Q: the finite state set

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 \dots a_{n-1} \in A^*$

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 \dots a_{n-1} \in A^*$
- ullet a path of ${\cal A}$ over ${\it w}$

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n) \in \Delta^*$$

A finite automaton

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 \dots a_{n-1} \in A^*$
- ullet a path of ${\cal A}$ over ${\it w}$

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n) \in \Delta^*$$

• P_w : successful if $q_0 \in I$ and $q_n \in F$

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 \dots a_{n-1} \in A^*$
- ullet a path of ${\cal A}$ over ${\it w}$

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n) \in \Delta^*$$

- P_w : successful if $q_0 \in I$ and $q_n \in F$
- $w \in A^*$ is accepted (or recognized) by A if there is a successful path P_w of A over w

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 \dots a_{n-1} \in A^*$
- ullet a path of ${\cal A}$ over ${\it w}$

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n) \in \Delta^*$$

- P_w : successful if $q_0 \in I$ and $q_n \in F$
- $w \in A^*$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_w of \mathcal{A} over w
- ullet $L(\mathcal{A})$: the language of (all words accepted by) \mathcal{A}

Recognizable languages

• $L\subseteq A^*$ is recognizable if there is an $\mathcal{A}=(Q,A,I,\Delta,F)$ such that $L=L(\mathcal{A})$

Recognizable languages

- $L \subseteq A^*$ is *recognizable* if there is an $\mathcal{A} = (Q, A, I, \Delta, F)$ such that $L = L(\mathcal{A})$
- Rec(A): the class of all recognizable languages over A

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

• A (nondeterministic) Büchi automaton

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

• Q: the finite state set

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \ldots \in \Delta^{\omega}$$

• A (nondeterministic) Büchi automaton

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots\in\Delta^\omega$$

 $\bullet \ \mathit{In}^{\mathit{Q}}(\mathit{P}_{\mathit{w}}) = \{\mathit{q} \in \mathit{Q} \mid \exists^{\omega}\mathit{i} : \mathit{t}_{\mathit{i}} = (\mathit{q}, \mathit{a}_{\mathit{i}}, \mathit{q}_{\mathit{i}+1})\}$

$$\mathcal{A} = (Q, A, I, \Delta, F)$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$: the initial state set
- $\Delta \subseteq Q \times A \times Q$: the set of transitions
- $F \subseteq Q$: the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w=(q_0, a_0, q_1)(q_1, a_1, q_2)\ldots \in \Delta^\omega$$

- $In^Q(P_w) = \{q \in Q \mid \exists^{\omega}i : t_i = (q, a_i, q_{i+1})\}$
- P_w : successful if $q_0 \in I$ and $In^Q(P_w) \cap F \neq \emptyset$

• $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_w of \mathcal{A} over w

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_w of \mathcal{A} over w
- ullet $L(\mathcal{A})$: the language of (all infinite words accepted by) \mathcal{A}

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_w of \mathcal{A} over w
- L(A): the language of (all infinite words accepted by) A
- $L \subseteq A^{\omega}$ is ω -recognizable if there is an $\mathcal{A} = (Q, A, I, \Delta, F)$ such that $L = L(\mathcal{A})$

- $w \in A^{\omega}$ is accepted (or recognized) by \mathcal{A} if there is a successful path P_w of \mathcal{A} over w
- L(A): the language of (all infinite words accepted by) A
- $L \subseteq A^{\omega}$ is ω -recognizable if there is an $\mathcal{A} = (Q, A, I, \Delta, F)$ such that $L = L(\mathcal{A})$
- ω -Rec(A): the class of all ω -recognizable languages over A

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= \mathit{true} \mid P_{\mathit{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= \mathit{true} \mid P_{\mathit{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

where $a \in A$, x, y are first-order variables, and X is a second-order variable.

¬true = false

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= \mathit{true} \mid P_{\mathit{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

- ¬true = false
- $\bullet \neg \neg \varphi = \varphi$

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= \mathit{true} \mid P_{\mathit{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

- ¬true = false
- $\bullet \neg \neg \varphi = \varphi$
- $\bullet \ \varphi \wedge \psi = \neg (\neg \varphi \vee \neg \psi)$

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= \mathit{true} \mid P_{\mathit{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

- ¬true = false
- $\bullet \neg \neg \varphi = \varphi$
- $\bullet \ \varphi \wedge \psi = \neg(\neg \varphi \vee \neg \psi)$
- $\bullet \ \forall x \cdot \varphi = \neg(\exists x \cdot \neg \varphi)$

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= true \mid P_a(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, . \, \varphi \mid \exists X \, . \, \varphi$$

- $\neg true = false$
- $\bullet \neg \neg \varphi = \varphi$
- $\bullet \ \varphi \wedge \psi = \neg(\neg \varphi \vee \neg \psi)$
- $\bullet \ \forall x \cdot \varphi = \neg(\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi = \neg (\exists X \cdot \neg \varphi)$

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= \mathit{true} \mid P_{\mathit{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

- $\neg true = false$
- $\bullet \neg \neg \varphi = \varphi$
- $\bullet \ \varphi \wedge \psi = \neg(\neg \varphi \vee \neg \psi)$
- $\bullet \ \forall x \cdot \varphi = \neg(\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi = \neg (\exists X \cdot \neg \varphi)$
- MSO(A): the set of all MSO-formulas over A

Definition

The syntax of the MSO-formulas over A is given by

$$\varphi ::= true \mid P_a(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \varphi \mid \exists X \, \boldsymbol{\cdot} \varphi$$

- $\neg true = false$
- $\bullet \neg \neg \varphi = \varphi$
- $\bullet \ \varphi \wedge \psi = \neg (\neg \varphi \vee \neg \psi)$
- $\bullet \ \forall x \cdot \varphi = \neg (\exists x \cdot \neg \varphi)$
- $\forall X \cdot \varphi = \neg (\exists X \cdot \neg \varphi)$
- MSO(A): the set of all MSO-formulas over A
- Example: $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_a(x))$

• Let $\varphi \in MSO(A)$ and $w \in A^*$

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- ullet First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi
- for instance $\varphi = P_a(x)$ will be satisfied by w if the letter of w at the position represented by x is a

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi
- for instance $\varphi = P_a(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x?

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi
- for instance $\varphi = P_a(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x?
- A first- or a second-order variable is called free it is not in the scope of any quantifier

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi
- for instance $\varphi = P_a(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x?
- A first- or a second-order variable is called free it is not in the scope of any quantifier
- Example: $\varphi = \forall y \cdot (x \le y) \ x$ is a free variable in φ but not in $\varphi' = \exists x \cdot \varphi$

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi
- for instance $\varphi = P_a(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x?
- A first- or a second-order variable is called free it is not in the scope of any quantifier
- Example: $\varphi = \forall y \cdot (x \le y) \ x$ is a free variable in φ but not in $\varphi' = \exists x \cdot \varphi$
- $Free(\varphi)$: the set of free variables of φ

- Let $\varphi \in MSO(A)$ and $w \in A^*$
- First-order variables in φ represent positions in w and second-order variables in φ represent set of positions in w
- ullet in this way we shall check if w "satisfies" arphi
- for instance $\varphi = P_a(x)$ will be satisfied by w if the letter of w at the position represented by x is a
- but which position is represented by x?
- A first- or a second-order variable is called free it is not in the scope of any quantifier
- Example: $\varphi = \forall y \cdot (x \le y) \ x$ is a free variable in φ but not in $\varphi' = \exists x \cdot \varphi$
- $Free(\varphi)$: the set of free variables of φ
- ullet In order to define the **semantics** of an MSO-formula ϕ we have to assign "truth values" to its free variables

• $\varphi \in MSO(A)$, $w \in A^*$, $dom(w) = \{0, 1, ..., |w| - 1\}$

- $\varphi \in MSO(A)$, $w \in A^*$, $dom(w) = \{0, 1, ..., |w| 1\}$
- A $(w, Free(\varphi))$ -assignment σ is a mapping associating first order variables from $Free(\varphi)$ to elements of dom(w), and second order variables from $Free(\varphi)$ to subsets of dom(w)

- $\varphi \in MSO(A)$, $w \in A^*$, $dom(w) = \{0, 1, ..., |w| 1\}$
- A $(w, Free(\varphi))$ -assignment σ is a mapping associating first order variables from $Free(\varphi)$ to elements of dom(w), and second order variables from $Free(\varphi)$ to subsets of dom(w)
- if x is a first order variable and $i \in dom(w)$, then $\sigma[x \to i]$ denotes the $(w, Free(\varphi) \cup \{x\})$ -assignment which associates i to x and acts as σ on $Free(\varphi) \setminus \{x\}$

- $\varphi \in MSO(A)$, $w \in A^*$, $dom(w) = \{0, 1, ..., |w| 1\}$
- A $(w, Free(\varphi))$ -assignment σ is a mapping associating first order variables from $Free(\varphi)$ to elements of dom(w), and second order variables from $Free(\varphi)$ to subsets of dom(w)
- if x is a first order variable and $i \in dom(w)$, then $\sigma[x \to i]$ denotes the $(w, Free(\varphi) \cup \{x\})$ -assignment which associates i to x and acts as σ on $Free(\varphi) \setminus \{x\}$
- if X is a second order variable and $I \subseteq dom(w)$, then $\sigma[X \to I]$ denotes the $(w, Free(\varphi) \cup \{X\})$ -assignment which associates I to X and acts as σ on $Free(\varphi) \setminus \{X\}$

ullet we use the extended alphabet $A_{\mathit{Free}(\varphi)} = A imes \{0,1\}^{\mathit{Free}(\varphi)}$

- ullet we use the extended alphabet $A_{\mathit{Free}(arphi)} = A imes \{\mathtt{0},\mathtt{1}\}^{\mathit{Free}(arphi)}$
- Example: $w = abbab \ (dom(w) = \{0, 1, 2, 3, 4\}),$ $Free(\varphi) = \{x, y, X\}$

- ullet we use the extended alphabet $A_{Free(arphi)} = A imes \{0,1\}^{Free(arphi)}$
- Example: $w = abbab (dom(w) = \{0, 1, 2, 3, 4\}),$ $Free(\varphi) = \{x, y, X\}$
- σ be a $(w, Free(\varphi))$ -assignment with $\sigma(x) = 1, \sigma(y) = 3, \sigma(X) = \{1, 2, 4\}$

- ullet we use the extended alphabet $A_{Free(arphi)} = A imes \{0,1\}^{Free(arphi)}$
- Example: $w = abbab \ (dom(w) = \{0, 1, 2, 3, 4\}),$ $Free(\varphi) = \{x, y, X\}$
- σ be a $(w, Free(\varphi))$ -assignment with $\sigma(x) = 1, \sigma(y) = 3, \sigma(X) = \{1, 2, 4\}$
- we can represent the word $(w, \sigma) \in A^*_{Free(\phi)}$ as follows:

- ullet we use the extended alphabet $A_{\mathit{Free}(arphi)} = A imes \{ extsf{0}, 1 \}^{\mathit{Free}(arphi)}$
- Example: $w = abbab \ (dom(w) = \{0, 1, 2, 3, 4\}),$ $Free(\varphi) = \{x, y, X\}$
- σ be a $(w, Free(\varphi))$ -assignment with $\sigma(x)=1, \sigma(y)=3, \sigma(X)=\{1,2,4\}$
- we can represent the word $(w, \sigma) \in A^*_{Free(\phi)}$ as follows:

• Example: $\varphi = P_a(x) \wedge P_b(y)$, $Free(\varphi) = \{x, y\}$

- Example: $\varphi = P_a(x) \wedge P_b(y)$, $Free(\varphi) = \{x, y\}$
- \bullet w = abbab,

- Example: $\varphi = P_a(x) \wedge P_b(y)$, $Free(\varphi) = \{x, y\}$
- \bullet w = abbab,
 - abbab
- $\bullet \ (w,\sigma) \ \ \text{by} \qquad x \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \\ y \quad 0 \quad 0 \quad 0 \quad 0 \quad 1$

- Example: $\varphi = P_a(x) \wedge P_b(y)$, $Free(\varphi) = \{x, y\}$
- \bullet w = abbab,

- $(w, \sigma) \nvDash \varphi$

- Example: $\varphi = P_a(x) \wedge P_b(y)$, $Free(\varphi) = \{x, y\}$
- \bullet w = abbab,

- $(w, \sigma) \nvDash \varphi$

- Example: $\varphi = P_a(x) \wedge P_b(y)$, $Free(\varphi) = \{x, y\}$
- \bullet w = abbab,

- $(w, \sigma) \nvDash \varphi$
- $\bullet \ (\mathsf{w},\sigma') \models \varphi$

• Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y$ iff $\sigma(x) \le \sigma(y)$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y$ iff $\sigma(x) \le \sigma(y)$
 - $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not\models \varphi$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y$ iff $\sigma(x) \le \sigma(y)$
 - $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not\models \varphi$
 - $(w, \sigma) \models \varphi \lor \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y$ iff $\sigma(x) \le \sigma(y)$
 - $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not\models \varphi$
 - $(w, \sigma) \models \varphi \lor \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
 - $(w, \sigma) \models \exists x \cdot \varphi$ iff there exists an $i \in dom(w)$ such that $(w, \sigma[x \to i]) \models \varphi$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X \text{ iff } \sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y$ iff $\sigma(x) \le \sigma(y)$
 - $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not\models \varphi$
 - $(w, \sigma) \models \varphi \lor \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
 - $(w, \sigma) \models \exists x \cdot \varphi$ iff there exists an $i \in dom(w)$ such that $(w, \sigma[x \to i]) \models \varphi$
 - $(w, \sigma) \models \exists X \cdot \varphi$ iff there exists an $I \subseteq dom(w)$ such that $(w, \sigma[X \to I]) \models \varphi$

- Let $\varphi \in MSO(A)$, $w \in A^*$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models true$
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X \text{ iff } \sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y \text{ iff } \sigma(x) \le \sigma(y)$
 - $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \not\models \varphi$
 - $(w, \sigma) \models \varphi \lor \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
 - $(w, \sigma) \models \exists x \cdot \varphi$ iff there exists an $i \in dom(w)$ such that $(w, \sigma[x \to i]) \models \varphi$
 - $(w, \sigma) \models \exists X \cdot \varphi$ iff there exists an $I \subseteq dom(w)$ such that $(w, \sigma[X \to I]) \models \varphi$
- $L(\varphi) = \{(w, \sigma) \in A^*_{Free(\varphi)} \mid (w, \sigma) \models \varphi\}$ the language of (all words satisfying) φ

• $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$

- $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$
- ullet if φ is a sentence, then $L(\varphi)\subseteq A^*$

- $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$
- ullet if φ is a sentence, then $L(\varphi)\subseteq A^*$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^*$

- $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$
- ullet if φ is a sentence, then $L(\varphi)\subseteq A^*$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^*$
- $L \subseteq A^*$ is MSO-definable if there is a sentence $\varphi \in MSO(A)$ such that $L = L(\varphi)$

- $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$
- ullet if φ is a sentence, then $L(\varphi)\subseteq A^*$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^*$
- $L\subseteq A^*$ is MSO-definable if there is a sentence $\varphi\in MSO(A)$ such that $L=L(\varphi)$
- Mso(A): the class of all MSO-definable languages over A

- $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$
- ullet if arphi is a sentence, then $L(arphi)\subseteq A^*$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^*$
- $L\subseteq A^*$ is MSO-definable if there is a sentence $\varphi\in MSO(A)$ such that $L=L(\varphi)$
- Mso(A): the class of all MSO-definable languages over A
- J.R. Büchi 1960, C. Elgot 1961, B. Trakhtenbrot 1961:

- $\varphi \in MSO(A)$ is a sentence if $Free(\varphi) = \emptyset$
- ullet if φ is a sentence, then $L(\varphi)\subseteq A^*$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^*$
- $L\subseteq A^*$ is MSO-definable if there is a sentence $\varphi\in MSO(A)$ such that $L=L(\varphi)$
- Mso(A): the class of all MSO-definable languages over A
- J.R. Büchi 1960, C. Elgot 1961, B. Trakhtenbrot 1961:

•

$$Rec(A) = Mso(A)$$

- Let $\varphi \in MSO(A)$, $w \in A^{\omega}$, and σ a $(w, Free(\varphi))$ -assignment
- We define the satisfaction $(w, \sigma) \models \varphi$ of φ by (w, σ) by induction on the structure of φ :
 - $(w, \sigma) \models P_a(x)$ iff $w(\sigma(x)) = a$
 - $(w, \sigma) \models x \in X$ iff $\sigma(x) \in \sigma(X)$
 - $(w, \sigma) \models x \le y$ iff $\sigma(x) \le \sigma(y)$
 - $(w, \sigma) \models \neg \varphi$ iff $(w, \sigma) \nvDash \varphi$
 - $(w, \sigma) \models \varphi \lor \psi$ iff $(w, \sigma) \models \varphi$ or $(w, \sigma) \models \psi$
 - $(w,\sigma) \models \exists x \cdot \varphi$ iff there exists an $i \geq 0$ such that $(w,\sigma[x \to i]) \models \varphi$
 - $(w, \sigma) \models \exists X \cdot \varphi$ iff there exists an $I \subseteq \omega$ such that $(w, \sigma[X \to I]) \models \varphi$
- $L(\varphi) = \{(w, \sigma) \in A^{\omega}_{Free(\varphi)} \mid (w, \sigma) \models \varphi\}$ the language of (all infinite words satisfying) φ

ullet if φ is a sentence, then $L(\varphi)\subseteq A^\omega$

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^{\omega}$

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^{\omega}$
- $L \subseteq A^{\omega}$ is MSO-definable if there is a sentence $\varphi \in MSO(A)$ such that $L = L(\varphi)$

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^{\omega}$
- $L\subseteq A^\omega$ is MSO-definable if there is a sentence $\varphi\in MSO(A)$ such that $L=L(\varphi)$
- ω -Mso(A): the class of all infinitary MSO-definable languages over A

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^{\omega}$
- $L\subseteq A^\omega$ is MSO-definable if there is a sentence $\varphi\in MSO(A)$ such that $L=L(\varphi)$
- ullet ω -Mso(A): the class of all infinitary MSO-definable languages over A
- J. R. Büchi 1962:

- if φ is a sentence, then $L(\varphi) \subseteq A^{\omega}$
- Example: Let $\varphi = \exists x \cdot (\forall y \cdot (x \leq y) \land P_b(x))$, then $L(\varphi) = bA^{\omega}$
- $L\subseteq A^\omega$ is MSO-definable if there is a sentence $\varphi\in MSO(A)$ such that $L=L(\varphi)$
- ullet ω -Mso(A): the class of all infinitary MSO-definable languages over A
- J. R. Büchi 1962:

•

$$\omega$$
-Rec(A) = ω -Mso(A)

Semirings

- \bullet (K, +, \cdot , 0, 1): semiring (simply denoted by K) where
 - + is a binary associative and commutative operation on K with neutral element 0, i.e.,
 - k + (l + m) = (k + l) + m,
 - k + l = l + k,
 - k + 0 = k, for every $k, l, m \in K$
 - ullet is a binary associative operation on K with neutral element 1,
 - $k \cdot (l \cdot m) = (k \cdot l) \cdot m$,
 - $k \cdot 1 = 1 \cdot k = 1$.
 - · distributes over +, i.e., $k \cdot (l+m) = k \cdot l + k \cdot m$, and $(k+l) \cdot m = k \cdot m + l \cdot m$ for every $k, l, m \in K$, and
 - $k \cdot 0 = 0 \cdot k = 0$ for every $k \in K$.
- ullet if \cdot is commutative, then K is called commutative
- In the sequel: K a commutative semiring

• A finitary formal (power) series over A and K

$$s: A^* \to K$$

• A finitary formal (power) series over A and K

$$s:A^*\to K$$

• for $w \in A^*$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)

• A finitary formal (power) series over A and K

$$s:A^*\to K$$

- for $w \in A^*$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)
- some operations on series: let s_1 , s_2 series over A and K and $k \in K$

A finitary formal (power) series over A and K

$$s:A^*\to K$$

- for $w \in A^*$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)
- some operations on series: let s_1 , s_2 series over A and K and $k \in K$

•
$$sum s_1 + s_2$$
, $(s_1 + s_2, w) = (s_1, w) + (s_2, w)$

A finitary formal (power) series over A and K

$$s:A^*\to K$$

- for $w \in A^*$ the value s(w) is called the *coefficient of s at w* and denoted as (s,w)
- some operations on series: let s_1 , s_2 series over A and K and $k \in K$
 - $sum s_1 + s_2$, $(s_1 + s_2, w) = (s_1, w) + (s_2, w)$
 - scalar product $k \cdot s_1$, $(k \cdot s_1, w) = k \cdot (s_1, w)$

A finitary formal (power) series over A and K

$$s: A^* \to K$$

- for $w \in A^*$ the value s(w) is called the *coefficient of s at w* and denoted as (s,w)
- some operations on series: let s_1 , s_2 series over A and K and $k \in K$
 - sum $s_1 + s_2$, $(s_1 + s_2, w) = (s_1, w) + (s_2, w)$
 - scalar product $k \cdot s_1$, $(k \cdot s_1, w) = k \cdot (s_1, w)$
 - Hadamard product $s_1 \odot s_2$, $(s_1 \odot s_2, w) = (s_1, w) \cdot (s_2, w)$ for every $w \in A^*$

$$\mathcal{A} = (Q, A, in, wt, ter)$$

• A weighted automaton over K:

$$\mathcal{A} = (Q, A, in, wt, ter)$$

• Q the finite state set,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- ullet ter : $Q \rightarrow K$ the terminal distribution

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- $ter: Q \rightarrow K$ the terminal distribution
- $w = a_0 \dots a_{n-1} \in A^*$

A weighted automaton over K:

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- $ter: Q \rightarrow K$ the terminal distribution
- $w = a_0 \dots a_{n-1} \in A^*$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n)$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $0 \le i \le n-1$

A weighted automaton over K:

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- ullet ter : $Q \rightarrow K$ the terminal distribution
- $w = a_0 \dots a_{n-1} \in A^*$
- ullet a path of ${\cal A}$ over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n)$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $0 \le i \le n-1$

• the weight of P_w :

$$weight(P_w) = in(q_0) \cdot wt((q_0, a_0, q_1)) \cdot wt((q_1, a_1, q_2)) \cdot \dots \cdot wt((q_{n-1}, a_{n-1}, q_n)) \cdot ter(q_n)$$

• the behavior of A is the series

$$\|A\|:A^*\to K$$

defined for every $w \in A^*$ by

$$(\|\mathcal{A}\|$$
 , $w) = \sum_{P_w} weight(P_w)$

• Example: A finite automaton $\mathcal{A}=(Q,A,I,\Delta,F)$ can be considered as a weighted automaton $\mathcal{A}'=(Q,A,in,wt,ter)$ over the Boolean semiring $(\{0,1\},+,\cdot,0,1)$, where:

• Example: A finite automaton $\mathcal{A}=(Q,A,I,\Delta,F)$ can be considered as a weighted automaton $\mathcal{A}'=(Q,A,in,wt,ter)$ over the Boolean semiring $(\{0,1\},+,\cdot,0,1)$, where:

 $ullet in(q) = \left\{ egin{array}{ll} 1 & ext{if } q \in I \ 0 & ext{otherwise} \end{array}
ight. ,$

• Example: A finite automaton $\mathcal{A}=(Q,A,I,\Delta,F)$ can be considered as a weighted automaton $\mathcal{A}'=(Q,A,in,wt,ter)$ over the Boolean semiring $(\{0,1\},+,\cdot,0,1)$, where:

$$ullet in(q) = \left\{ egin{array}{ll} 1 & ext{if } q \in I \ 0 & ext{otherwise} \end{array}
ight. ,$$

$$ullet \ \mathit{wt}((\mathit{q}, \mathit{a}, \mathit{q}')) = \left\{ egin{array}{ll} 1 & \mathsf{if}\ (\mathit{q}, \mathit{a}, \mathit{q}') \in \Delta \ 0 & \mathsf{otherwise} \end{array}
ight.$$
 , and

- Example: A finite automaton $\mathcal{A} = (Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}' = (Q, A, in, wt, ter)$ over the Boolean semiring $(\{0, 1\}, +, \cdot, 0, 1)$, where:
- $ullet in(q) = \left\{ egin{array}{ll} 1 & ext{if } q \in I \ 0 & ext{otherwise} \end{array}
 ight. ,$
- $ullet \ \mathit{wt}((q, \mathit{a}, q')) = \left\{ egin{array}{ll} 1 & \mathsf{if}\ (q, \mathit{a}, q') \in \Delta \ 0 & \mathsf{otherwise} \end{array}
 ight.$, and
- $ter(q) = \begin{cases} 1 & \text{if } q \in F \\ 0 & \text{otherwise} \end{cases}$

- Example: A finite automaton $\mathcal{A} = (Q, A, I, \Delta, F)$ can be considered as a weighted automaton $\mathcal{A}' = (Q, A, in, wt, ter)$ over the Boolean semiring $(\{0, 1\}, +, \cdot, 0, 1)$, where:
- $ullet \mathit{in}(q) = \left\{ egin{array}{ll} 1 & \mathsf{if} \ q \in I \ 0 & \mathsf{otherwise} \end{array}
 ight. ,$
- $ullet \ \mathit{wt}((q, \mathsf{a}, q')) = \left\{ egin{array}{ll} 1 & \mathsf{if}\ (q, \mathsf{a}, q') \in \Delta \ 0 & \mathsf{otherwise} \end{array}
 ight.$, and
- $ter(q) = \begin{cases} 1 & \text{if } q \in F \\ 0 & \text{otherwise} \end{cases}$
- ullet Then a word $w\in A^*$ is a accepted by ${\mathcal A}$ iff $(\|{\mathcal A}'\|$, w)=1

Recognizable series

• A series s over A and K is recognizable if there exists a weighted automaton A over A and K such that $s = \|A\|$

Recognizable series

- A series s over A and K is recognizable if there exists a weighted automaton A over A and K such that $s = \|A\|$
- Rec(A, K): the class of all recognizable series over A and K

 In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
 - $(\{0,1\},+,\cdot,0,1)$ the *Boolean* semiring,

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
 - $(\{0,1\},+,\cdot,0,1)$ the Boolean semiring,
 - $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ the semiring of extended natural numbers,

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
 - $(\{0,1\},+,\cdot,0,1)$ the *Boolean* semiring,
 - $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ the semiring of extended natural numbers,
 - $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$ where $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \geq 0\}$ the min-plus semiring,

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
 - $(\{0,1\},+,\cdot,0,1)$ the Boolean semiring,
 - $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ the semiring of extended natural numbers,
 - $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$ where $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \geq 0\}$ the min-plus semiring,
 - $\bullet \ (\mathbb{R}_+ \cup \{-\infty,\infty\}, \sup,+,-\infty,0) \ \ the \ \textit{max-plus semiring with infinity,}$

- In order to compute the weights of infinite paths as well as the behavior over infinite words, we assume in the sequel that the semiring K permits infinite sums and products
- Examples of such semirings:
 - $(\{0,1\},+,\cdot,0,1)$ the Boolean semiring,
 - $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ the semiring of extended natural numbers,
 - $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$ where $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \geq 0\}$ the min-plus semiring,
 - $(\mathbb{R}_+ \cup \{-\infty,\infty\}, \sup,+,-\infty,0)$ the max-plus semiring with infinity,
 - $F = ([0,1], \sup, \inf, 0, 1)$ the fuzzy semiring

• An infinitary formal (power) series over A and K

$$s:A^\omega\to K$$

An infinitary formal (power) series over A and K

$$s:A^{\omega}\to K$$

• for $w \in A^{\omega}$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)

An infinitary formal (power) series over A and K

$$s:A^{\omega}\to K$$

- for $w \in A^{\omega}$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)
- some operations on infinitary series: let s₁, s₂ infinitary series over A
 and K and k ∈ K

An infinitary formal (power) series over A and K

$$s:A^{\omega}\to K$$

- for $w \in A^{\omega}$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)
- some operations on infinitary series: let s₁, s₂ infinitary series over A
 and K and k ∈ K
 - $sum s_1 + s_2$, $(s_1 + s_2, w) = (s_1, w) + (s_2, w)$

An infinitary formal (power) series over A and K

$$s:A^{\omega}\to K$$

- for $w \in A^{\omega}$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)
- some operations on infinitary series: let s_1 , s_2 infinitary series over A and K and $k \in K$
 - sum $s_1 + s_2$, $(s_1 + s_2, w) = (s_1, w) + (s_2, w)$
 - scalar product $k \cdot s_1$, $(k \cdot s_1, w) = k \cdot (s_1, w)$

Infinitary formal power series

An infinitary formal (power) series over A and K

$$s:A^{\omega}\to K$$

- for $w \in A^{\omega}$ the value s(w) is called the *coefficient of s at w* and denoted as (s, w)
- some operations on infinitary series: let s_1, s_2 infinitary series over A and K and $k \in K$
 - sum $s_1 + s_2$, $(s_1 + s_2, w) = (s_1, w) + (s_2, w)$
 - scalar product $k \cdot s_1$, $(k \cdot s_1, w) = k \cdot (s_1, w)$
 - Hadamard product $s_1 \odot s_2$, $(s_1 \odot s_2, w) = (s_1, w) \cdot (s_2, w)$ for every $w \in A^{\omega}$

$$\mathcal{A} = (Q, A, in, wt, F)$$

• A weighted Büchi automaton over K:

$$\mathcal{A} = (Q, A, in, wt, F)$$

• Q the finite state set,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$

• A weighted Büchi automaton over K:

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $i \geq 0$

A weighted Büchi automaton over K:

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow K$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow K$ the weight assignment mapping,
- F the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $i \geq 0$

• the weight of P_w :

$$weight(P_w) = in(q_0) \cdot wt((q_0, a_0, q_1)) \cdot wt((q_1, a_1, q_2)) \cdot \ldots$$

• P_w : successful if $In^Q(P_w) \cap F \neq \emptyset$

- P_w : successful if $In^Q(P_w) \cap F \neq \emptyset$
- ullet observe that a successful path P_w can have $weight(P_w)=0$

- P_w : successful if $In^Q(P_w) \cap F \neq \emptyset$
- ullet observe that a successful path P_w can have $weight(P_w)=0$
- ullet the behavior of ${\mathcal A}$ is the infinitary series

$$\|\mathcal{A}\|: A^{\omega} \to K$$

defined for every $w \in A^{\omega}$ by

$$(\|\mathcal{A}\|$$
 , $w) = \sum_{P_w \; \mathsf{successful}} \mathit{weight}(P_w)$

Infinitary recognizable series

• An infintary series s over A and K is ω -recognizable if there exists a weighted Büchi automaton A over A and K such that $s = \|A\|$

Infinitary recognizable series

- An infintary series s over A and K is ω -recognizable if there exists a weighted Büchi automaton A over A and K such that $s = \|A\|$
- ω -Rec(A, K): the class of all recognizable series over A and K

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_a(x) \mid x \in X \mid x \le y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \varphi \mid \exists X \, \boldsymbol{\cdot} \varphi$$

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_a(x) \mid x \in X \mid x \le y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x . \varphi \mid \exists X . \varphi$$

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

• We aim to define a weighted MSO logic (wMSO for short) over the semiring K, i.e, to replace true (and false) with any value $k \in K$

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

Problem:

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

$$\varphi ::= k \mid P_{a}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \cdot \varphi \mid \exists X \cdot \varphi$$

- Problem:
 - how can we define $\neg k$ for every $k \in K$?

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

$$\varphi ::= k \mid P_{a}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \cdot \varphi \mid \exists X \cdot \varphi$$

- Problem:
 - how can we define $\neg k$ for every $k \in K$?
- Solution: we can set

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_a(x) \mid x \in X \mid x \le y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x . \varphi \mid \exists X . \varphi$$

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

- Problem:
 - how can we define $\neg k$ for every $k \in K$?
- Solution: we can set
 - $\neg 0 = 1$ and $\neg k = 0$ for $k \neq 0$

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_a(x) \mid x \in X \mid x \le y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x . \varphi \mid \exists X . \varphi$$

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \, \varphi \mid \exists X \, \boldsymbol{\cdot} \, \varphi$$

- Problem:
 - how can we define $\neg k$ for every $k \in K$?
- Solution: we can set
 - $\neg 0 = 1$ and $\neg k = 0$ for $k \neq 0$
 - but then the relations $\neg\neg\varphi = \varphi, \ \varphi \land \psi = \neg(\neg\varphi \lor \neg\psi), \\ \forall x \cdot \varphi = \neg(\exists x \cdot \neg\varphi) \\ \forall X \cdot \varphi = \neg(\exists X \cdot \neg\varphi)$

Recall the syntax of the MSO logic

$$\varphi ::= true \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \, \varphi \mid \exists X \, \boldsymbol{\cdot} \, \varphi$$

- Problem:
 - how can we define $\neg k$ for every $k \in K$?
- Solution: we can set
 - $\neg 0 = 1$ and $\neg k = 0$ for $k \neq 0$
 - but then the relations $\neg\neg\varphi = \varphi, \quad \varphi \wedge \psi = \neg(\neg\varphi \vee \neg\psi),$ $\forall x \cdot \varphi = \neg(\exists x \cdot \neg\varphi)$ $\forall X \cdot \varphi = \neg(\exists X \cdot \neg\varphi)$
 - will not hold any more!

Weighted MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and K is given by

$$\varphi ::= k \mid P_{a}(x) \mid x \in X \mid x \leq y \mid \neg P_{a}(x) \mid \neg (x \in X) \mid \neg (x \leq y) \\ \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \, . \, \varphi \mid \exists X \, . \, \varphi \mid \forall x \, . \, \varphi$$

where $a \in A$ and $k \in K$.

Weighted MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and K is given by

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg P_{\mathsf{a}}(x) \mid \neg (x \in X) \mid \neg (x \leq y) \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \, \boldsymbol{\cdot} \varphi \mid \exists X \, \boldsymbol{\cdot} \varphi \mid \forall x \, \boldsymbol{\cdot} \varphi$$

where $a \in A$ and $k \in K$.

• We do not need $\forall X \cdot \varphi$

Weighted MSO logic - Syntax

Definition

The syntax of the wMSO-formulas over A and K is given by

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg P_{\mathsf{a}}(x) \mid \neg (x \in X) \mid \neg (x \leq y) \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi \mid \exists X \cdot \varphi \mid \forall x \cdot \varphi$$

where $a \in A$ and $k \in K$.

- We do not need $\forall X \cdot \varphi$
- wMSO(A, K): the set of all wMSO-formulas over A and K

Definition

Let $\varphi \in wMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{\mathit{Free}(\varphi)} o K.$$

For every $w\in A^*$ and $(w,\mathit{Free}(\varphi))$ -assignment σ , we define $(\|\varphi\|,(w,\sigma))$ inductively by:

$$\bullet (\|k\|, (w, \sigma)) = k$$

Definition

Let $\varphi \in wMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{\mathit{Free}(\varphi)} o K.$$

For every $w\in A^*$ and $(w,\mathit{Free}(\varphi))$ -assignment σ , we define $(\|\varphi\|,(w,\sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$

Definition

Let $\varphi \in wMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{\mathit{Free}(\varphi)} o K.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $\bullet \ (\|x \in X\|, (w, \sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \ \ \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{array} \right.$

Definition

Let $\varphi \in wMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{\mathit{Free}(\varphi)} o \mathsf{K}.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $(\|x \in X\|, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{cases}$
- $\bullet \ (\|x \le y\|, (w, \sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \ \ \sigma(x) \le \sigma(y) \\ 0 & \text{otherwise} \end{array} \right.$

Definition (continued)

 $\bullet \ (\|\neg \varphi\|, (w, \sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \ (\|\varphi\|, (w, \sigma)) = 0 \\ 0 & \text{if} \ (\|\varphi\|, (w, \sigma)) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_a(x), \, x \leq y \text{ or } x \in X$

- $\bullet \ \left(\left\| \neg \varphi \right\|, (w, \sigma) \right) = \left\{ \begin{array}{ll} 1 & \text{if} \quad \left(\left\| \varphi \right\|, (w, \sigma) \right) = 0 \\ 0 & \text{if} \quad \left(\left\| \varphi \right\|, (w, \sigma) \right) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_a(x), \ x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, \left(w, \sigma \right) \right) = \left(\left\| \varphi \right\|, \left(w, \sigma \right) \right) + \left(\left\| \psi \right\|, \left(w, \sigma \right) \right)$

- $\bullet \ (\|\neg \varphi\| \,, (w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \quad (\|\varphi\| \,, (w,\sigma)) = 0 \\ 0 & \text{if} \quad (\|\varphi\| \,, (w,\sigma)) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_{\mathsf{a}}(x), \, x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, \left(w, \sigma \right) \right) = \left(\left\| \varphi \right\|, \left(w, \sigma \right) \right) + \left(\left\| \psi \right\|, \left(w, \sigma \right) \right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\| , \left(w, \sigma \right) \right) = \left(\left\| \varphi \right\| , \left(w, \sigma \right) \right) \cdot \left(\left\| \psi \right\| , \left(w, \sigma \right) \right)$

- $\bullet \ \left(\left\| \neg \varphi \right\|, (w,\sigma) \right) = \left\{ \begin{array}{ll} 1 & \text{if} \quad \left(\left\| \varphi \right\|, (w,\sigma) \right) = 0 \\ 0 & \text{if} \quad \left(\left\| \varphi \right\|, (w,\sigma) \right) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_{\mathsf{a}}(x), \, x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w, \sigma) \right) = \left(\left\| \varphi \right\|, (w, \sigma) \right) + \left(\left\| \psi \right\|, (w, \sigma) \right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\| \text{, } (w,\sigma) \right) = \left(\left\| \varphi \right\| \text{, } (w,\sigma) \right) \cdot \left(\left\| \psi \right\| \text{, } (w,\sigma) \right)$
- $\bullet \ (\|\exists x \, \bullet \, \varphi\| \, , (w,\sigma)) = \sum_{i \in dom(w)} (\|\varphi\| \, , (w,\sigma[x \to i]))$

- $\bullet \ \left(\left\| \neg \varphi \right\|, (w,\sigma) \right) = \left\{ \begin{array}{ll} 1 & \text{if} \quad \left(\left\| \varphi \right\|, (w,\sigma) \right) = 0 \\ 0 & \text{if} \quad \left(\left\| \varphi \right\|, (w,\sigma) \right) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_{\mathsf{a}}(x), \, x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) + \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\|, \left(w, \sigma \right) \right) = \left(\left\| \varphi \right\|, \left(w, \sigma \right) \right) \cdot \left(\left\| \psi \right\|, \left(w, \sigma \right) \right)$
- $\bullet \ \left(\left\| \exists x \, \centerdot \, \varphi \right\| , (w, \sigma) \right) = \sum_{i \in dom(w)} \left(\left\| \varphi \right\| , \left(w, \sigma[x \to i] \right) \right)$
- $\bullet \ (\|\exists X \cdot \varphi\|, (w, \sigma)) = \sum_{I \subseteq dom(w)} (\|\varphi\|, (w, \sigma[X \to I]))$

- $\bullet \ (\|\neg \varphi\| \,, (w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \quad (\|\varphi\| \,, (w,\sigma)) = 0 \\ 0 & \text{if} \quad (\|\varphi\| \,, (w,\sigma)) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_{\mathsf{a}}(x), \, x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) + \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) \cdot \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ (\|\exists x \bullet \varphi\|, (w, \sigma)) = \sum_{i \in dom(w)} (\|\varphi\|, (w, \sigma[x \to i]))$
- $\bullet \ \left(\left\| \exists X \, \centerdot \, \varphi \right\|, (w, \sigma) \right) = \sum_{I \subseteq dom(w)} \left(\left\| \varphi \right\|, \left(w, \sigma[X \to I] \right) \right)$
- $\bullet \ \left(\left\| \forall x \, \centerdot \, \varphi \right\| , \left(w, \sigma \right) \right) = \prod_{i \in dom(w)} \left(\left\| \varphi \right\| , \left(w, \sigma[x \to i] \right) \right)$

Definition (continued)

- $\bullet \ (\|\neg \varphi\| \,, (w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \quad (\|\varphi\| \,, (w,\sigma)) = 0 \\ 0 & \text{if} \quad (\|\varphi\| \,, (w,\sigma)) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_{\mathsf{a}}(x), \, x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) + \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\| \text{, } (w,\sigma) \right) = \left(\left\| \varphi \right\| \text{, } (w,\sigma) \right) \cdot \left(\left\| \psi \right\| \text{, } (w,\sigma) \right)$
- $(\|\exists x \cdot \varphi\|, (w, \sigma)) = \sum_{i \in dom(w)} (\|\varphi\|, (w, \sigma[x \to i]))$
- $\bullet \ (\|\exists X \bullet \varphi\| , (w, \sigma)) = \sum_{I \subseteq dom(w)} (\|\varphi\| , (w, \sigma[X \to I]))$
- $\bullet \ (\|\forall x \, \centerdot \, \varphi\| \, , (w,\sigma)) = \prod_{i \in dom(w)} (\|\varphi\| \, , (w,\sigma[x \to i]))$
- where $dom(w) = \{0, ..., |w| 1\}$

ullet If $\mathit{Free}(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* o K$

- If $Free(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* \to K$
- Example:

- If $Free(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* \to K$
- Example:
- Let $A = \{a, b, c\}$ and $\varphi = \forall x \cdot (((P_a(x) \land 1) \lor 0) \land ((P_b(x) \land 1) \lor 0))$

- If $Free(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* \to K$
- Example:
- Let $A = \{a, b, c\}$ and $\varphi = \forall x \cdot (((P_a(x) \land 1) \lor 0) \land ((P_b(x) \land 1) \lor 0))$
- Consider the semiring $(\mathbb{N}, +, \cdot, 0, 1)$ of natural numbers. Then for every $w \in A^*$

- If $Free(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* \to K$
- Example:
- Let $A = \{a, b, c\}$ and $\varphi = \forall x \cdot (((P_a(x) \land 1) \lor 0) \land ((P_b(x) \land 1) \lor 0))$
- Consider the semiring $(\mathbb{N},+,\cdot,0,1)$ of natural numbers. Then for every $w\in A^*$
 - $\bullet \ (\|\varphi\|, w) = 0$

- If $Free(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* \to K$
- Example:
- Let $A = \{a, b, c\}$ and $\varphi = \forall x \cdot (((P_a(x) \land 1) \lor 0) \land ((P_b(x) \land 1) \lor 0))$
- ullet Consider the semiring $(\mathbb{N},+,\cdot,0,1)$ of natural numbers. Then for every $w\in A^*$
 - \bullet $(\|\varphi\|, w) = 0$
- Now consider the max-plus semiring $(\mathbb{R}_+ \cup \{-\infty\}, \max, +, -\infty, 0)$. For every $w \in A^*$

- If $Free(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^* \to K$
- Example:
- Let $A = \{a, b, c\}$ and $\varphi = \forall x \cdot (((P_a(x) \land 1) \lor 0) \land ((P_b(x) \land 1) \lor 0))$
- ullet Consider the semiring $(\mathbb{N},+,\cdot,0,1)$ of natural numbers. Then for every $w\in A^*$
 - $(\|\varphi\|, w) = 0$
- Now consider the max-plus semiring $(\mathbb{R}_+ \cup \{-\infty\}, \max, +, -\infty, 0)$. For every $w \in A^*$
 - $(\|\varphi\|, w) = |w|_a + |w|_b$

• A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$

- A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso(A, K): the class of all wMSO-definable series over A and K

- A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso(A, K): the class of all wMSO-definable series over A and K

- A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso(A, K): the class of all wMSO-definable series over A and K

Theorem (Droste & Gastin 2005)

• $Rec(A, K) \subsetneq wMso(A, K)$

- A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso(A, K): the class of all wMSO-definable series over A and K

- $Rec(A, K) \subsetneq wMso(A, K)$
- Rec(A, K) = a fragment of wMso(A, K) (Büchi-type theorem)

- A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso(A, K): the class of all wMSO-definable series over A and K

- $Rec(A, K) \subsetneq wMso(A, K)$
- Rec(A, K) = a fragment of wMso(A, K) (Büchi-type theorem)
- If K is locally finite, i.e., the subsemiring generated by any finite subset of K is finite, then Rec(A, K) = wMso(A, K)

- A series $s:A^* \to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- wMso(A, K): the class of all wMSO-definable series over A and K

- $Rec(A, K) \subsetneq wMso(A, K)$
- Rec(A, K) = a fragment of wMso(A, K) (Büchi-type theorem)
- If K is locally finite, i.e., the subsemiring generated by any finite subset of K is finite, then Rec(A, K) = wMso(A, K)
- Open: wMso(A, K) = ?

Definition

Let $\varphi \in wMSO(A, K)$. The infinitary semantics of φ is the series

$$\|\varphi\|: A^{\omega}_{\mathit{Free}(\varphi)} o K.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $\bullet \ (\|x \in X\| \ , (w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \ \ \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{array} \right.$
- $\bullet \ (\|x \le y\| \ , (w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \ \ \sigma(x) \le \sigma(y) \\ 0 & \text{otherwise} \end{array} \right.$

Definition

- $\bullet \ (\|\neg \varphi\|\,,(w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \quad (\|\varphi\|\,,(w,\sigma)) = 0 \\ 0 & \text{if} \quad (\|\varphi\|\,,(w,\sigma)) = 1 \end{array} \right. \text{, provided that } \varphi \text{ is of the form } P_a(x), \ x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, \left(w, \sigma \right) \right) = \left(\left\| \varphi \right\|, \left(w, \sigma \right) \right) + \left(\left\| \psi \right\|, \left(w, \sigma \right) \right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) \cdot \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ (\|\exists x \, \centerdot \, \varphi\| \, , (w,\sigma)) = \sum_{i \in dom(w)} (\|\varphi\| \, , (w,\sigma[x \to i]))$
- $\bullet \ \left(\left\| \exists X \centerdot \varphi \right\|, (w, \sigma) \right) = \sum_{I \subseteq dom(w)} \left(\left\| \varphi \right\|, \left(w, \sigma[X \to I] \right) \right)$
- $\bullet \ \left(\left\| \forall x \, \centerdot \, \varphi \right\| , (w,\sigma) \right) = \prod_{i \in dom(w)} \left(\left\| \varphi \right\| , \left(w, \sigma[x \to i] \right) \right)$
- where $dom(w) = \omega$

- ullet If $\mathit{Free}(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^\omega o K$
- An infinitary series $s:A^\omega\to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω -wMso(A, K): the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

- ullet If $\mathit{Free}(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : \mathcal{A}^\omega o \mathcal{K}$
- An infinitary series $s:A^{\omega}\to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω -wMso(A, K): the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

Theorem (Droste & R 2006)

$$\omega$$
-Rec $(A,K)=$ a fragment of ω -wMso (A,K)

- ullet If $\mathit{Free}(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^\omega o K$
- An infinitary series $s:A^\omega\to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω -wMso(A, K): the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

Theorem (Droste & R 2006)

$$\omega$$
-Rec $(A,K)=$ a fragment of ω -wMso (A,K)

Open:

- ullet If $\mathit{Free}(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : A^\omega o K$
- An infinitary series $s:A^\omega\to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- \bullet ω -wMso(A, K): the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

Theorem (Droste & R 2006)

$$\omega$$
-Rec $(A, K) = a$ fragment of ω -wMso (A, K)

- Open:
 - $\bullet \ \omega\text{-Rec}(A,K)\subseteq \omega\text{-wMso}(A,K) \ \text{ is the inclusion proper?} \ \text{(guess: Yes)}$

- ullet If $\mathit{Free}(\varphi) = \emptyset$, then φ is a sentence and $\|\varphi\| : \mathcal{A}^\omega o \mathcal{K}$
- An infinitary series $s:A^{\omega}\to K$ is called wMSO-definable if there is a wMSO-sentence φ over A and K so that $s=\|\varphi\|$
- ω -wMso(A, K): the class of all infinitary wMSO-definable series over A and K
- Büchi type theorem:

Theorem (Droste & R 2006)

$$\omega$$
-Rec $(A, K) = a$ fragment of ω -wMso (A, K)

- Open:
 - ω -Rec $(A, K) \subseteq \omega$ -wMso(A, K) is the inclusion proper? (guess: Yes)
 - ω -wMso(A, K) =?

ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- \bullet $\mathbb{R}_{min} = (\mathbb{R}_+ \cup \{\infty\}, min, +, \infty, 0)$ the min-plus semiring

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{min} = (\mathbb{R}_+ \cup \{\infty\}, min, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and \mathbb{R}_{min} ?

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{\mathsf{min}} = (\mathbb{R}_+ \cup \{\infty\}, \mathsf{min}, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and \mathbb{R}_{min} ?
- Zimmermann 1981: applications in optimization problems

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{min} = (\mathbb{R}_+ \cup \{\infty\}, min, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and \mathbb{R}_{min} ?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w. Then we should have

$$weight(P_w) = in(q_0) + \sum_{i>0} wt((q_i, a_i, q_{i+1}))$$

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{\mathsf{min}} = (\mathbb{R}_+ \cup \{\infty\}, \mathsf{min}, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and $\mathbb{R}_{\text{min}}?$
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w. Then we should have

$$weight(P_w) = in(q_0) + \sum_{i>0} wt((q_i, a_i, q_{i+1}))$$

but this infinite sum does not always exist!

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{\mathsf{min}} = (\mathbb{R}_+ \cup \{\infty\}, \mathsf{min}, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and $\mathbb{R}_{\text{min}}?$
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w. Then we should have

$$weight(P_w) = in(q_0) + \sum_{i>0} wt((q_i, a_i, q_{i+1}))$$

- but this infinite sum does not always exist!
- Solution: discounting

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{min} = (\mathbb{R}_+ \cup \{\infty\}, min, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and \mathbb{R}_{min} ?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w. Then we should have

- but this infinite sum does not always exist!
- Solution: discounting
- Motivation

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{min} = (\mathbb{R}_+ \cup \{\infty\}, min, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and \mathbb{R}_{min} ?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w. Then we should have

$$weight(P_w) = in(q_0) + \sum_{i>0} wt((q_i, a_i, q_{i+1}))$$

- but this infinite sum does not always exist!
- Solution: discounting
- Motivation
 - used in model checking (Henzinger et al 2003, Faella et al 2008)

- ullet $\mathbb{R}_{\mathsf{max}} = (\mathbb{R}_+ \cup \{-\infty\}, \mathsf{max}, +, -\infty, 0)$ the max-plus semiring
- $\mathbb{R}_{min} = (\mathbb{R}_+ \cup \{\infty\}, min, +, \infty, 0)$ the min-plus semiring
- Why should we consider weighted automata and wMSO logic over \mathbb{R}_{max} and \mathbb{R}_{min} ?
- Zimmermann 1981: applications in optimization problems
- Consider a weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w. Then we should have

$$weight(P_w) = in(q_0) + \sum_{i \geq 0} wt((q_i, a_i, q_{i+1}))$$

- but this infinite sum does not always exist!
- Solution: discounting
- Motivation
 - used in model checking (Henzinger et al 2003, Faella et al 2008)
 - common in economical mathematics

Linz-Hagenberg, July 2, 2012

ullet $0 \le d < 1$ a discounting parameter

- $0 \le d < 1$ a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w

- $0 \le d < 1$ a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w
- The d-weight of P_w

$$d ext{-weight}(P_w) = in(q_0) + \sum_{i \geq 0} d^i \cdot wt((q_i, a_i, q_{i+1}))$$

- ullet 0 \leq d < 1 a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w
- The d-weight of P_w

$$d ext{-weight}(P_w) = in(q_0) + \sum_{i \geq 0} d^i \cdot wt((q_i, a_i, q_{i+1}))$$

ullet This sum exists: let $C = \max\{in(q), wt(t) \mid q \in Q, t \in Q \times A \times Q\}$

- ullet 0 \leq d < 1 a discounting parameter
- A weighted Büchi automaton $\mathcal{A}=(Q,A,in,wt,F)$, a word $w=a_0a_1\ldots\in A^\omega$ and a path $P_w=(q_0,a_0,q_1)(q_1,a_1,q_2)\ldots$ of \mathcal{A} over w
- The *d-weight* of P_w

$$d ext{-weight}(P_w) = in(q_0) + \sum_{i \geq 0} d^i \cdot wt((q_i, a_i, q_{i+1}))$$

- ullet This sum exists: let $C = \max\{in(q), wt(t) \mid q \in Q, t \in Q \times A \times Q\}$
- d-weight $(P_w) \le C + C \cdot \frac{1}{1-d} < \infty$

• d-behavior of A:

$$\|\mathcal{A}\|_d: A^\omega o \mathbb{R}_{\mathsf{max}}$$
,

where for every $w \in A^{\omega}$

$$(\|\mathcal{A}\|_{d} \text{ , } w) = \sup_{P_{w} \text{ successful}} (d\text{-}\textit{weight}(P_{w}))$$

d-behavior of A:

$$\|\mathcal{A}\|_d: A^\omega o \mathbb{R}_{\mathsf{max}}$$
,

where for every $w \in A^{\omega}$

$$(\|\mathcal{A}\|_{d} \text{ , } w) = \sup_{P_{w} \text{ successful}} (d\text{-}\textit{weight}(P_{w}))$$

• A series $s:A^{\omega} \to \mathbb{R}_{\max}$ is called $d\text{-}\omega\text{-}recognizable}$ if there exists a weighted Büchi automaton over A and \mathbb{R}_{\max} , so that $s=\|\mathcal{A}\|_d$

d-behavior of A:

$$\|\mathcal{A}\|_d: A^\omega o \mathbb{R}_{\mathsf{max}}$$
,

where for every $w \in A^{\omega}$

$$(\|\mathcal{A}\|_{d} \text{ , } w) = \sup_{P_{w} \text{ successful}} (d\text{-}weight(P_{w}))$$

- A series $s:A^\omega\to\mathbb{R}_{\max}$ is called $d\text{-}\omega\text{-}recognizable}$ if there exists a weighted Büchi automaton over A and \mathbb{R}_{\max} , so that $s=\|\mathcal{A}\|_d$
- ω -Rec $(A, \mathbb{R}_{\max}, d)$: the class of all d- ω -recognizable series over A and \mathbb{R}_{\max}

wMSO logic with discounting - d-semantics

Same syntax like in other wMSO

Definition

Let $\varphi \in wMSO(A, \mathbb{R}_{max})$. The infinitary *d*-semantics of φ is the series

$$\|\varphi\|_d:A^\omega_{\mathit{Free}(\varphi)}\to \mathbb{R}_{\max}.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|_d, (w, \sigma))$ inductively by:

- $\bullet (\|k\|_d, (w, \sigma)) = k$
- $(\|P_a(x)\|_d, (w, \sigma)) = \begin{cases} 0 & \text{if } w(\sigma(x)) = a \\ -\infty & \text{otherwise} \end{cases}$
- $(\|x \in X\|_d, (w, \sigma)) = \begin{cases} 0 & \text{if } \sigma(x) \in \sigma(X) \\ -\infty & \text{otherwise} \end{cases}$
- $\bullet \ (\|x \le y\|_d \, , (w,\sigma)) = \left\{ \begin{array}{cc} 0 & \text{if} \ \sigma(x) \le \sigma(y) \\ -\infty & \text{otherwise} \end{array} \right.$

wMSO logic with discounting - d-semantics

Definition

- $\bullet \ (\|\neg \varphi\|_d \,, (w,\sigma)) = \left\{ \begin{array}{ll} 0 & \text{if} & (\|\varphi\|_d \,, (w,\sigma)) = -\infty \\ -\infty & \text{if} & (\|\varphi\|_d \,, (w,\sigma)) = 0 \end{array} \right. \text{, provided}$ that φ is of the form $P_a(x), \, x \leq y \text{ or } x \in X$
- $\bullet \ \left(\left\|\varphi\vee\psi\right\|_{d}\text{, }\left(w,\sigma\right)\right)=\max(\left(\left\|\varphi\right\|_{d}\text{, }\left(w,\sigma\right)\right)\text{, }\left(\left\|\psi\right\|_{d}\text{, }\left(w,\sigma\right)\right)\right)$
- $\bullet \ \left(\left\| \varphi \wedge \psi \right\|_{d}, (w,\sigma) \right) = \left(\left\| \varphi \right\|_{d}, (w,\sigma) \right) + \left(\left\| \psi \right\|_{d}, (w,\sigma) \right)$
- $\bullet \ (\|\exists x \, \bullet \, \varphi\|_d \, , (w, \sigma)) = \sup_{i \in dom(w)} ((\|\varphi\|_d \, , (w, \sigma[x \to i])))$
- $\bullet \ \left(\left\| \exists X \centerdot \varphi \right\|_d, (w, \sigma) \right) = \sup_{I \subseteq dom(w)} \left(\left(\left\| \varphi \right\|_d, \left(w, \sigma[X \to I] \right) \right) \right)$
- $\bullet \ \left(\left\| \forall x \, \centerdot \, \varphi \right\|_d, (w, \sigma) \right) = \sum_{i \in dom(w)} d^i \cdot \left(\left\| \varphi \right\|_d, \left(w, \sigma[x \to i] \right) \right)$
- where $dom(w) = \omega$

• An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$

- An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$
- ω -wMso(A, \mathbb{R}_{max} , d): the class of all infinitary wMSO-d-definable series over A and \mathbb{R}_{max}

- An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$
- ω -wMso(A, \mathbb{R}_{\max} , d): the class of all infinitary wMSO-d-definable series over A and \mathbb{R}_{\max}
- Büchi type theorem:

- An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$
- ω -wMso(A, \mathbb{R}_{\max} , d): the class of all infinitary wMSO-d-definable series over A and \mathbb{R}_{\max}
- Büchi type theorem:

Theorem (Droste & R 2007)

$$\omega$$
-Rec $(A,\mathbb{R}_{\sf max},d)=$ a fragment of ω -w M so $(A,\mathbb{R}_{\sf max},d)$

- An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$
- ω -wMso(A, \mathbb{R}_{\max} , d): the class of all infinitary wMSO-d-definable series over A and \mathbb{R}_{\max}
- Büchi type theorem:

Theorem (Droste & R 2007)

$$\omega$$
-Rec $(A,\mathbb{R}_{\sf max},d)=$ a fragment of ω -wMso $(A,\mathbb{R}_{\sf max},d)$

Open:

- An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$
- ω -wMso(A, \mathbb{R}_{\max} , d): the class of all infinitary wMSO-d-definable series over A and \mathbb{R}_{\max}
- Büchi type theorem:

Theorem (Droste & R 2007)

$$\omega$$
-Rec $(A,\mathbb{R}_{\sf max},d)=$ a fragment of ω -wMso $(A,\mathbb{R}_{\sf max},d)$

- Open:
 - ω -Rec $(A, \mathbb{R}_{max}, d) \subseteq \omega$ -wMso (A, \mathbb{R}_{max}, d) is the inclusion proper? (guess: Yes)

- An infinitary series $s:A^\omega\to\mathbb{R}_{\max}$ is called wMSO-d-definable if there is a wMSO-sentence φ over A and \mathbb{R}_{\max} so that $s=\|\varphi\|_d$
- ω -wMso(A, \mathbb{R}_{\max} , d): the class of all infinitary wMSO-d-definable series over A and \mathbb{R}_{\max}
- Büchi type theorem:

Theorem (Droste & R 2007)

$$\omega$$
-Rec $(A,\mathbb{R}_{\sf max},d)=$ a fragment of ω -wMso $(A,\mathbb{R}_{\sf max},d)$

- Open:
 - ω -Rec $(A, \mathbb{R}_{max}, d) \subseteq \omega$ -wMso (A, \mathbb{R}_{max}, d) is the inclusion proper? (guess: Yes)
 - ω -wMso $(A, \mathbb{R}_{max}, d) = ?$

• Why we are still interested in LTL?

- Why we are still interested in LTL?
- The IEEE standarized *Propert Spesification Language* (*PSL*) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification

- Why we are still interested in LTL?
- The IEEE standarized *Propert Spesification Language* (*PSL*) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry

- Why we are still interested in LTL?
- The IEEE standarized *Propert Spesification Language* (*PSL*) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
 - CBV from Motorola

- Why we are still interested in LTL?
- The IEEE standarized *Propert Spesification Language* (*PSL*) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
 - CBV from Motorola
 - ForSpec from Intel

- Why we are still interested in LTL?
- The IEEE standarized *Propert Spesification Language* (*PSL*) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
 - CBV from Motorola
 - ForSpec from Intel
 - Temporal − e from Versity

- Why we are still interested in LTL?
- The IEEE standarized *Propert Spesification Language* (*PSL*) is an extension of LTL, and is increasingly used in many steps of the hardware design, from specification to verification
- Version of PSL used in the industry
 - CBV from Motorola
 - ForSpec from Intel
 - Temporal − e from Versity
 - Sugar from IBM.

LTL - Syntax

Definition

Let AP be a finite set of atomic propositions. The syntax of the LTL-formulas over AP is given by

$$\varphi ::= \mathit{true} \mid p \mid \neg \varphi \mid \varphi \vee \varphi \mid \bigcirc \varphi \mid \varphi U \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \Box \Diamond \varphi$$

where $p \in AP$.

LTL - Syntax

Definition

Let AP be a finite set of atomic propositions. The syntax of the LTL-formulas over AP is given by

$$\varphi ::= \mathit{true} \mid p \mid \neg \varphi \mid \varphi \vee \varphi \mid \bigcirc \varphi \mid \varphi U \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \Box \Diamond \varphi$$

where $p \in AP$.

• LTL(AP): the set of all LTL-formulas over AP.

• Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 \ldots \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 \ldots \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - w |= true

• Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :

- w ⊨ true
- $w \models p$ iff $p \in a_0$

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - w ⊨ true
 - $w \models p$ iff $p \in a_0$
 - $w \models \neg \varphi$ iff $w \not\models \varphi$

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - $w \models true$
 - $w \models p$ iff $p \in a_0$
 - $w \models \neg \varphi$ iff $w \not\models \varphi$
 - $w \models \varphi \lor \psi$ iff $w \models \varphi$ or $w \models \psi$

• Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :

- $w \models true$
- $w \models p$ iff $p \in a_0$
- $w \models \neg \varphi$ iff $w \not\models \varphi$
- $w \models \varphi \lor \psi$ iff $w \models \varphi$ or $w \models \psi$
- $w \models \bigcirc \varphi$ iff $a_1 a_2 \ldots \models \varphi$

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - w |= true
 - $w \models p$ iff $p \in a_0$
 - $w \models \neg \varphi$ iff $w \not\models \varphi$
 - $w \models \varphi \lor \psi$ iff $w \models \varphi$ or $w \models \psi$
 - $w \models \bigcirc \varphi$ iff $a_1 a_2 \ldots \models \varphi$
 - $w \models \varphi U \psi$ iff $\exists j \geq 0$, $a_j a_{j+1} \dots \models \psi$ and for every $0 \leq i < j$, $a_i a_{i+1} \dots \models \varphi$

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - w |= true
 - $w \models p$ iff $p \in a_0$
 - $w \models \neg \varphi$ iff $w \not\models \varphi$
 - $w \models \varphi \lor \psi$ iff $w \models \varphi$ or $w \models \psi$
 - $w \models \bigcirc \varphi$ iff $a_1 a_2 \ldots \models \varphi$
 - $w \models \varphi U \psi$ iff $\exists j \geq 0$, $a_j a_{j+1} \dots \models \psi$ and for every $0 \leq i < j$, $a_i a_{i+1} \dots \models \varphi$
 - $w \models \Box \varphi$ iff $a_i a_{i+1} \ldots \models \varphi$ for every $i \geq 0$

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - w |= true
 - $w \models p$ iff $p \in a_0$
 - $w \models \neg \varphi$ iff $w \not\models \varphi$
 - $w \models \varphi \lor \psi$ iff $w \models \varphi$ or $w \models \psi$
 - $w \models \bigcirc \varphi$ iff $a_1 a_2 \ldots \models \varphi$
 - $w \models \varphi U \psi$ iff $\exists j \geq 0$, $a_j a_{j+1} \dots \models \psi$ and for every $0 \leq i < j$, $a_i a_{i+1} \dots \models \varphi$
 - $w \models \Box \varphi$ iff $a_i a_{i+1} \ldots \models \varphi$ for every $i \geq 0$
 - $w \models \Diamond \varphi$ iff $\exists i \geq 0$, $a_i a_{i+1} \ldots \models \varphi$

- Let $\varphi \in LTL(AP)$ and $w = a_0 a_1 a_2 ... \in (2^{AP})^{\omega}$. We define the satisfaction $w \models \varphi$ of φ by w by induction on the structure of φ :
 - w |= true
 - $w \models p$ iff $p \in a_0$
 - $w \models \neg \varphi$ iff $w \not\models \varphi$
 - $w \models \varphi \lor \psi$ iff $w \models \varphi$ or $w \models \psi$
 - $w \models \bigcirc \varphi$ iff $a_1 a_2 \ldots \models \varphi$
 - $w \models \varphi U \psi$ iff $\exists j \geq 0$, $a_j a_{j+1} \ldots \models \psi$ and for every $0 \leq i < j$, $a_j a_{j+1} \ldots \models \varphi$
 - $w \models \Box \varphi$ iff $a_i a_{i+1} \ldots \models \varphi$ for every $i \geq 0$
 - $w \models \Diamond \varphi$ iff $\exists i \geq 0$, $a_i a_{i+1} \ldots \models \varphi$
 - $w \models \Box \Diamond \varphi$ iff for every $i \geq 0$, $\exists j \geq i$ such that $a_j a_{j+1} \ldots \models \varphi$.

• $\varphi \in LTL(AP)$

- $\varphi \in LTL(AP)$
- $L(\varphi)$: the language of (all infinite words over 2^{AP} satisfying) φ

- $\varphi \in LTL(AP)$
- $L(\varphi)$: the language of (all infinite words over 2^{AP} satisfying) φ
- $L\subseteq (2^{AP})^\omega$ is LTL-definable if there is a $\varphi\in LTL(AP)$ such that $L=L(\varphi)$

- $\varphi \in LTL(AP)$
- $L(\varphi)$: the *language of* (all infinite words over 2^{AP} satisfying) φ
- $L\subseteq (2^{AP})^\omega$ is LTL-definable if there is a $\varphi\in LTL(AP)$ such that $L=L(\varphi)$
- ω - $Ltl(2^{AP})$: the class of all LTL-definable infinitary languages over 2^{AP}

- $\varphi \in LTL(AP)$
- $L(\varphi)$: the language of (all infinite words over 2^{AP} satisfying) φ
- $L\subseteq (2^{AP})^\omega$ is LTL-definable if there is a $\varphi\in LTL(AP)$ such that $L=L(\varphi)$
- ω - $Ltl(2^{AP})$: the class of all LTL-definable infinitary languages over 2^{AP}
- Vardi and Wopler 1994:

$$\omega$$
-LtI(2^{AP}) $\subsetneq \omega$ -Rec(2^{AP})

wLTL with discounting - Syntax

Definition

Let AP be a finite set of atomic propositions. The syntax of the wLTL-formulas with discounting over AP and \mathbb{R}_{max} is given by

$$\varphi ::= k \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi U \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \Box \Diamond \varphi$$

where $k \in \mathbb{R}_{max}$ and $p \in AP$.

wLTL with discounting - Syntax

Definition

Let AP be a finite set of atomic propositions. The syntax of the wLTL-formulas with discounting over AP and \mathbb{R}_{max} is given by

$$\varphi ::= \mathsf{k} \mid \mathsf{p} \mid \neg \mathsf{p} \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi U \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \Box \Diamond \varphi$$

where $k \in \mathbb{R}_{\mathsf{max}}$ and $p \in AP$.

• $wLTL(AP, \mathbb{R}_{max})$ the class of all formulas of wLTL over AP and \mathbb{R}_{max} .

 $0 \le d < 1$ a discounting parameter

Definition

Let $\varphi \in \mathit{wLTL}\left(\mathit{AP}, \mathbb{R}_{\max}\right)$. The infinitary d-semantics of φ is the series

$$\|\varphi\|_d: \left(2^{AP}\right)^\omega \to \mathbb{R}_{\max}$$

For every $w=a_0a_1\ldots\in\left(2^{AP}\right)^\omega$ we define $(\|\varphi\|_d$, w) inductively by:

$$\bullet (\|k\|_d, w) = k$$

 $0 \le d < 1$ a discounting parameter

Definition

Let $\varphi \in \mathit{wLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary d-semantics of φ is the series

$$\|\varphi\|_d: \left(2^{AP}\right)^\omega \to \mathbb{R}_{\max}$$

For every $w=a_0a_1\ldots\in\left(2^{AP}\right)^\omega$ we define $(\|\varphi\|_d$, w) inductively by:

- $\bullet \ (\|k\|_d, w) = k$
- $\bullet \ (\|p\|_d, w) = \begin{cases} 0 & \text{if } p \in a_0 \\ -\infty & \text{otherwise} \end{cases}$

 $0 \le d < 1$ a discounting parameter

Definition

Let $\varphi \in \mathit{wLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary d-semantics of φ is the series

$$\|\varphi\|_d: \left(2^{AP}\right)^\omega \to \mathbb{R}_{\max}$$

For every $w=a_0a_1\ldots\in\left(2^{AP}\right)^\omega$ we define $(\|\varphi\|_d$, w) inductively by:

- $\bullet (\|k\|_d, w) = k$
- $\bullet \ (\|p\|_d \, , w) = \left\{ \begin{array}{cc} 0 & \text{if } p \in \textit{a}_0 \\ -\infty & \text{otherwise} \end{array} \right.$
- $\bullet (\|\neg p\|_d, w) = \begin{cases} 0 & \text{if } p \notin a_0 \\ -\infty & \text{otherwise} \end{cases}$

 $0 \le d < 1$ a discounting parameter

Definition

Let $\varphi \in \mathit{wLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary d-semantics of φ is the series

$$\|\varphi\|_d: \left(2^{AP}\right)^\omega \to \mathbb{R}_{\max}$$

For every $w = a_0 a_1 ... \in (2^{AP})^{\omega}$ we define $(\|\varphi\|_d, w)$ inductively by:

- $\bullet (\|k\|_d, w) = k$
- $\bullet \ (\|p\|_d \, , w) = \left\{ \begin{array}{cc} 0 & \text{if } p \in \textit{a}_0 \\ -\infty & \text{otherwise} \end{array} \right.$
- $(\|\neg p\|_d, w) = \begin{cases} 0 & \text{if } p \notin a_0 \\ -\infty & \text{otherwise} \end{cases}$
- $\bullet \ (\|\varphi \lor \psi\|_d \, , w) = \max \left((\|\varphi\|_d \, , w) \, , (\|\psi\|_d \, , w) \right)$

$$\bullet \ (\|\varphi \wedge \psi\|_{d}, w) = (\|\varphi\|_{d}, w) + (\|\psi\|_{d}, w)$$

- $\bullet \ (\|\varphi \wedge \psi\|_{d}, w) = (\|\varphi\|_{d}, w) + (\|\psi\|_{d}, w)$
- ullet $(\|igcirc arphi\|_d$, $w)=d\cdot (\|arphi\|_d$, $a_1a_2\ldots)$

- $\bullet \ (\|\varphi \wedge \psi\|_{d} \, , w) = (\|\varphi\|_{d} \, , w) + (\|\psi\|_{d} \, , w)$
- ullet $(\|igtriangle arphi\|_d$, $w) = d \cdot (\|arphi\|_d$, $a_1 a_2 \ldots)$
- $(\|\varphi U\psi\|_d, w) =$

$$\sup_{i\geq 0} \left(\left(\sum_{0\leq j< i} d^j \cdot (\|\varphi\|_d, a_j a_{j+1} \ldots) + d^i \cdot (\|\psi\|_d, a_i a_{i+1} \ldots) \right) \right)$$

Definition (continued)

- $\bullet \ (\left\| \varphi \wedge \psi \right\|_{d}, w) = (\left\| \varphi \right\|_{d}, w) + (\left\| \psi \right\|_{d}, w)$
- ullet $(\|\bigcirc \varphi\|_d$, $w) = d \cdot (\|\varphi\|_d$, $a_1 a_2 \ldots)$
- $(\|\varphi U\psi\|_d, w) =$

$$\sup_{i\geq 0} \left(\left(\sum_{0\leq j< i} d^j \cdot (\|\varphi\|_d, a_j a_{j+1} \ldots) + d^i \cdot (\|\psi\|_d, a_i a_{i+1} \ldots) \right) \right)$$

 $ullet \left(\left\| \Box arphi
ight\|_d$, $w
ight) = \sum\limits_{i \geq 0} d^i \cdot \left(\left\| arphi
ight\|_d$, $a_i a_{i+1} \ldots
ight)$

- $\bullet \ (\left\| \varphi \wedge \psi \right\|_{d}, w) = (\left\| \varphi \right\|_{d}, w) + (\left\| \psi \right\|_{d}, w)$
- ullet $(\|igtriangle arphi\|_d$, $w) = d \cdot (\|arphi\|_d$, $a_1 a_2 \ldots)$
- $(\|\varphi U\psi\|_d, w) =$

$$\sup_{i\geq 0} \left(\left(\sum_{0\leq j< i} d^j \cdot (\|\varphi\|_d, a_j a_{j+1} \ldots) + d^i \cdot (\|\psi\|_d, a_i a_{i+1} \ldots) \right) \right)$$

- ullet $(\|\Box arphi\|_d$, $w) = \sum\limits_{i \geq 0} d^i \cdot (\|arphi\|_d$, $a_i a_{i+1} \ldots)$
- $\bullet \ (\left\|\lozenge \varphi\right\|_d \text{, } w) = \sup_{i \geq 0} ((\left\|\varphi\right\|_d \text{, } \textit{a}_i \textit{a}_{i+1} \ldots))$

- ullet $(\|arphi\wedge\psi\|_d$, $w)=(\|arphi\|_d$, $w)+(\|\psi\|_d$, w)
- $\bullet \ (\|\bigcirc \varphi\|_d, w) = d \cdot (\|\varphi\|_d, a_1 a_2 \ldots)$
- $(\|\varphi U\psi\|_d, w) =$

$$\sup_{j\geq 0} \left(\left(\sum_{0\leq j< i} d^j \cdot (\|\varphi\|_d, a_j a_{j+1} \ldots) + d^i \cdot (\|\psi\|_d, a_i a_{i+1} \ldots) \right) \right)$$

- ullet $(\|\Box arphi\|_d$, $w) = \sum\limits_{i>0} d^i \cdot (\|arphi\|_d$, $a_i a_{i+1} \ldots)$
- $\bullet \ (\|\lozenge \varphi\|_d \, , \, w) = \sup_{i \geq 0} ((\|\varphi\|_d \, , \, a_i a_{i+1} \ldots))$
- $ullet \left(\left\| \Box \Diamond \varphi
 ight\|_d, w
 ight) = \sum\limits_{i \geq 0} d^i \cdot \left(\sup\limits_{k \geq i} \left(\left(\left\| \varphi
 ight\|_d, a_k a_{k+1} \ldots
 ight)
 ight)
 ight)$

• An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$
- ω - $Ltl(2^{AP}, \mathbb{R}_{max}, d)$: the class of all wLTL-d-definable infinitary series

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$
- ω - $Ltl(2^{AP}, \mathbb{R}_{max}, d)$: the class of all wLTL-d-definable infinitary series

Theorem (Mandrali 2010, 2012)

a fragment of ω -Ltl(2^{AP} , \mathbb{R}_{max} , d) $\subseteq \omega$ -Rec(2^{AP} , \mathbb{R}_{max} , d).

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$
- ω - $Ltl(2^{AP}, \mathbb{R}_{max}, d)$: the class of all wLTL-d-definable infinitary series

- a fragment of ω -Ltl(2^{AP} , \mathbb{R}_{max} , d) $\subseteq \omega$ -Rec(2^{AP} , \mathbb{R}_{max} , d).
- Open:

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$
- ω -Ltl(2^{AP}, \mathbb{R}_{max} , d): the class of all wLTL-d-definable infinitary series

- a fragment of ω -Ltl(2^{AP} , \mathbb{R}_{max} , d) $\subseteq \omega$ -Rec(2^{AP} , \mathbb{R}_{max} , d).
- Open:
 - Is the above inclusion proper? (guess: Yes)

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$
- ω - $Ltl(2^{AP}, \mathbb{R}_{max}, d)$: the class of all wLTL-d-definable infinitary series

- a fragment of ω -Ltl(2^{AP} , \mathbb{R}_{max} , d) $\subseteq \omega$ -Rec(2^{AP} , \mathbb{R}_{max} , d).
- Open:
 - Is the above inclusion proper? (guess: Yes)
 - Does the inclusion ω - $Ltl(2^{AP}, \mathbb{R}_{max}, d) \subseteq \omega$ - $Rec(2^{AP}, \mathbb{R}_{max}, d)$ hold true? and if yes, is it proper?

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called wLTL-d-definable if there is a wLTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|_d$
- ω - $Ltl(2^{AP}, \mathbb{R}_{max}, d)$: the class of all wLTL-d-definable infinitary series

- a fragment of ω -Ltl(2^{AP} , \mathbb{R}_{max} , d) $\subseteq \omega$ -Rec(2^{AP} , \mathbb{R}_{max} , d).
- Open:
 - Is the above inclusion proper? (guess: Yes)
 - Does the inclusion ω - $Ltl(2^{AP},\mathbb{R}_{\max},d)\subseteq\omega$ - $Rec(2^{AP},\mathbb{R}_{\max},d)$ hold true? and if yes, is it proper?
- A weighted LTL over commutative semirings with infinite sums and products is defined in a similar way. We just replace sum with product and sup with sum, above.

• A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.

- A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L: bounded if there are $0, 1 \in L$, such that $0 \le k \le 1$ for every $k \in L$

- A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee l$ and the infimium $k \wedge l$ exist in L for every $k, l \in L$.
- Lattice L: bounded if there are $0, 1 \in L$, such that $0 \le k \le 1$ for every $k \in L$
- Lattice L: distributive if for every $k, l, m \in L$:

$$k \wedge (l \vee m) = (k \wedge l) \vee (k \wedge m)$$
$$(k \vee l) \wedge m) = (k \wedge m) \vee (l \wedge m)$$

- A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee I$ and the infimium $k \wedge I$ exist in L for every $k, I \in L$.
- Lattice L : bounded if there are $0, 1 \in L$, such that $0 \le k \le 1$ for every $k \in L$
- Lattice L: distributive if for every k, l, $m \in L$:

$$k \wedge (l \vee m) = (k \wedge l) \vee (k \wedge m)$$
$$(k \vee l) \wedge m) = (k \wedge m) \vee (l \wedge m)$$

 Every bounded distributive lattice L is a semiring with operations ∨ and ∧ and neutral elements 0 and 1.

- A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee l$ and the infimium $k \wedge l$ exist in L for every $k, l \in L$.
- Lattice L : bounded if there are $0, 1 \in L$, such that $0 \le k \le 1$ for every $k \in L$
- Lattice L: distributive if for every k, l, $m \in L$:

$$k \wedge (l \vee m) = (k \wedge l) \vee (k \wedge m)$$
$$(k \vee l) \wedge m) = (k \wedge m) \vee (l \wedge m)$$

- Every bounded distributive lattice L is a semiring with operations \vee and \wedge and neutral elements 0 and 1.
- Bounded distributive lattice L: a mapping : $L \to L$ is a negation function if $\overline{0} = 1$ and $\overline{1} = 0$.

- A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee l$ and the infimium $k \wedge l$ exist in L for every $k, l \in L$.
- Lattice L : bounded if there are $0, 1 \in L$, such that $0 \le k \le 1$ for every $k \in L$
- Lattice L: distributive if for every k, l, $m \in L$:

$$k \wedge (l \vee m) = (k \wedge l) \vee (k \wedge m)$$
$$(k \vee l) \wedge m) = (k \wedge m) \vee (l \wedge m)$$

- Every bounded distributive lattice L is a semiring with operations \vee and \wedge and neutral elements 0 and 1.
- Bounded distributive lattice L: a mapping : $L \to L$ is a negation function if $\overline{0} = 1$ and $\overline{1} = 0$.
- Bounded distributive lattice L: we can define a negation function by $\overline{0} = 1$ and $\overline{x} = 0$ for every $x \in L \setminus \{0\}$

- A partially ordered set (L, \leq) or simply L is a *lattice* if the supremum $k \vee l$ and the infimium $k \wedge l$ exist in L for every $k, l \in L$.
- Lattice L : bounded if there are $0, 1 \in L$, such that $0 \le k \le 1$ for every $k \in L$
- Lattice L: distributive if for every k, l, $m \in L$:

$$k \wedge (I \vee m) = (k \wedge I) \vee (k \wedge m)$$
$$(k \vee I) \wedge m) = (k \wedge m) \vee (I \wedge m)$$

- Every bounded distributive lattice L is a semiring with operations ∨ and ∧ and neutral elements 0 and 1.
- Bounded distributive lattice L: a mapping : $L \to L$ is a negation function if $\overline{0} = 1$ and $\overline{1} = 0$.
- Bounded distributive lattice L: we can define a negation function by $\overline{0} = 1$ and $\overline{x} = 0$ for every $x \in L \setminus \{0\}$
- In the sequel: L bounded distributive lattice with negation function

• L: bounded distributive lattice

- L: bounded distributive lattice
- A multi-valued automaton over L

$$\mathcal{A} = (\mathit{Q}, \mathit{A}, \mathit{in}, \mathit{wt}, \mathit{ter})$$

is just a weighted automaton over L.

- L: bounded distributive lattice
- A multi-valued automaton over L

$$\mathcal{A} = (\mathit{Q}, \mathit{A}, \mathit{in}, \mathit{wt}, \mathit{ter})$$

is just a weighted automaton over L.

• A multi-valued Büchi automaton over L:

$$\mathcal{A} = (Q, A, in, wt, F)$$

is just a weighted Büchi automaton over L.

- L: bounded distributive lattice
- A multi-valued automaton over L

$$\mathcal{A} = (Q, A, in, wt, ter)$$

is just a weighted automaton over L.

• A multi-valued Büchi automaton over L:

$$\mathcal{A} = (Q, A, in, wt, F)$$

is just a weighted Büchi automaton over L.

• Considering the quantitative MSO logic and LTL over *L*, the problem of how to define the negation for enery formula remains!

De Morgan algebras

Definition

A De Morgan algebra is a bounded distributive lattice (L,\leq) equipped with a comlpement mapping

$$: L \rightarrow L$$

satisfying the involution law

$$\overline{\overline{k}} = k$$

and the De Morgan laws

$$\overline{k \vee l} = \overline{k} \wedge \overline{l}, \qquad \overline{k \wedge l} = \overline{k} \vee \overline{l}$$

for every $k, l \in L$.

De Morgan algebras

Definition

A De Morgan algebra is a bounded distributive lattice (L,\leq) equipped with a comlpement mapping

$$: L \rightarrow L$$

satisfying the involution law

$$\overline{\overline{k}} = k$$

and the De Morgan laws

$$\overline{k \vee l} = \overline{k} \wedge \overline{l}, \qquad \overline{k \wedge l} = \overline{k} \vee \overline{l}$$

for every $k, l \in L$.

• For instance the fuzzy semiring $F = ([0, 1], \sup, \inf, 0, 1)$ with $\overline{k} = 1 - k$ is a De Morgan algebra.

De Morgan algebras

Definition

A De Morgan algebra is a bounded distributive lattice (L,\leq) equipped with a comlpement mapping

$$: L \rightarrow L$$

satisfying the involution law

$$\overline{\overline{k}} = k$$

and the De Morgan laws

$$\overline{k \vee I} = \overline{k} \wedge \overline{I}, \qquad \overline{k \wedge I} = \overline{k} \vee \overline{I}$$

for every $k, l \in L$.

- For instance the fuzzy semiring $F = ([0, 1], \sup, \inf, 0, 1)$ with $\overline{k} = 1 k$ is a De Morgan algebra.
- In the sequel: L De Morgan algebra

Multi-valued automata over De Morgan algebras

• A multi-valued automaton over L:

$$\mathcal{A} = (\mathit{Q}, \mathit{A}, \mathit{in}, \mathit{wt}, \mathit{ter})$$

Multi-valued automata over De Morgan algebras

A multi-valued automaton over L:

$$\mathcal{A} = (Q, A, in, wt, ter)$$

Q the finite state set,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- ullet ter: $Q \rightarrow L$ the terminal distribution

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- $ter: Q \rightarrow L$ the terminal distribution
- $\bullet \ \ w = \mathsf{a}_0 \ldots \mathsf{a}_{n-1} \in \mathsf{A}^*$

A multi-valued automaton over L:

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- $ter: Q \rightarrow L$ the terminal distribution
- $w = a_0 \dots a_{n-1} \in A^*$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n)$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $0 \le i \le n-1$

A multi-valued automaton over L:

$$\mathcal{A} = (Q, A, in, wt, ter)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- $ter: Q \rightarrow L$ the terminal distribution
- $w = a_0 \dots a_{n-1} \in A^*$
- ullet a path of ${\cal A}$ over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots (q_{n-1}, a_{n-1}, q_n)$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $0 \le i \le n-1$

• the weight of P_w :

$$weight(P_w) = in(q_0) \land wt((q_0, a_0, q_1)) \land wt((q_1, a_1, q_2)) \land \dots \land wt((q_{n-1}, a_{n-1}, q_n)) \land ter(q_n)$$

• the behavior of A is the series

$$\|\mathcal{A}\|: A^* \to K$$

defined for every $w \in A^*$ by

$$(\|\mathcal{A}\|, w) = \bigvee_{P_w} weight(P_w)$$

• Example: Let *L* be the fuzzy semiring.

- Example: Let L be the fuzzy semiring.
- ullet $\mathcal{A}=(\mathcal{Q},\mathcal{A},\mathit{in},\mathit{wt},\mathit{ter})$ with $\mathcal{A}=\{\mathit{a},\mathit{b},\mathit{c}\},\ \mathcal{Q}=\{\mathit{q}\},\ \mathit{in}(\mathit{q})=\mathit{ter}(\mathit{q})=1,$ and

- Example: Let L be the fuzzy semiring.
- $\mathcal{A}=(Q,A,\mathit{in},\mathit{wt},\mathit{ter})$ with $\mathcal{A}=\{\mathit{a},\mathit{b},\mathit{c}\},\ Q=\{\mathit{q}\},\ \mathit{in}(\mathit{q})=\mathit{ter}(\mathit{q})=1,$ and

$$\bullet \ wt((q,x,q)) = \left\{ \begin{array}{ll} 0 & \text{if } x = a \\ 0,5 & \text{if } x = b \\ 1 & \text{if } x = c \end{array} \right. .$$

- Example: Let L be the fuzzy semiring.
- $\mathcal{A}=(Q, A, \textit{in, wt, ter})$ with $A=\{\textit{a, b, c}\}$, $Q=\{q\}$, in(q)=ter(q)=1, and
- $wt((q, x, q)) = \begin{cases} 0 & \text{if } x = a \\ 0, 5 & \text{if } x = b \\ 1 & \text{if } x = c \end{cases}$.
- Then for any word $w \in A^*$ we get $(\|\mathcal{A}\|, w) = 0$ if w contains at least one occurrence of a, $(\|\mathcal{A}\|, w) = 0$, b if w contains at least one occurrence of b but not any a, and $(\|\mathcal{A}\|, w) = 1$ if w contains only c or it is the empty word, i.e., $w = c^n$ for some $n \geq 0$.

$$\mathcal{A} = (Q, A, in, wt, F)$$

• A multi-valued Büchi automaton over L:

$$\mathcal{A} = (Q, A, in, wt, F)$$

• Q the finite state set,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- ullet in : $Q \rightarrow L$ the initial distribution,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$

• A multi-valued Büchi automaton over L:

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $i \geq 0$

• A multi-valued Büchi automaton over L:

$$\mathcal{A} = (Q, A, in, wt, F)$$

- Q the finite state set,
- A the input alphabet,
- $in: Q \rightarrow L$ the initial distribution,
- $wt: Q \times A \times Q \rightarrow L$ the weight assignment mapping,
- F the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- a path of A over w

$$P_w = (q_0, a_0, q_1)(q_1, a_1, q_2) \dots$$

where $(q_i, a_i, q_{i+1}) \in Q \times A \times Q$ for every $i \geq 0$

• the weight of P_w :

$$weight(P_w) = in(q_0) \land wt((q_0, a_0, q_1)) \land wt((q_1, a_1, q_2)) \land \dots$$

• P_w : successful if $In^Q(P_w) \cap F \neq \emptyset$

- P_w : successful if $In^Q(P_w) \cap F \neq \emptyset$
- ullet observe that a successful path P_w can have $weight(P_w)=0$

- P_w : successful if $In^Q(P_w) \cap F \neq \emptyset$
- ullet observe that a successful path P_w can have $weight(P_w)=0$
- ullet the behavior of ${\mathcal A}$ is the infinitary series

$$\|\mathcal{A}\|: A^{\omega} \to K$$

defined for every $w \in A^{\omega}$ by

$$(\|\mathcal{A}\|, w) = \bigvee_{P_w \text{ successful}} weight(P_w)$$

Definition

The syntax of the wMSO-formulas over A and L is given by

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

Definition

The syntax of the wMSO-formulas over A and L is given by

$$\varphi ::= k \mid P_{a}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \, \varphi \mid \exists X \, \boldsymbol{\cdot} \, \varphi$$

$$\bullet \ \varphi \wedge \psi = \neg (\neg \varphi \vee \neg \psi),$$

Definition

The syntax of the wMSO-formulas over A and L is given by

$$\varphi ::= k \mid P_{a}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \, \varphi \mid \exists X \, \boldsymbol{\cdot} \, \varphi$$

- $\bullet \ \varphi \wedge \psi = \neg (\neg \varphi \vee \neg \psi),$
- $\bullet \ \forall x \cdot \varphi = \neg(\exists x \cdot \neg \varphi)$

Definition

The syntax of the wMSO-formulas over A and L is given by

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{.} \, \varphi \mid \exists X \, \boldsymbol{.} \, \varphi$$

- $\bullet \ \varphi \wedge \psi = \neg (\neg \varphi \vee \neg \psi),$
- $\forall x \cdot \varphi = \neg(\exists x \cdot \neg \varphi)$
- $\bullet \ \forall X \cdot \varphi = \neg (\exists X \cdot \neg \varphi)$

Definition

The syntax of the wMSO-formulas over A and L is given by

$$\varphi ::= k \mid P_{a}(x) \mid x \in X \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \boldsymbol{\cdot} \varphi \mid \exists X \, \boldsymbol{\cdot} \varphi$$

- $\varphi \wedge \psi = \neg(\neg \varphi \vee \neg \psi)$,
- $\bullet \ \forall x \, \bullet \, \varphi = \neg (\exists x \, \bullet \, \neg \varphi)$
- $\forall X \cdot \varphi = \neg (\exists X \cdot \neg \varphi)$
- dmMSO(A, L): the set of all multi-valued MSO-formulas over A and L

Definition

Let $\varphi \in dmMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{\mathit{Free}(\varphi)} \to L.$$

For every $w\in A^*$ and $(w,\mathit{Free}(\varphi))$ -assignment σ , we define $(\|\varphi\|,(w,\sigma))$ inductively by:

$$\bullet (\|k\|, (w, \sigma)) = k$$

Definition

Let $\varphi \in dmMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{Free(\varphi)} \to L.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$

Definition

Let $\varphi \in dmMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{Free(\varphi)} \to L.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $(\|x \in X\|, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{cases}$

Definition

Let $\varphi \in dmMSO(A, K)$. The finitary semantics of φ is the series

$$\|\varphi\|: A^*_{Free(\varphi)} \to L.$$

For every $w \in A^*$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $(\|x \in X\|, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{cases}$
- $(\|x \le y\|, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \le \sigma(y) \\ 0 & \text{otherwise} \end{cases}$

Definition (continued)

$$\bullet \ (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$$

Definition (continued)

- $(\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ (\|\varphi \lor \psi\| \, , (w,\sigma)) = (\|\varphi\| \, , (w,\sigma)) \lor (\|\psi\| \, , (w,\sigma))$

Definition (continued)

- $(\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ \left(\left\| \varphi \vee \psi \right\| \text{, } (\textit{w}, \sigma) \right) = \left(\left\| \varphi \right\| \text{, } (\textit{w}, \sigma) \right) \vee \left(\left\| \psi \right\| \text{, } (\textit{w}, \sigma) \right)$
- $\bullet \ \left(\left\| \exists x \, \centerdot \, \varphi \right\| , \left(w, \sigma \right) \right) = \bigvee_{i \in dom(w)} \left(\left\| \varphi \right\| , \left(w, \sigma[x \to i] \right) \right)$

- $\bullet \ (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ (\|\varphi \lor \psi\| \text{ , } (w,\sigma)) = (\|\varphi\| \text{ , } (w,\sigma)) \lor (\|\psi\| \text{ , } (w,\sigma))$
- $\bullet \ \left(\left\| \exists x \, \centerdot \, \varphi \right\| \, , \left(w, \sigma \right) \right) = \bigvee_{i \in \mathit{dom}(w)} \left(\left\| \varphi \right\| \, , \left(w, \sigma[x \to i] \right) \right)$
- $\bullet \ \left(\left\| \exists X \centerdot \varphi \right\| , \left(w, \sigma \right) \right) = \bigvee_{I \subseteq dom(w)} \left(\left\| \varphi \right\| , \left(w, \sigma[X \to I] \right) \right)$

- $\bullet \ (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) \lor \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ \left(\left\| \exists x \, \centerdot \, \varphi \right\| \, , \left(w , \sigma \right) \right) = \bigvee_{i \in \mathit{dom}(w)} \left(\left\| \varphi \right\| \, , \left(w , \sigma[x \to i] \right) \right)$
- $\bullet \ \left(\left\| \exists X \, \centerdot \, \varphi \right\|, (w, \sigma) \right) = \bigvee_{I \subseteq dom(w)} \left(\left\| \varphi \right\|, \left(w, \sigma[X \to I] \right) \right)$
- where $dom(w) = \{0, ..., |w| 1\}$

Definition

Let $\varphi \in dmMSO(A, K)$. The infinitary semantics of φ is the series

$$\|\varphi\|: A^{\omega}_{Free(\varphi)} \to L.$$

For every $w\in A^\omega$ and $(w,\mathit{Free}(\varphi))$ -assignment σ , we define $(\|\varphi\|,(w,\sigma))$ inductively by:

$$\bullet (\|k\|, (w, \sigma)) = k$$

Definition

Let $\varphi \in dmMSO(A, K)$. The infinitary semantics of φ is the series

$$\|\varphi\|: A^{\omega}_{Free(\varphi)} \to L.$$

For every $w\in A^\omega$ and $(w,\mathit{Free}(\varphi))$ -assignment σ , we define $(\|\varphi\|,(w,\sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$

Definition

Let $\varphi \in dmMSO(A, K)$. The infinitary semantics of φ is the series

$$\|\varphi\|: A^{\omega}_{\mathit{Free}(\varphi)} o \mathit{L}.$$

For every $w\in A^\omega$ and $(w,\mathit{Free}(\varphi))$ -assignment σ , we define $(\|\varphi\|,(w,\sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $(\|x \in X\|, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{cases}$

Definition

Let $\varphi \in dmMSO(A, K)$. The infinitary semantics of φ is the series

$$\|\varphi\|: A^{\omega}_{\mathit{Free}(\varphi)} \to L.$$

For every $w \in A^{\omega}$ and $(w, Free(\varphi))$ -assignment σ , we define $(\|\varphi\|, (w, \sigma))$ inductively by:

- $\bullet (\|k\|, (w, \sigma)) = k$
- $(\|P_a(x)\|, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$
- $\bullet \ (\|x \in X\| \ , (w,\sigma)) = \left\{ \begin{array}{ll} 1 & \text{if} \ \ \sigma(x) \in \sigma(X) \\ 0 & \text{otherwise} \end{array} \right.$
- $(\|x \le y\|, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \le \sigma(y) \\ 0 & \text{otherwise} \end{cases}$

$$\bullet (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$$

- $(\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ \left(\left\| \varphi \vee \psi \right\|, \left(w, \sigma \right) \right) = \left(\left\| \varphi \right\|, \left(w, \sigma \right) \right) \vee \left(\left\| \psi \right\|, \left(w, \sigma \right) \right)$

- $\bullet \ (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) \lor \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ (\|\exists x \, \centerdot \, \varphi\| \, , (w,\sigma)) = \bigvee_{i \in \omega} (\|\varphi\| \, , (w,\sigma[x \to i]))$

- $\bullet (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) \lor \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ (\|\exists x \, \bullet \, \varphi\| \, , (w,\sigma)) = \bigvee_{i \in \omega} (\|\varphi\| \, , (w,\sigma[x \to i]))$
- $\bullet \ (\|\exists X \centerdot \varphi\| \, , (w,\sigma)) = \bigvee_{I \subseteq \omega} (\|\varphi\| \, , (w,\sigma[X \to I]))$

- $\bullet \ (\|\neg \varphi\|, (w, \sigma)) = \overline{(\|\varphi\|, (w, \sigma))}$
- $\bullet \ \left(\left\| \varphi \lor \psi \right\|, (w,\sigma) \right) = \left(\left\| \varphi \right\|, (w,\sigma) \right) \lor \left(\left\| \psi \right\|, (w,\sigma) \right)$
- $\bullet \ (\|\exists x \, \bullet \, \varphi\| \, , (w,\sigma)) = \bigvee_{i \in \omega} (\|\varphi\| \, , (w,\sigma[x \to i]))$
- $\bullet \ (\|\exists X \bullet \varphi\|, (w, \sigma)) = \bigvee_{I \subseteq \omega} (\|\varphi\|, (w, \sigma[X \to I]))$
- where $dom(w) = \omega$

• dm-Mso(A, L): the class of all finitary series over A and L definable by multi-valued MSO sentences.

- dm-Mso(A, L): the class of all finitary series over A and L definable by multi-valued MSO sentences.
- ω -dm-Mso(A, L): the class of all infinitary series over A and L definable by multi-valued MSO sentences.

- dm-Mso(A, L): the class of all finitary series over A and L definable by multi-valued MSO sentences.
- ω -dm-Mso(A, L): the class of all infinitary series over A and L definable by multi-valued MSO sentences.

Theorem (Droste, Kuich & R 2008)

$$Rec(A, L) = dm-Mso(A, L)$$

$$\omega$$
-Rec $(A, L) = \omega$ -dm-Mso (A, L)

- dm-Mso(A, L): the class of all finitary series over A and L definable by multi-valued MSO sentences.
- ω -dm-Mso(A, L): the class of all infinitary series over A and L definable by multi-valued MSO sentences.

Theorem (Droste, Kuich & R 2008)

$$Rec(A, L) = dm-Mso(A, L)$$

$$\omega$$
-Rec $(A, L) = \omega$ -dm-Mso (A, L)

We do not require any fragments!

Multi-valued LTL - Syntax

Definition

Let AP be a finite set of atomic propositions. The syntax of the multi-valued LTL-formulas over AP and \mathbb{R}_{\max} is given by

$$\varphi ::= k \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \varphi U \varphi$$

where $k \in \mathbb{R}_{max}$ and $p \in AP$.

Multi-valued LTL - Syntax

Definition

Let AP be a finite set of atomic propositions. The syntax of the multi-valued LTL-formulas over AP and \mathbb{R}_{\max} is given by

$$\varphi ::= k \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \varphi U \varphi$$

where $k \in \mathbb{R}_{max}$ and $p \in AP$.

• $dmLTL(AP, \mathbb{R}_{max})$ the class of all multi-valued LTL formulas over AP and \mathbb{R}_{max} .

Definition

Let $\varphi \in \mathit{dmLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary semantics of φ is the series

$$\|\varphi\|:\left(2^{AP}\right)^{\omega}
ightarrow\mathbb{R}_{\mathsf{max}}$$

For every $w = a_0 a_1 \ldots \in (2^{AP})^{\omega}$ we define $(\|\varphi\|, w)$ inductively by:

 $\bullet (\|k\|, w) = k$

Definition

Let $\varphi \in \mathit{dmLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary semantics of φ is the series

$$\|\varphi\|:\left(2^{AP}
ight)^{\omega}
ightarrow\mathbb{R}_{\mathsf{max}}$$

- $\bullet (\|k\|, w) = k$
- $\bullet \ (\|p\|, w) = \begin{cases} 0 & \text{if } p \in a_0 \\ -\infty & \text{otherwise} \end{cases}$

Definition

Let $\varphi \in \mathit{dmLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary semantics of φ is the series

$$\|\varphi\|:\left(2^{AP}\right)^{\omega}\to\mathbb{R}_{\max}$$

- $\bullet (\|k\|, w) = k$
- $\bullet \ (\|p\|, w) = \left\{ \begin{array}{c} 0 & \text{if } p \in a_0 \\ -\infty & \text{otherwise} \end{array} \right.$
- $\bullet \ (\|\neg \varphi\|, w) = \overline{(\|\varphi\|, w)}$

Definition

Let $\varphi \in \mathit{dmLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary semantics of φ is the series

$$\|\varphi\|:\left(2^{AP}\right)^{\omega}\to\mathbb{R}_{\max}$$

- $\bullet (\|k\|, w) = k$
- $\bullet \ (\|p\|, w) = \left\{ \begin{array}{cc} 0 & \text{if } p \in a_0 \\ -\infty & \text{otherwise} \end{array} \right.$
- $\bullet \ (\|\neg \varphi\| \,, w) = \overline{(\|\varphi\| \,, w)}$
- $\bullet \ (\|\varphi \lor \psi\| \, , w) = (\|\varphi\| \, , w) \lor (\|\psi\| \, , w)$

Definition

Let $\varphi \in \mathit{dmLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary semantics of φ is the series

$$\|\varphi\|:\left(2^{AP}\right)^{\omega}
ightarrow\mathbb{R}_{\mathsf{max}}$$

- $\bullet (\|k\|, w) = k$
- $\bullet \ (\|p\|, w) = \left\{ \begin{array}{cc} 0 & \text{if } p \in a_0 \\ -\infty & \text{otherwise} \end{array} \right.$
- $\bullet \ (\|\neg \varphi\| \,, w) = \overline{(\|\varphi\| \,, w)}$
- ullet $(\|arphiee\psi\|$, $w)=(\|arphi\|$, $w)ee(\|\psi\|$, w)
- ullet $(\|\bigcirc \varphi\|$, $w)=(\|\varphi\|$, $a_1a_2\ldots)$

Definition

Let $\varphi \in \mathit{dmLTL}\left(\mathit{AP}, \mathbb{R}_{\mathsf{max}}\right)$. The infinitary semantics of φ is the series

$$\|\varphi\|:\left(2^{AP}\right)^{\omega}\to\mathbb{R}_{\max}$$

- $(\|k\|, w) = k$
- $(\|p\|, w) = \begin{cases} 0 & \text{if } p \in a_0 \\ -\infty & \text{otherwise} \end{cases}$
- $\bullet (\|\neg \varphi\|, w) = \overline{(\|\varphi\|, w)}$
- ullet $(\|arphiee\psi\|$, $w)=(\|arphi\|$, $w)ee(\|\psi\|$, w)
- ullet $(\|\bigcirc arphi\|$, $w)=(\|arphi\|$, $a_1a_2\ldots)$
- $\bullet \; \left(\left\| \varphi U \psi \right\|, w \right) = \bigvee_{i \geq 0} \left(\left(\bigwedge_{0 \leq j < i} \left(\left\| \varphi \right\|, \mathsf{a}_{j} \mathsf{a}_{j+1} \ldots \right) \wedge \left(\left\| \psi \right\|, \mathsf{a}_{i} \mathsf{a}_{i+1} \ldots \right) \right) \right)$

Multi-valued LTL-definability and recognizability

• An infinitary series $s:(2^{AP})^{\omega}\to\mathbb{R}_{\max}$ is called dm-LTL-definable if there is a dm-LTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|$

Multi-valued LTL-definability and recognizability

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called dm-LTL-definable if there is a dm-LTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|$
- ω -dm-Ltl(2^{AP} , \mathbb{R}_{\max} , d): the class of all dm-LTL-definable infinitary series

Multi-valued LTL-definability and recognizability

- An infinitary series $s:(2^{AP})^{\omega} \to \mathbb{R}_{\max}$ is called dm-LTL-definable if there is a dm-LTL-formula φ over AP and \mathbb{R}_{\max} such that $s=\|\varphi\|$
- ω -dm-Ltl(2^{AP} , \mathbb{R}_{\max} , d): the class of all dm-LTL-definable infinitary series

Theorem (Kupferman & Lustig 2007, Mandrali 2012)

$$\omega$$
-dm-Ltl(2^{AP}, \mathbb{R}_{max} , d) $\subseteq \omega$ -Rec(2^{AP}, \mathbb{R}_{max} , d).

Work in Progress

- Star-free and ω -star-free series
- Counter-free weighted automata
- Weighted Monadic First Order logic

Future Work

- Decidability results
- Complexity results
- Weighted PSL?
- . . .
- Application to Quantitative Model Checking

Unweighted setup

- J.R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Log. Grundl. Math. 6 (1960) 66–92.
- J.R. Büchi, On a decision method in restricted second order arithmetic, in: Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science, 1962, pp. 1–11.
- C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98 (1961) 21–52.
- M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1994) 1–37.
- U. Zimmermann, Combinatorial Optimization in Ordered Algebraic Structures, in: Annals of Discrete Mathematics, vol. 10, North-Holland, Amsterdam, 1981.

Weighted automata

- M. Schützenberger, On the definition of a family of automata, Inf. Control 4 (1961) 245–270.
- Handbook of Weighted Automata, M. Droste, W. Kuich and H. Vogler eds., Springer-Verlag 2009.

Discounting

- L. de Alfaro, T.A. Henzinger, R. Majumdar, Discounting the future in systems theory, in: *Proceedings of ICALP 2003, LNCS* 2719(2003) 1022–1037.
- L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, M. Stoelinga, Model checking discounted temporal properties, *Theoret. Comput.* Sci. 345(2005) 139–170.
- M. Faella, A. Legay, M. Stoelinga, Model checking quantitative linear time logic, *Electron. Notes Theor. Comput. Sci.* 220(2008) 61-77.

Weighted MSO logic

- M. Droste, P. Gastin, Weighted automata and weighted logics, Theoret. Comput. Sci. 380(2007) 69-86; extended abstract in: 32nd ICALP, LNCS 3580(2005) 513-525.
- M. Droste, G. Rahonis, Weighted automata and weighted logics on infinite words, Russian Mathematics (Iz. VUZ), 54(1) (2010) 26–45; extended abstract in: LNCS 4036(2006) 49–58.

Weighted MSO logic with discounting

 M. Droste, G. Rahonis, Weighted automata and weighted logics with discounting, Theoret. Comput. Sci. 410(2009) 3481-3494; extended abstract in: Proceedings of CIAA 2007, LNCS 4783(2007) 73-84.

Weighted LTL with discounting

 M. Mandrdali, Weighted LTL with discounting, to appear at CIAA 2012.

Multi-valued MSO logic

- M. Droste, W. Kuich and G. Rahonis, Multi-valued MSO logis over words and trees, Fundam. Inform. 84(2008) 305-327.
- G. Rahonis, Fuzzy languages, in: Handbook of Weighted Automata,
 M. Droste, W. Kuich and H. Vogler eds., Springer-Verlag 2009, pp. 481-517.

Weighted and multi-valued LTL

- O. Kupferman and Y. Lustig, Lattice automata, Lecture Notes in Comput. Sci. 4349(2007) 199-213.
- M. Droste and H. Vogler, Weighted automata and multi-valued logics over arbitrary bounded lattices, *Theoret. Comput. Sci.* 418(2012) 14-36 (lack of distributiveness and full complement function, requirement of definition of φ ∧ ψ, ∀x φ, etc.)
- M. Mandrali, Weighted and multi-valued LTL, preprint.

Thank you

Semirings with infinite sums and products

- K is equipped with infinitary sum operations $\sum_{I} : K^{I} \to K$, for any index set I, such that for all I and all families $(a_{i} \mid i \in I)$ of elements of K such that
 - $\sum_{i\in\emptyset}a_i=0$, $\sum_{i\in\{j\}}a_i=a_j$, $\sum_{i\in\{j,k\}}a_i=a_j+a_k$ for $j\neq k$,
 - $\sum_{j\in J} \left(\sum_{i\in I_j} a_i\right) = \sum_{i\in I} a_i$, if $\bigcup_{j\in J} I_j = I$ and $I_j \cap I_{j'} = \emptyset$ for $j \neq j'$,
 - $\sum_{i \in I} (c \cdot a_i) = c \cdot \left(\sum_{i \in I} a_i\right)$, $\sum_{i \in I} (a_i \cdot c) = \left(\sum_{i \in I} a_i\right) \cdot c$, and
- K is endowed with a countably infinite product operation satisfying for all sequences $(a_i \mid i \geq 0)$ of elements of K the following conditions:
 - $\prod_{i>0} 1 = 1$, $\prod_{i>0} a_i = \prod_{i>0} a'_i$,
 - $a_0 \cdot \prod_{i \geq 0} a_{i+1} = \prod_{i \geq 0} a_i$, $\prod_{j \geq 1} \sum_{i \in I_j} a_i = \sum_{(i_1, i_2, \dots) \in I_1 \times I_2 \times \dots} \prod_{j \geq 1} a_{i_j}$,
 - $\bullet \ \prod_{i\geq 0} (a_i \cdot b_i) = \left(\prod_{i\geq 0} a_i\right) \cdot \left(\prod_{i\geq 0} b_i\right)$

where in the second equation

 $a_0' = a_0 \cdot \dots \cdot a_{n_1}, a_2' = a_{n_1+1} \cdot \dots \cdot a_{n_2}, \dots$ for an increasing sequence $0 < n_1 < n_2 < \dots$ and in the last equation I_1, I_2, \dots are arbitrary