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Abstract

We introduce CoCasl as a light-weight but expressive coalgebraic extension of the
algebraic specification language Casl. CoCasl allows the nested combination of
algebraic datatypes and coalgebraic process types. Moreover, it provides syntactic
sugar for an observer-indexed modal logic that allows e.g. expressing fairness prop-
erties. This logic includes a generic definition of modal operators for observers with
structured equational result types. We prove existence of final models for specifi-
cations in a format that allows the use of equationally specified initial datatypes
as observations, as well as modal axioms. The use of CoCasl is illustrated by
specifications of the process algebras CSP and CCS.
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In recent years, coalgebra has emerged as a convenient and suitably general
way of specifying the reactive behaviour of systems [52]. Generally, software
specifications consist of collections of symbols called signatures together with
axioms expressed in this signature, the idea being that the signature describes
the components and operations of a software system and the axioms constitute
requirements on its behaviour, which may e.g. have reactive and functional as-
pects. While algebraic specification deals with functional behaviour, typically
using inductive datatypes generated by constructors, coalgebraic specification
in concerned with reactive behaviour modelled by coinductive process types
that are observable by selectors, much in the spirit of automata theory. An
important role is played here by final coalgebras, which are complete sets of
possibly infinite behaviours, such as streams or even the real numbers [38].

For algebraic specification, the Common Algebraic Specification Language
Casl [13] has been designed as a unifying standard, while for the much
younger field of coalgebraic specification there is still a divergence of notions

Preprint submitted to Elsevier Science 9 July 2004



and notations. The idea pursued here is to obtain a fruitful synergy by ex-
tending Casl with coalgebraic constructs that dualize the algebraic constructs
already present in Casl.

In more detail, CoCasl provides a basic co-type construct, cogeneratedness
constraints, and structured cofree specifications; moreover, coalgebraic modal
logic is introduced as syntactical sugar. Co-types serve to describe reactive
processes, equipped with observer operations whose role is dual to that of
the constructors of a datatype. Cotypes can be qualified as being cogenerated
or cofree, thus imposing full abstractness and realization of all observable
behaviours, respectively.

The modal logic is introduced in two stages. Modal operators are indexed
by observer operations, which are thought of as transitions in a state space.
Thus, a formula such as [f ]φ states that φ holds ‘necessarily’ for the result of
observer f . This informal interpretation is easy to capture formally in case the
result of f is just a state; the first stage of the modal logic treats precisely this
case. It is quite common, however, to have observers with structured results,
such as a finite set or a list of states. In the second stage, we give a generalized
definition of modal operators for such datatype-valued observers.

The most powerful new CoCasl construct are cofree specifications, which al-
low specifying final models of arbitrary specifications. Of course, this raises the
question for what kinds of specifications such final models actually exist. We
provide a sufficient existence condition which covers specifications that em-
ploy initially specified datatypes in observer functions and restrict behaviours
by modal formulae. This, besides syntactic conciseness, is the main motiva-
tion for introducing the modal logic; essentially, our model existence theorem
is further support for the claim that modal formulae play the same role in
coalgebra as equations do in algebra [23,24].

Finally, we illustrate the use of CoCasl in a typical reactive setting by means
of specifying the syntax and semantics of two prominent process algebras,
namely CCS and CSP. These two examples serve the dual purpose of pro-
viding a proof of concept and giving an idea of how CoCasl relates to other
reactive Casl extensions.

The paper is organised as follows. Section 1 introduces the Casl logic; Sec-
tion 2 provides a brief overview of Casl and the duality between Casl and
CoCasl. The various basic process type constructs are discussed in Sec-
tions 3, 4, and 5. The semantics of cofree specifications is given in Section 6.
Sections 7 and 8 introduce the modal logic for simple and structured observa-
tions, respectively. In Section 9, we define an institution for CoCasl’s modal
logic. Section 10 is devoted to the existence theorem for final models. The
specifications of CCS and CSP are described in Section 11. This work is an
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extended version of [45]; the process algebra example has appeared in [33].

1 Casl

The specification language Casl (Common Algebraic Specification Language)
has been designed by CoFI, the international Common Framework Initiative
for Algebraic Specification and Development. Its features include first-order
logic, partial functions, subsorts, sort generation constraints, and structured
and architectural specifications. For the language definition and a full formal
semantics cf. [8,34]. An important point here is that the semantics of struc-
tured and architectural specifications is independent of the logic employed for
basic specifications, so that the language is easily adapted to the extension of
the logic envisaged here.

We now briefly sketch the many-sorted Casl logic, which can be formalized as
an institution [14]. Full details can be found in [31,34]; examples of actual Casl
specifications will appear in later sections. A many-sorted Casl signature
Σ = (S,TF ,PF , P ) consists of a set S of sorts, two S∗ × S-indexed sets
TF = (TFw,s) and PF = (PFw,s) of total and partial operation symbols,
and an S∗-indexed set P = (Pw) of predicate symbols. Function and predicate
symbols are written f : s̄ → t and p : s̄, respectively, where t is a sort and
s̄ is a list s1 . . . sn of sorts, thus determining their name and profile. Symbols
with identical names are said to be overloaded ; they may be referred to by
just their names in Casl specifications, but are always qualified by profiles
in fully statically analysed sentences. Signature morphisms map the sorts and
the function and predicate symbols in a compatible way, such that totality of
function symbols is preserved.

Models are many-sorted partial first order structures, interpreting total (par-
tial) function symbols as total (partial) functions and predicate symbols as
relations. Homomorphisms between such models are so-called weak homomor-
phisms. That is, they are total as functions, and they preserve (but not nec-
essarily reflect) the definedness of partial functions and the satisfaction of
predicates. A homomorphism is called closed [9], if it not only preserves, but
also reflects definedness and satisfaction of predicates.

A congruence R on a model is an equivalence relation that is compatible with
the total and partial functions (in the latter case, compatible on the domain of
the partial function [9], i.e. whenever a partial function is defined on congruent
tuples of arguments, then the results are congruent). R is called closed [9],
if additionally domains of partial functions and domains of satisfaction of
predicates are closed under R.
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Concerning reducts, if σ : Σ1 → Σ2 is a signature morphism and M is a
Σ2-model, then M |σ is the Σ1-model which interprets a symbol by first trans-
lating it along σ and then taking M ’s interpretation of the translated symbol.
Reducts of homomorphisms are defined similarly.

Given a signature, sentences are built from atomic sentences using the usual
features of first order logic. Here, an atomic sentence is either a definedness
assertion (stating that a partial function is defined for certain arguments), a
strong equation (stating equivalence of definedness of its two sides and equality
in case of definedness), an existence equation (stating definedness and equality
of its two sides), or a predicate application; see [13,5] for details. There is an
additional type of sentence that goes beyond first-order logic: a sort genera-
tion constraint states that a given set of sorts is generated by a given set of
functions, i.e. that all the values of the generated sorts are reachable by some
term in the function symbols, possibly containing variables of other sorts. Ev-
ery Casl specification Sp generates, along with its signature Σ, a set Γ of
sentences; together, these determine the theory (Σ,Γ) generated by Sp. Note
that Γ does not only contain explicitly stated sentences, but also sentences
that are generated e.g. by Casl’s powerful datatype constructs (see below),
like the statement that selectors are one-sided inverses of their constructor.

The subsorted Casl institution is defined on top of the many-sorted one. Here,
signatures are equipped with a pre-order on the sorts, the subsorting relation,
and terms of a subsort may be used in places where a term of the supersort is
expected. Moreover, there are partial projection functions from supersorts to
subsorts, and membership predicates detecting whether an element of a sort
is in a given subsort. Such a signature is translated to a many-sorted one by
adding total injection functions of subsorts into supersorts and compatibility
axioms for the extra infrastructure. Models and satisfaction of sentences are
then defined in terms of the translated (many-sorted) signature.

Based on this institution, Casl itself additionally provides, for the sake of
conciseness, a number of abbreviated constructs, most prominently for defin-
ing algebraic datatypes. Casl’s datatype features are briefly recalled below, in
direct comparison to the corresponding CoCasl constructs. Moreover, Casl
allows structured specification, i.e. specification in the large by modular com-
position of basic specifications. In terms of structuring operations, Casl offers
(possibly parametrized) named specifications (keyword spec), unions of spec-
ifications (keyword and), extensions of specifications (keyword then), free
specifications free { . . .}, and renaming as well as hiding of symbols. A spec-
ification Sp1 then Sp2 determines the signature Σ obtained by extending the
signature of Sp1 by the symbols of Sp2; its class of models consists of all Σ-
models M that reduce to a model of Sp1 and satisfy the conditions imposed
by Sp2. Free specifications are recalled in more detail in Section 6.
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Algebra Coalgebra

type = (partial) algebra cotype = coalgebra

constructor observer (=selector)

generation observability

generated type cogenerated (co)type

= no junk = full abstractness

= induction principle = coinduction principle

no confusion all possible behaviours

free type cofree cotype

= absolutely initial datatype = absolutely final process type

=no junk +

no confusion

= full abstractness +

all possible behaviours

free { . . . } = initial datatype
(typically with equations)

cofree { . . . } = final process type
(typically with modal axioms)

Fig. 1. Summary of dualities between Casl and CoCasl.

Generally, Casl employs linear visibility, i.e. all symbols must be declared
before they can be used (an exception is made for mutually recursive
datatypes). Declared symbols can be redeclared. In particular, one may write
a type declaration for previously declared sorts; e.g. the specification

sort Nat
free type Nat ::= 0 | suc(Nat)

is legal. The signature provided for a particular item (declaration or sentence)
in a specification is called its local environment — it consists of all the decla-
rations that precede the item.

2 An overview of CoCasl

As indicated in the introduction, CoCasl extends Casl at two levels: it en-
riches the logic available for basic specifications, and it introduces an additional
structuring concept, namely, cofree specifications. Architectural specifications
remain as in Casl. Figure 1 contains a summary of dualizations of Casl
concepts in CoCasl
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At the level of basic specifications, the duality addresses the various forms
of the types construct that serves to define inductive datatypes in Casl. In
its elementary form, its dual is the cotypes construct, which serves to spec-
ify process types with observers (we shall reserve the word ‘datatype’ for the
algebraic types); c.f. Section 3. In Casl, a type declaration can be strength-
ened in two ways. In a generated type, junk is excluded, while a free type
additionally forbids confusion. Dually, we introduce a cogenerated cotypes
construct for fully abstract process types (Section 4), as well as a cofree
cotypes construct, which additionally requires that all possible observable
behaviours are realized in the process type; cf. Section 5. (Intercombinations
such as cofree types etc. are not provided, and their emulation is expressly
discouraged.) Moreover, we introduce a modal logic for axioms about state
evolution in process types as syntactical sugar (Sections 7 and 8).

At the level of structured specifications, we dualize the structured free con-
struct to a structured cofree construct (Section 6) which equips arbitrary
specifications with a final semantics, thus capturing one of the central notions
of coalgebra. Like its dual, this construct is powerful enough to introduce in-
consistencies, since final models of arbitrary specifications may fail to exist
(while a cofree cotypes declaration, like a free types declaration, is a con-
servative extension as long as the sorts it declares are fresh). We do however
provide a rather general existence theorem which guarantees conservativity of
cofree extensions for specifications that adhere to a certain format allowing in
particular modal logic formulae and structured observations using free specifi-
cations nested within a cofree specification (Section 10); examples are provided
to show that conservativity may fail for many other formats, in particular for
cofree specifications nested within free specifications.

3 Type and cotype definitions

The basic Casl construct for type definitions is the type construct. A type
declaration of the form

types t1 := c11 (s111 ; . . . ; s11k11 ) | · · · | c1r1 (s1r11 ; . . . ; s1r1 k1r1
)

. . .
tn := cn1 (sn11 ; . . . ; sn1kn1 ) | · · · | cnrn (snrn1 ; . . . ; snrnknrn

)

declares constructors cij : sij1×· · ·× sijkij
→ ti for datatypes t1, . . . , tn, where

linear visibility is relaxed to allow the ti to appear among the sijk; the parts of
the declaration separated by vertical bars are called alternatives. Optionally,
selectors can be specified: replacing a plain argument sort sijk by selijk : sijk

in the above specification declares a selector selijk : ti → sijk, for which an
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spec Container [sort Elem] =
type

Container ::= empty | insert(first :? Elem; rest :? Container);

spec NTree [sort Elem] =
types

NTree ::= fork(Elem;Forest)
Forest ::= null | grow(NTree;Forest)

Fig. 2. Some type definition in Casl .

axiom def cij(x1, . . . , xkij
) =⇒ selijk(cij(x1, . . . , xkij

)) = xk is generated. Both
constructors and selectors may be partial (indeed, for selectors this is even
typical whenever a type has more than one constructor). Nothing else is said
about the type; thus, there may not only be ‘junk’ and ‘confusion’, but there
may also be rather arbitrary behaviour of the selectors outside the range of
the corresponding constructors. Consider e.g. the specification of containers in
Figure 2 (the keyword spec is used to name specifications for later reference).
It declares sorts Elem and Container . The type Container is declared to have
two alternatives, one of them given by a total constructor constant empty :
Container , the other one given by a total constructor function insert : Elem×
Container → Container , together with two partial selector functions first :
Container →? Elem and rest : Container →? Container . Also, two axioms
first(insert(x, y)) = x and rest(insert(x, y)) = y are generated. Note that even
if one fixes the interpretation of the sort Elem, this specification is rather loose:
the sort Container may be interpreted e.g. either as the set of finite lists or
the set of infinite lists (over Elem). The specification NTree in Figure 2
illustrates the declaration of several mutually recursive types within a single
types construct.

In CoCasl, the types construct is complemented by the cotypes construct.
The syntax of this construct is nearly identical to the type construct; e.g.,
one may write

cotype Process ::= cont(hd1 :?Elem; next :?Process)
| fork(hd2 :?Elem; left :?Process ; right :?Process)

thus determining constructors and selectors as for types. However, for
cotypes, the constructors are optional and the selectors (which we henceforth
call observers) are mandatory. The latter requirement rules out Casl’s sort
alternatives making a given sort a subsort of the declared type, as in

type Int ::= sort Nat | − (Pos)
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Moreover, we also allow additional parameters for the observers. These have
to come from the local environment (recall that the latter consists of all the
declarations before the cotype):

spec Moore =
sorts In,Out
cotype State ::= (next : In → State; observe : Out)

end

The cotype definition in this case expands to

sort State
ops next : In × State → State;

observe : State → Out

Observers with additional parameters do not have a corresponding construc-
tor, since the constructor would need to have a higher-order type — e.g. in
the above example (In→ State) → State — which is unavailable in Casl.

Last but not least, the cotype construct introduces a number of additional ax-
ioms concerning the domains of definition of the observers, besides the axioms
relating constructors with their observers as for types:

• definedness of observers is independent of the additional parameters; the
domain of an observer can thus be defined as a subset of the associated
cotype,

• the domains of two observers in the same alternative are the same,
• the domains of two observers in different alternatives are disjoint, and
• the domains of all observers of a given sort are jointly exhaustive.

Thus, the alternatives in a cotype are to be understood as parts of a dis-
joint sum, so that cotypes, unlike types, correspond directly to coalgebras
(see Proposition 2 below).

Definition 1 A cotype in CoCasl is given by the local environment sorts
and the family of observers

CT = (S, (obsijk : Ti → Tijk)i=1...n,j=1...mi,k=1...rij
).

Here, S is a set of sorts (the local environment sorts, also called observable
sorts), T1 . . . Tn are the newly declared process types (or non-observable sorts)
in the cotype (which possibly involve mutual recursion like in Figure 8), and
obsijk is the k-th observer of the j-th alternative in the cotype definition of
Ti. The result sort Tijk of the observer may be either one of the Ti or one
of the local environment sorts in S. Next, consider observers with additional
parameters. In a cotype declaration, they are written obsijk : s1×· · ·×sm → s,
where s1 . . . sm come from S and s either is one of the Ti or comes from S as
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well. In order to keep the format obsijk : Ti → Tijk for the type of the observer,
the corresponding Tijk is not simply a sort, but a function space

s1 × · · · × sm → s,

and the observer, normally having type obsijk : s1 × · · · × sm × Ti → s, by
currying can be equivalently considered to have the higher order type

obsijk : Ti → (s1 × · · · × sm → s),

which is just Ti → Tijk. Although higher-order functions are not available in
CoCasl, we prefer this notation for uniformity reasons. Still, the signature
Sig(CT ) of a cotype CT is a first-order signature consisting of the local envi-
ronment sorts S, the cotype sorts T1 . . . Tn, and the first-order profiles of the
observers.

The induced theory of the cotype consists of the signature Sig(CT ) and the
axioms generated by the cotype declaration as described above. The induced
theory is also referred to as CT . An S-palette is an S-sorted family C = (Cs)
of sets of colours ; a C-colouring is a a family h of maps (hs : As → Cs)s∈S).
A CT -algebra A is called a (CT,C)-algebra if A interprets the non-observable
sorts as prescribed by C, i.e. As = Cs for all s ∈ S; a homomorphism of
(CT,C)-algebras is a CT -algebra homomorphism that acts as the identity on
the sorts in S.

Note that within cotypes, also constructors may be declared. However, we
ignore them here, since they do not contribute to the coalgebra structure.
However, they do play a role when homomorphisms are concerned, which is
why we exclude them in the next proposition:

Proposition 2 To a given CoCasl cotype definition without constructors
with induced theory CT and set S of observable sorts, one can associate a
functor F : Setn → Setn such that, for each S-palette C, the category of
(CT,C)-algebras is isomorphic to the category of F -coalgebras. In particular,
this implies that all homomorphisms between (CT,C)-algebras are closed.

PROOF. We begin with the parameterless case, without any local environ-
ment, i.e. we have a cotype

CT = (∅, (obsijk : Ti → Tijk)i=1...n,j=1...mi,k=1...rij
).

By abuse of notation, we treat the Ti as set variables in the definition of the
functor F : Setn → Setn:

F (T1, . . . , Tn) = (
∐
j

∏
k

T1,j,k, . . . ,
∐
j

∏
k

Tn,j,k),
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We now have to prove the stated isomorphism of categories. The axioms in Γ
ensure that each Ti is the disjoint sum of sets Xij, where Xij is the domain of
definition of the observers in the j-th alternative of the cotype declaration for
Ti. Thus, we can regard CT -algebras as coalgebras

(T1, . . . , Tn)
(g1, . . . , gn)

- F (T1, . . . , Tn)

on Setn by taking gi to be defined onXij by gi(x) = (obs ij1(x), . . . , obs ijrij
(x)).

It is easy to reverse this process: given an F -coalgebra A, the tuple
〈obs , . . . , obs ijrij

〉 of observers in the j-th alternative for Ti is defined as the
restriction of the i-th component of the structure map of A to the preim-
age of the j-th summand

∏
k Tijk of the i-th component of F (T1, . . . , Tn).

Altogether, this leads to a bijective correspondence between CT -algebras
and F -coalgebras. Furthermore, this correspondence is functorial, i.e. a tu-
ple h = (h1, . . . , hn) : M → N of maps is a homomorphism of CT -algebras iff
it is a homomorphism of the corresponding F -coalgebras. This equivalence is
due to the fact that homomorphisms of partial algebras preserve definedness
and hence respect the disjoint decompositions of the Ti, so that hi can be
decomposed into mi maps between the disjoint summands of Ti. It is straight-
forward to generalize these arguments to the case that S is non-empty. 2

Definition 3 Let S be a set of sorts called observable sorts, let Σ be a sig-
nature such that S is contained in the sorts of Σ, and let M be a Σ-model. A
binary relation R on M is called an (S,Σ)-bisimulation, if it

• is the equality relation on sorts in S, and
• satisfies the closed congruence property for the operations and predicates in

Σ. That is, for (a1, . . . , an), (b1, . . . , bn) ∈Mw such that ai R bi, i = 1, . . . , n,
we have
· for f ∈ TFw,s∪PFw,s, (fw,s)M(a1, . . . , an) is defined iff (fw,s)M(b1, . . . , bn)

is defined, and then

(fw,s)M(a1, . . . , an) R (fw,s)M(b1, . . . , bn).

· for p ∈ Pw,

(a1, . . . , an) ∈ (pw)M ⇐⇒ (b1, . . . , bn) ∈ (pw)M .

Two elements of M are called (S,Σ)-bisimilar, if they are in relation for some
bisimulation.

These notions easily carry over to cotypes: A CT -bisimulation for a cotype

CT = (S, (obsijk : Ti → Tijk)i=1...n,j=1...mi,k=1...rij
)

is just an (S, Sig(CT ))-bisimulation.
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Remark 4 It is easy to check that for cotypes, the notion of bisimulation
defined above agrees with the notion arising from the coalgebraic definition
given e.g. in [52] and the correspondence between coalgebras and cotypes
according to Proposition 2.

Note that Proposition 2 above does not hold in presence of constructors. It
would hold if one required that the homomorphism equations for constructors
only hold up to bisimilarity — or if we restrict ourselves to fully abstract
algebras in the sense defined below. For example, the above process cotype
without constructors

cotype Process ::= (hd1 :?Elem; next :?Process)
| (hd2 :?Elem; left :?Process ; right :?Process)

has a category of partial algebras that is isomorphic to the category of coal-
gebras for the functor

F (P ) = E × P + E × P × P

where E is the fixed interpretation of the sort Elem. In presence of the con-
structors cont and fork as in the original process specification above, we get
a subcategory of the original category of partial algebras — namely that con-
sisting only of those homomorphisms which preserve cont and fork . That said,
one should note that this does not make a difference in terms of final mod-
els (see below), since final models are fully abstract and hence the coalgebra
homomorphisms into the final model are automatically compatible with the
constructors.

In summary, type declarations provide useful abbreviations for signatures of
algebras, while cotype declarations provide useful abbreviations for theories
of coalgebras, the latter being formalized as partial algebras.

4 Generation and cogeneration constraints

In order to exclude ‘junk’ from models of datatypes, Casl provides generat-
edness constraints that essentially introduce (higher order) implicit induction
axioms. E.g., a typical specification of finite sets would require the type of
finite sets to be generated by the constant denoting the empty set and an
operation for addition of elements:

spec FiniteSet [sort Elem] =
generated type FinSet [Elem] ::= {} | + (Elem;FinSet [Elem]);
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spec Stream1 [sort Elem] =
cogenerated cotype

Stream ::= cons(hd : Elem; tl : Stream)
end

Fig. 3. Cogenerated specification of bit streams in CoCasl

.

Here, the generatedness constraint means that all finite sets can be constructed
by applications of {} and + . More generally, a generatedness constraint
consists of a set of sorts and a set of operation symbols (called constructors)
in a signature. It is fulfilled in a model, if each element of each carrier for
a constrained sort is the value of some constructor term with variables in
non-constrained sorts (where the variables may be interpreted with arbitrary
values from non-constrained sorts).

Dually to this, CoCasl introduces cogeneratedness constraints that amount
to an implicit coinduction axiom and thus restrict the models of the type to
fully abstract ones. This means that equality is the largest congruence w.r.t.
the introduced sorts, operations and predicates (excluding the constructors).
Put differently, everything that cannot be distinguished by its behaviour, as
determined by the observers and the predicates, is identified (where obser-
vations can only be made on sorts in the local environment, i.e. outside the
type declaration itself). In the example in Figure 3, the Stream-models are
(up to isomorphism) the subsets of Eω that are closed under tl, where E is
the interpretation of the sort Elem. (Note: since there is only one alternative,
there is no difference between a type and a cotype here.)

A more complex example is the specification of CCS – see Section 11. States
are generated by the CCS syntax, but they are identified if they are bisimilar
w.r.t. the ternary transition relation. This can be expressed in CoCasl by
stating that states are cogenerated w.r.t. the transition relation.

Given a signature Σ = (S,TF ,PF , P,≤), a cogeneration constraint over a
signature is a subsignature fragment (i.e. a tuple of subsets of the respective
signature components, which need not by itself form a complete signature)
Σ̄ = (S̄, T̄F , P̄F , P̄ ) of Σ. In the above example, the cogeneration constraint
is ({Elem}, {hd, tl}, ∅, ∅). The constraint Σ̄ is satisfied in a Σ-model M if each
(S̄, (S, T̄F , P̄F , P̄ ))-bisimulation on M is the equality relation.

In duality to generated types in Casl, the construct cogenerated cotype . . .
abbreviates cogenerated {cotype . . . }. No such abbreviation is provided for
cogenerated {type . . . }, the use of which is in fact expressly discouraged (as
are generated {cotypes . . . }). Example 11 below is intended as a deterrent
against the use of types where cotypes are expected.
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spec List [sort Elem] =
free type

List [Elem] ::= nil | :: (head :? Elem; tail :? List [Elem]);
op ++ : List [Elem]× List [Elem] → List [Elem];
forall e : Elem;K ,L : List [Elem]

• nil ++L = L %(concat nil)%
• (e :: K ) ++L = e :: K ++L %(concat cons)%

end

Fig. 4. Specification of lists over an arbitrary element sort in Casl.

A cogenerated cotype involving observers with additional parameters is that
of fully abstract Moore automata:

spec FullyAbstractMoore =
sorts In,Out
cogenerated cotype State ::= (next : In → State; observe : Out)

end

Remark 5 Note that observers of cotypes always have exactly one non-
observable argument. However, like the generated { . . . } construct in Casl,
the cogenerated { . . . } construct allows the inclusion of arbitrary signature
items in the cogeneratedness constraint, so that observers of arbitrary arity are
also possible. In particular, full abstractness for binary observers in the sense
of [56] (i.e. observers with two non-observable argument sorts) is expressible.

Remark 6 At the level of model homomorphisms, the duality between gen-
eratedness and cogeneratedness constraints becomes formally a lot clearer: a
generatedness constraint essentially amounts to a weakened form of initiality
in the sense that a model M of the corresponding specification is pre-initial
in the fibre over its reduct to the local environment (cf. Definition 9 below)
— i.e. there is at most one morphism from M into any other model over the
same reduct. Dually, a model M that satisfies a cogeneratedness constraint
is pre-final in its fibre in the sense that there exists at most one morphism
from any other model over the same reduct into M . This may also roughly be
expressed as follows: generated models do not have proper substructures, and
cogenerated models do not have proper quotients.

5 Free types and cofree cotypes

Casl allows the exclusion not only of ‘junk’ in datatypes, but also of ‘con-
fusion’, i.e. of equalities between different constructor terms. To this end, it
provides the (basic) free type construct. Free datatypes carry implicit axioms
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spec Stream2 [sort Elem] =
cofree cotype

Stream ::= (hd : Elem; tl : Stream)
end

Fig. 5. Cofree specification of bit streams in CoCasl.

spec FunctionType =
sorts A,B
cofree cotype

Fun[A,B ] ::= (eval : A → B)
end

Fig. 6. Cofree specification of function types.

that state, beside term-generatedness, the injectivity of the constructors and
the disjointness of their images. E.g., the specification of lists over an element
sort given in Figure 4 gives rise to axioms that state that nil is not of the
form x :: l, and that x1 :: l1 = x2 :: l2 implies x1 = x2 and l1 = l2. The
most immediate effect of these axioms is that recursive definitions on a free
datatype are conservative. The elements of a free datatype can be thought of
as being the (finite) constructor terms, i.e. in a suitable sense finite trees.

In CoCasl, we provide, dually, a cofree cotypes construct that specifies
the absolutely final coalgebra of infinite behaviour trees (see Example 11 on
why there is no cofree types construct). More concretely, this means that,
in addition to cogeneratedness, there is also a principle stating that there are
enough behaviours, namely all infinite trees [3] (with branching as specified
by the observers). In contrast to its dual (no confusion among constructors),
the latter principle cannot be expressed in first-order logic; however, a second-
order specification is possible (see below). In the example in Figure 5, the
Stream2-models are isomorphic to Eω, where E is the interpretation of the
sort Elem. An example with an extra parameter for the observer is the spec-
ification of function types in Figure 6 (actually, this shows that higher-order
types can be easily encoded in CoCasl). Similarly, Figure 7 specifies the fi-
nal Moore automaton. Finally, in Figure 8 we use mutually recursive cofree
cotypes to specify trees of infinite depth and branching, dualizing the Ntree
example of Figure 2.

We are now ready to dualize the important algebraic concept of term algebra.

Definition 7 Given a cotype

CT = (S, (obsijk : Ti → Tijk)i=1...n,j=1...mi,k=1...ri,j
)

14



spec FinalMoore1 =
sorts In,Out
cofree cotype State ::= (next : In → State; observe : Out)

end

Fig. 7. Cofree specification of the final Moore automaton.

spec InfTree [sort Elem] =
cofree cotypes

InfTree ::= (label : Elem; children : InfForest)
InfForest ::= (first : InfTree; rest : InfForest)

end

Fig. 8. Cofree specification of trees of possibly infinite depth and branching.

and an S-palette C, the behaviour algebra BehCT (C) is defined to be the
following (CT,C)-algebra:

• the carriers for observable sorts (i.e. in S) are those determined by C;
• the carriers for a non-observable sort Ti0 consist of all infinite trees of the

following form:
· each inner node is labelled with a pair (Ti, j), where Ti is a non-observable

sort and j ∈ {1, . . . ,mi} selects an alternative out of those for Ti;
· the root is labelled with (Ti0 , j0) for some j0;
· each leaf is labelled with an observable sort s ∈ S and some colour from
Cs;

· each inner node with label (Ti, j) has one child for each of the observers
obsijk (k = 1 . . . rij) and each tuple of colours for the extra parameters of
the observer. The child node is labelled with the result sort of the observer.

• an observer operation obsi0,j,k is defined for a tree with root (Ti0 , j0) if and
only if j = j0, and in this case, it just selects the child tree corresponding
to the observer and the argument colours for the extra parameters of the
observer.

Proposition 8 Given a cotype

CT = (S, (obsijk : Ti → Tijk)i=1...n,j=1...mi,k=1...rij
)

and an S-palette C, the behaviour algebra BehCT (C) is final in the category
of (CT,C)-algebras (note that the latter correspond to coalgebras).

PROOF. Using the characterization of Proposition 2, the result follows from
the general construction of final coalgebras for polynomial functors over the
category of {T1, . . . , Tn}-sorted sets (this generalizes the well-known result
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for Set [2,3]). Intuitively, the morphism from a given (CT,C)-algebra into
BehCT (C) constructs the behaviour of an element, which is the infinite tree
given by all possible observations that can be made successively applying the
observers until a value of observable sort (i.e. in S) is reached. 2

Given a signature Σ, we formally add cofreeness constraints of form
cofree(CT ), where

CT = (S, (obsijk : Ti → Tijk)i=1...n,j=1...mi,k=1...rij
)

is a cotype with Sig(CT ) ⊆ Σ, as Σ-sentences to the CoCasl logic. A cofree-
ness constraint cofree(CT ) holds in a Σ-algebra A if the reduct of A to Sig(CT )
is isomorphic to the behaviour algebra BehCT (C) over the set of colours C with
Cs := As for s ∈ S.

Note that this implies the satisfaction of the cogeneratedness constraint
(S, {obsijk|obsijk total}, {obsijk|obsijk partial}, ∅), i.e. each cofree cotype is also
cogenerated. The converse does not hold, i.e. a cogenerated cotype need not
be cofree. However, cogenerated cotypes still behave quite nicely (in contrast
to arbitrary cogenerated types): the elements of carriers of the non-observable
sorts (i.e. those outside S) are completely determined by their behaviours.
Thus, the elements can be identified with their behaviours, and up to isomor-
phism, we have a submodel of the cofree model. Hence, cofreeness essentially
adds the requirement that each possible behaviour is actually represented by
an element.

Full abstractness of cofree cotypes implies that cofreeness is not destroyed in
the presence of constructors. Normally, constructors are determined only up
to bisimilarity and hence may destroy the homomorphism condition. However,
in the cofree model, bisimilarity is just equality.

The main benefit of cofree cotypes (in comparison to cogenerated cotypes) is
the principle

corecursive definitions in cofree cotypes are conservative.

This completes the definition of CoCasl constraint sentences. Note that in
order to be able to translate the various constraints along signature morphisms
in such a way that the satisfaction condition for institutions is fulfilled, one has
to equip the constraints with an additional signature morphism, as in [5,31].
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spec NonDeterministicAutomata =
sort In
sort State
then free {

type FinSet ::= {} | { }(State) | ∪ (FinSet ;FinSet)
op ∪ : FinSet × FinSet → FinSet ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : In → FinSet)

end

Fig. 9. Specification of non-deterministic automata.

6 Structured free and cofree specifications

Besides institution-specific language constructs, Casl also provides
institution-independent structuring constructs. In particular, Casl provides
the structured free construct that restricts the model class to initial or free
models (cf. Section 1 for Casl’s notion of model, which is used also for Co-
Casl). That is, if Sp1 is a specification with signature Σ1, then the models of
Sp1 then free {Sp2} are those models M of Sp1 then Sp2 (cf. Section 1 for
the meaning of then) that are free over M |Σ1 w.r.t. the reduct functor |Σ1

associated to the inclusion of Σ1 into the signature of Sp1 then Sp2. This
allows for the specification of datatypes that are generated freely w.r.t. given
axioms, as, for example, in the specification of finite sets over a state sort
which is part of the specification of nondeterministic automata in Figure 9.
Here, the assoc, comm, idem and unit attributes specify the operation ∪
to be associative, commutative, idempotent and have unit {}.

The cofree { . . . } construct dualizes the free { . . . } construct by restricting
the model class of a specification to the cofree, i.e. final ones. This generalizes
the cofree cotypes construct to arbitrary specifications; in particular, final
models may be restricted by axioms (e.g. as in Figure 11 below).

More precisely, the semantics of cofree is defined as follows:

Definition 9 If Sp1 is a specification with signature Σ1, then the models
of Sp1 then cofree {Sp2} are those models M of Sp1 then Sp2 that are
fibre-final over M |Σ1 w.r.t. the reduct functor |Σ1 . Here, fibre-finality means
that M is the final object in the fibre over M |Σ1 . The fibre over M |Σ1 is
the full subcategory of Mod(Sp1 then Sp2) consisting of those models whose
Σ1-reduct is M |Σ1 .

This definition deviates somewhat from the semantics of free in that the latter
postulates initiality, i.e. that M is free over M |Σ1 with |Σ1-universal arrow
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id : M |Σ1 → M |Σ1 , which is stronger than fibre-initiality of M . We will see
shortly that the more liberal semantics for cofree is essential in cases where
sorts from the local environment occur as argument sorts of selectors. Call a
sort from the local environment an output sort if it occurs only as a result
type of selectors. In the cases of interest, a more general co-universal property
concerning, in the notation of the above definition, morphisms of Σ1-models
that are the identity on all sorts except possibly the output sorts, follows from
fibre-finality.

The cofree cotypes construct is equivalent to cofree { cotypes . . . }:

Proposition 10 If DD is a sequence of cotype declarations, then

cofree { cotypes DD } and cofree cotypes DD

have the same semantics.

PROOF. Thanks to the fact that the semantics of the cofree construct is
defined via fibre-finality, the interpretations of additional parameters for ob-
servers are fixed (in a given fibre). Hence, we can apply currying as in Def. 1.
The result then follows from Props. 2 and 8. 2

By contrast, the use of cofree { types . . . } should be avoided:

Example 11 The specification

free type Bool ::= false | true
then

cofree { type T ::= c1 (s1 :?Bool) | c2 (s2 :?Bool) }

is inconsistent. Indeed, by applying the uniqueness part of finality to a model
of the unrestricted type where T has an element on which both selectors are
undefined (this is allowed for types but not for cotypes), one obtains that
any model of the cofree type would be a singleton; however, singleton models
fail to satisfy the finality property e.g. for the model of the unrestricted type
where T is Bool ×Bool and the selectors are the projections.

As an example for the significance of the relaxation of the cofreeness condition,
consider the specification of Moore automata as given in Figure 10. Here, the
observer next depends not only on the state, but additionally on an input
letter.

In the standard theory of coalgebra, next would become a higher-order oper-
ation next : State→ StateIn , and the cofree coalgebra indeed yields the final
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spec FinalMoore2 =
sorts In,Out
then cofree {
cotype State ::= (next : In → State; observe : Out)
}

end

Fig. 10. Structured cofree specification of the final Moore automaton.

spec BitStream3 =
free type Bit ::= 0 | 1
then cofree {

cotype BitStream ::= (hd : Bit ; tl : BitStream)
∀s : BitStream
• hd(s) = 0 ∧ hd(tl(s)) = 0 ⇒ hd(tl(tl(s))) = 1 }

end

Fig. 11. Structured cofree specification of bit streams in CoCasl.

automaton showing all possible behaviours - but only for a fixed carrier for
In (the inputs). The carrier for Out is also regarded as fixed; however, one
can show that the co-universal property holds also for morphisms that act
non-trivially on Out . If the semantics of cofree required actual cofreeness,
i.e. a couniversal property also for morphisms that act non-trivially on In, the
specification would be inconsistent!

Let us now come to a further modification of the stream example. If the axiom
were omitted in the specification in Figure 11, the model class would be the
same as that in Figure 3, instantiated to the case of bits as elements. With the
axiom, the streams are restricted to those where two 0’s are always followed
by a 1. Again, this is unique up to isomorphism.

It is straightforward to specify iterated free/cofree constructions, similarly as
in [44]. Consider e.g. the specification of lists of streams of trees in Figure 12.
Alternatively, one could have used structured free and cofree constructs as
well:

SP then free {SP1} then cofree {SP2} then free . . .

Note that also in the latter case, there won’t be any free within a cofree or
vice versa. An example for free within cofree is shown in Figure 13. This spec-
ification extends the specification of non-deterministic automata of Figure 9
by an outer (structured) cofreeness constraint, so that its model class now
consists only of models where the cotype State is ‘the’ final non-deterministic
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spec ListStreamTree [sort Elem] =
free type

Tree ::= EmtpyTree
| Tree(left :?Tree; elem :?Elem; right :?Tree)

cofree cotype
Stream ::= (hd : Tree; tl : Stream)

free type
List ::= Nil | Cons(head :?Stream; tail :?List)

end

Fig. 12. Nested free and cofree (co)types.

spec FinalNonDeterministicAutomaton =
sort In
then cofree {

sort State
then free {

type Set ::= {} | { }(State) | ∪ (Set ; Set)
op ∪ : Set × Set → Set ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : In → Set) }

end

Fig. 13. A free type within a cofree specification.

automaton (determined uniquely up to isomorphism) over the interpretation
of In rather than the class of all non-deterministic automata. Here, like in
Figure 9, the inner free has to be a structured one, since finite sets cannot be
specified as free type directly. In principle, free and cofree can be nested
arbitrarily; however, care must be taken to ensure that this does not lead to
inconsistencies. A general consistency criterion that covers nestings of the type
used in Figure 13 is given in Section 10.

7 Modal logic

We now define a multi-sorted modal logic for use with process types, the basic
idea being that observer operations give rise to modalities that describe the
evolution of the system upon application of the observer. Related work, to
be discussed at the end of Section 8, includes [18,19,23,51]. The underlying
intuition is that the non-observable sorts of a process type form a multi-sorted
state space, and that observers either directly produce observable values or ef-
fect an evolution of the state. Modal logic allows formulating statements about

20



ϕ ::= t1 = t2
| t1 e

= t2
| def t
| [t]ϕ

| 〈t〉ϕ
| [t∗]ϕ
| 〈t∗〉ϕ
| [{t1, . . . , tn}]ϕ
| 〈{t1, . . . , tn}〉ϕ
| [{t1, . . . , tn}∗]ϕ
| 〈{t1, . . . , tn}∗〉ϕ

Fig. 14. Syntax of CoCasl’s modal logic.

such systems without explicit reference to the states. The effect is that ax-
ioms formulated in modal logic indeed describe only the observable behaviour
of a system, formally: satisfaction of modal formulae is bisimulation invariant
(see Section 10 and e.g. [22,35]). Methodologically, this means that the state
space is appropriately encapsulated; a technical advantage is that restriction
by modal formulae preserves existence of final models (cf. Section 10).

In CoCasl, this takes the following shape. We define modal formulae for
a given cotype declaration. All the sorts defined in the cotype are called
non-observable, and the selectors are called observers. Sorts from the local
environment are called observable. These notions can also be reformulated in
terms of a signature of the modal CoCasl institution, see Section 9.

The full syntax of CoCasl’s modal logic is given in Fig. 14 and explained
successively in the sequel. Note that the syntax does not include propositional
variables, since these would violate invariance under bisimulation. Atomic for-
mulae in the modal logic involve observer terms. These are built from unary
observers with observable result sort (which are treated as flexible constants,
i.e. constants that depend on the respective state), observers with additional
parameters (which then need to be applied to sufficiently many observer terms)
and variables and function symbols from the local environment. The modal
logic has (existential or strong) equations between as well as definedness as-
sertions of observer terms as atomic sentences. Sentences may be combined
using the usual propositional connectives, the quantification over variables of
observable sorts, as well as the following modalities: An observer t (possibly
applied to extra parameters) with non-observable result sort leads to modali-
ties [t], 〈t〉, [t∗], 〈t∗〉 (all-next, some-next, always, eventually). Using this logic,
we can write, in the example of Figure 11,

hd = 0 ∧ [tl]hd = 0 ⇒ [tl][tl]hd = 1
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as syntactic sugar for

hd(s) = 0 ∧ hd(tl(s)) = 0 ⇒ hd(tl(tl(s))) = 1

More precisely, we define the meaning of a modal formula ϕ to be the meaning
of the formula

∀x : s[[ϕ]]x:s

Here, [[ ]] takes a modal formula (or an observer term) and a sorted term to
an ordinary formula (or ordinary term). Intuitively, the sorted term, which is
written as a subscript, carries the current state. This is defined as follows:

• [[u]]t:s ≡ u, if u is an observer term consisting of variables and operation
symbols from the local environment,

• [[f ]]t:s ≡ f(t) if f : s→ s′ is a unary observer with observable result,
• [[f(t1, . . . , tn)]]t:s ≡ f([[t1]]t:s, . . . , [[tn]]t:s, t), if f : s1 × · · · × sn × s → s′ is

an observer with additional parameters and observable result, and ti is an
observer term of sort si (i = 1, . . . , n),

• [[u1 = u2]]t:s ≡ [[u1]]t:s = [[u2]]t:s,
• [[u1

e
= u2]]t:s ≡ [[u1]]t:s

e
= [[u2]]t:s,

• [[def u]]t:s ≡ def [[u]]t:s,
• [[[f ]ϕ]]t:s ≡ def f(t) ⇒ [[ϕ]]f(t):s′ , if f : s → s′ is a unary observer with

non-observable result,
• [[[f(t1, . . . , tn)]ϕ]]t:s ≡ def f([[t1]]t:s, . . . , [[tn]]t:s, t) ⇒ [[ϕ]]f([[t1]]t:s,...,[[tn]]t:s,t):s′ , if

f : s1 × · · · × sn × s → s′ is an observer with additional parameters and
non-observable result and ti is an observer term of sort si (i = 1, . . . , n),

• [[[f ]ϕ]]t:s ≡ ∀x1 : s1, . . . , xn : sn . def f(x1, . . . , xn, t) ⇒ [[ϕ]]f(x1,...,xn,t):s′ , if
f : s1 × · · · × sn × s → s′ is an observer with additional parameters and
non-observable result.

The translation is extended to the logical connectives and quantifiers by struc-
tural rules which just copy these.

Note that each modal formula has a sort, which is the sort occurring in the
subscript argument of the translation function. In particular, a modal formula
is well-formed and the translation function [[ ]] is defined only in case of correct
sorting. One may switch to a different sort (i.e. a different state space) using
the modalities, but only in a well-sorted way. If necessary (due to overloading),
observers have to be provided with explicit types.

The other modalities now can be defined as derived notions, where the starred
forms [t∗], 〈t∗〉, being inspired by dynamic logic, need infinitary formulae. We
here only treat the case of unary observers, the other cases being entirely
analogous:

• [[〈f〉ϕ]]t:s ≡ ¬[[[f ]¬ϕ]]t:s
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• [[[f∗]ϕ]]t:s ≡ [[ϕ ∧ [f ]ϕ ∧ [f ][f ]ϕ ∧ [f ][f ][f ]ϕ ∧ . . .]]
(here, argument and result sort of f must coincide)

• [[〈f∗〉ϕ]]t:s ≡ ¬[[[f∗]¬ϕ]]t:s

Alternatively, one can define the starred modalities via free and cofree. E.g.
[f∗]ϕ(x : s′) can be replaced with p(x) if the latter is defined to be the greatest
predicate that implies ϕ and is closed under [f ]. This can be expressed via
cofree {

pred p : s ′ × s
• ∀x : s ′ . p(x ) ⇒ ϕ ∧ [f ]p(x )

}

The starred modalities have the limitation that only one specific observation
can be repeated arbitrary often. However, sometimes it is desirable to express
that a group of observations can be repeated. We hence allow for grouping
observers with braces: [{f1, . . . , fn}] and 〈{f1, . . . , fn}〉 denote the conjunc-
tion and the disjunction, respectively, of the modal formulae obtained for the
individual observers. Note that for the unstarred versions, this also can be
expressed explicitly as a conjunction (disjunction), while this is not possible
for the starred versions. This machinery allows us to express that a buffer
eventually outputs all elements that are read in as follows:

∀a : Elem .

[next(input(a))] 〈{next(input), next(output)}∗〉 〈next(output(a))〉 true

Note that in the example of Sect. 11.5, 〈{next(input), next(output)}∗〉 can also
be expressed as 〈next∗〉. However, in general there may be operations beyond
input and output , such that this is not a semantically equivalent abbreviation.

The modal logic introduced above allows expressing safety or fairness proper-
ties. For example, the model of the specification BitStream4 of Figure 15
consists, up to isomorphism, of those bitstreams that will always eventually
output a 1. Here, the ‘always’ stems from the fact that the modal formula is,
on the outside, implicitly quantified over all states, i.e. over all elements of
type BitStream.

Remark 12 The modal µ-calculus [20], which provides a syntax for least and
greatest fixed points of recursive modal predicate definitions, is expressible
using free and cofree specifications: µ is expressible by free recursively defined
predicates, while ν is expressible by cofree recursively defined predicates. We
have refrained from including syntactical sugar for the µ-calculus in CoCasl,
because this would involve higher order variables and hence appear to be
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spec BitStream4 =
free type Bit ::= 0 | 1
then cofree {

cotype BitStream ::= (hd : Bit ; tl : BitStream)
• 〈tl∗〉hd = 1
}

end

Fig. 15. Specification of a fairness property.

against the grain of CoCasl, which is first-order in spirit (although higher-
order types can be emulated).

8 Modalities for structured observations

The limitation of the simple modal operators introduced in the previous sec-
tion is that they are defined only for observers whose result sort is a non-
observable sort, such as tl : Stream → Stream. We now extend the concept to
also cover observers into datatypes over the non-observable sorts, the leading
example being the observer next : In × State → Set from Figure 9. In this
example, the difference between the associated box and diamond operators
becomes much clearer than before: [next(i)]φ will be intended to hold in a
state s if φ holds for all successor states of s on input i, i.e. for all elements
of next(i, s), while 〈next(i)〉φ will express that there exists a successor state
that satisfies φ.

In CoCasl, a standard way to describe functors is as algebraic datatypes:

Definition 13 A functor T : Setn → Set is called a datatype if it is given
in terms of parameter sorts, (total) constructor operations, possibly involving
mutual recursion with other datatypes, and equations between constructor
terms. More precisely, T is a datatype if it is of the form Pi ◦ S, where Pi

is the i-th projection Setn → Set and S : Setn → Setn is the free algebra
monad associated to an n-sorted (total) algebraic signature Σ and a set E
of Σ-equations in the usual sense of universal algebra. The triple (Σ, E, i) is
called a presentation of T . Given such a presentation, a constructor term over
a family X̄ = (Xj) of n sets is a Σ-term over the variable supply X̄ (i.e.
Xj is the set of variables for the j-th sort). Every constructor term over X̄
represents an element of TX̄. A datatype T is called non-cancellative if E can
be chosen in such a way that each equation α = β in E satisfies the variable
restriction stating that α and β have the same free variables.

It is easy to show that any equation holding between constructor terms in a
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non-cancellative datatype satisfies the variable restriction.

Example 14 All absolutely free datatypes such as lists, trees, option types
etc. are non-cancellative; so are finite sets and multisets (‘bags’). E.g., finite
subsets of X are built from the elements of X by means of three constructors,
namely empty set, singleton, and union, with equations stating associativity,
commutativity, and idempotence of the union operator and neutrality of the
empty set (cf. Figure 9); all these equations satisfy the variable restriction. The
datatype of finitely branching trees is a non-cancellative datatype whose defini-
tion requires mutual recursion with a second (also non-cancellative) datatype
of ‘forests’ (i.e. lists of trees). A typical example of a datatype that fails to be
non-cancellative is the free abelian group monad, which takes a set X to the
set of maps X → Z with finite support; such maps are written in the form∑k

i=1 nixi, with k ∈ N, ni ∈ Z and xi ∈ X, i = 1, . . . , k. Here, the equation
x− x = 0 violates the variable restriction.

Definition 15 Let T : Setn → Set be a functor. Let X̄ = (Xj) be a family
of n sets, let t ∈ TX̄, and let φ be a predicate on Xi, read as a function
from Xi into a type Bool of boolean truth values. Let T̄X̄,i denote the functor
Set → Set obtained from T by fixing all arguments except the i-th argument
to X̄. Then we put

[[t]]φ : ⇐⇒ (T̄X̄,iφ) t = (T̄X̄,i>) t,

where > denotes the constant true predicate.

Example 16 In typical datatypes (cf. Example 14), the above definition is
made explicit as follows.

• If T is the finite power set functor, then [[t]]φ holds iff all elements of t satisfy
φ.

• If T is the list functor, then [[t]]φ holds iff all entries of t satisfy φ.
• If T is the functor ‘multiplication with 2’, i.e. TX = X+X, then [[t]]φ holds

iff δX(t) satisfies φ, where δX is the codiagonal [id, id] : X +X → X.
• If T is the finite multiset functor, then [[t]]φ holds iff all elements occurring

in t with non-zero multiplicity satisfy φ.
• If T is the free abelian groups functor, then [[t]]φ holds iff the elements

violating φ have combined multiplicity 0 in t; e.g. one has [[a− b]] false.

For datatypes in general, the action of the arising functor T on maps can in
principle be defined in CoCasl by primitive recursion; e.g. for the datatype
of finite sets specified as in Figure 9, instantiated for the sort State as in the
specification and, additionally, for a type of booleans, we can define Tφ for a
predicate φ (written phi below) on State as the function setphi determined by
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var s : State, t1 , t2 : Set
• setphi({}) = {}
• setphi({s}) = {phi(s)}
• setphi(t1 ∪ t2 ) = setphi(t1 ) ∪ setphi(t2 )

Analogously, one defines a function settrue representing T>, and then [[t]]φ
can be written in CoCasl as the equation setphi(t) = settrue(t).

We note

Proposition 17 In the notation of Definition 15, we have

[[(T̄X̄,if)t]]φ ⇐⇒ [[t]] (φ ◦ f)

for every map f : Xi → Y .

PROOF. Just note that (T̄X,iφ)(T̄X,if)t = (T̄X,i(φ◦f)t and (T̄X,i>)(T̄X,if)t =
(T̄X,i>)t. 2

In the terminology of [22,35], the above proposition states that the assignment
(t, φ) 7→ [[t]]φ is a predicate lifting.

The last item in the Example 16 shows that modal operators arising from
Definition 15 (see below) will in general fail to be normal. However, we have

Theorem 18 Let T : Setn → Set be a non-cancellative datatype with presen-
tation (Σ, E, i). In the notation of Definition 15, the following are equivalent:

(i) t can be represented by a constructor term α such that every element of
Xi appearing in α as a free variable satisfies φ;

(ii) for every representation of t by a constructor term α, every element of
Xi appearing in α as a free variable satisfies φ;

(iii) [[t]]φ.

Corollary 19 Let T be a non-cancellative datatype. In the notation of the
above theorem, [[t]]φ implies [[t]]ψ whenever φ implies ψ. Moreover,

(∀i. [[t]]φi) ⇐⇒ [[t]] (∀i.φi)

for every family of predicates φi.

Note that the corollary fails to generalize to arbitrary datatypes. E.g. for the
free abelian groups functor (cf. Example 14), by the description of [[t]]φ given
in Example 16 we have [[a− b]] false, but not [[a− b]] {a}.
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PROOF (Theorem 18). (i) ⇐⇒ (ii): By the variable restriction, all rep-
resentations of t by constructor terms use the same variables from Xi.

(ii) =⇒ (iii): Let α be a constructor term representing t. Then a representing
term of (T̄X,iφ)t is obtained by replacing every variable x ∈ Xi occurring
in α by φ(x). Since by assumption φ(x) = > for such x, the resulting term
represents also (T̄X,i>)t.

(iii) =⇒ (ii): Let x occur in a representation α of t. Then φ(x) occurs in a
representation of (T̄X,iφ)t, hence by the variable restriction also in the repre-
sentation of (T̄X,i>)t = (T̄X,iφ)t obtained by substituting each element of Xi

occurring in α by >. Thus, φ(x) = >. 2

Remark 20 For non-cancellative datatypes T , the map predicate lifting φ 7→
λt. [[t]]φ arises from a natural relation in the sense of [36], i.e. (in the single-
sorted case) from a natural transformation µ : T → P into the covariant power
set functor P ; here, µX takes a term t ∈ TX to the set of variables contained
in t. Even for non-cancellative types, it is not in general the case that the
arising modal logic is expressive, i.e. distinguishes non-bisimilar states. This
fails e.g. for the finite multiset functor, i.e. the functor that takes a set X to
the set of maps X → N with finite support.

Given these definitions, the need arises for CoCasl language constructs
that mark datatypes intended as functor definitions for modal operators. We
therefore introduce a new semantic annotation %modal for free specifica-
tions. Explicitly, the annotation

Sp1 then free %modal { Sp2 }

is well-formed iff

• Sp2 is a basic specification consisting only of a type declaration (possibly
declaring several mutually recursive types) and equational axioms;

• the types declared in Sp2 are fresh, i.e. not already declared in Sp1;
• the equations are only between terms of the newly declared types;
• the type declaration contains selectors only if there are no equations.

(Note that generally, the use of selectors in type declarations other than ab-
solutely free types tends to produce specification errors.) Datatypes declared
by a %modal free extension are called derived ; every derived datatype gives
rise to a datatype functor T : Setn → Set, where the n arguments, called the
type parameters of the datatype, correspond to the sorts declared in Sp1.

We can now make the extended syntax of modal logic explicit: If f : R1 ×
. . . Rn×S → W is an observer with parameter sorts Ri, where W is a derived
datatype in the above sense, then f gives rise to a family of modal operators
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[f(r1, . . . , rn)], indexed over the elements of the parameter sorts. Such modal
operators are called structured modal operators, to be distinguished from the
simple modal operators introduced in the previous section. A modal formula of
the form [f(r1, . . . , rn)]φ has type S; here, φ can be a modal formula of any type
V that appears as a type parameter of W . The type W is, for purposes of the
modal logic, firmly connected with the %modal free extension that defines it;
in particular, defining the same type in two different such extensions impossible
due to the freshness condition above. Thus, the modal operator [f(r1, . . . , rn)]
is unambiguously associated with a datatype functor T : Setn → Set to be
used in its interpretation. Now let φ be a modal formula of type V , where V is
the i-th type parameter of T . Then the semantics of [f(r1, . . . , rn)]φ is given
as follows:

Definition 21 Let s be of type S. Then

s |= [f(r1, . . . , rn)]φ iff [[f(r1, . . . , rn, s)]]φ,

where the right hand formula is to be read according to Definition 15 (w.r.t.
T and i).

This definition is easily seen to be compatible with the semantics for simple
modal operators given in Section 7, so that we can regard simple modal op-
erators as a special case of structured modal operators. The diamond modal-
ity 〈f(r1, . . . , rn)〉 is defined as ¬[f(r1, . . . , rn)]¬. The definition of iterated
modalities [f(r1, . . . , rn)∗], as well as implicit quantification by omission of
parameters, carries over directly from Section 7. E.g. given the specification
of non-deterministic automata of Figure 9, 〈next(i)〉φ holds in a state s iff
next(s) contains an element satisfying φ, [next]φ holds iff for all inputs i, all
elements of next(i)(s) satisfy φ, and 〈next∗〉φ holds iff there exists a sequence
of inputs through which a state satisfying φ can be reached from s.

Remark 22 It should be noted that, by the above, the structured modal
operator [f(r1, . . . , rn)] is overloaded in the sense that it applies to modal
formulae of type V for all type parameters V of T . In practice, this means
that parsing modal formulae requires overloading resolution in much the same
style as for overloaded Casl terms. In the case of ambiguities, atomic modal
formulae can always be disambiguated by providing explicit type annotations
for flexible constants, the only exception to this being the atomic formulae
true and false. Beyond this, CoCasl allows disambiguating modal operators
by annotating them explicitly with the intended type of the following modal
formula in the form [f(r1, . . . , rn) : V ]. (Confusion of this notation with the
annotation of operators with explicit profiles, which is also denoted by the
colon ‘:’ in Casl, is unlikely since the profiles of observers of cotypes always
contain the function arrow.)

Example 23 For the case where there is only one type parameter, the
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semantics of [f ]φ is illustrated in Example 16 — just note that, in the
notation used there, the element t ∈ TX is now parametrized by a state s.
As a simple example with several type parameters, consider the following.

sorts S ,V
then free %modal {

types Sum::= left(S ) | right(V )
Set ::= {} | ins(Sum, Set)

forall x1 , x2 : Sum; s : Set
• ins(x1 , ins(x2 , s)) = ins(x2 , ins(x1 , s))
• ins(x1 , ins(x1 , s)) = ins(x1 , s)

}

(I.e. Set is specified as the finite powerset of S + V .) Suppose that we have
observers

ops next : In × S → Set
out : V → Nat

where In is a parameter sort of inputs. Then the formula out = 0 has type
V . Hence, the formula [next(i)]out = 0 , of type S, holds in s : S iff v satisfies
out = 0 for each element right(v) of next(i , s). Contrastingly, the formula
[next(j )][next(i)]out = 0 holds in s : S iff s1 satisfies [next(i)]out = 0 for
each element s1 = left(s) of next(j , s). The formula [next(i)]false is ambiguous
and thus has to be disambiguated as explained in Remark 22: [next(i) : S ]false
holds in a state s : S iff next(i) does not contain an element of the form
left(s1 ), and [next(i) : V ]false holds iff next(i) does not contain an element
of the form right(v).

Example 24 Consider the specification of non-repetitive non-deterministic
automata in Figure 16. Here, we express that no input letter i may occur
all the time, that is, when the letter i’s is input non-stop (〈next(i)∗〉), the
automaton will eventually get stuck ([next(i)] false).

Remark 25 Like the simple modal logic of Section 7, the structured modal
operators can be regarded as syntactical sugar and thus do not add expres-
sivity to CoCasl. The encoding is slightly more complicated than for simple
modal operators; moreover, one has to introduce auxiliary sorts and opera-
tions which later have to be hidden — i.e. while the simple modal logic can
be translated directly into first order logic, the structured operators require
structured specifications for their translation. It should be stressed, however,
that the required symbol hiding is comparatively harmless, since the hidden
sorts and operations are not only monomorphic, but also do not impose extra
conditions on model morphisms, so that hiding them induces an equivalence of
model categories. In fact, for precisely this reason, hiding the auxiliary symbols
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spec NonRepetitiveNonDeterministicAutomata =
sort In
sort State
then free %modal{

type Set ::= {} | { }(State) | ∪ (Set ; Set)
op ∪ : Set × Set → Set ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : In → Set)
• ∀i : In . 〈next(i)∗〉[next(i)] false

end

Fig. 16. Specification of non-repetitive non-deterministic automata using modalities
for structured observations.

is really unnecessary from a theoretical perspective; it serves only syntactical
convenience in that it avoids overburdening the signature.

Explicitly, the encoding works as follows. Let S be a non-observable sort with
observer f : R1 × · · · ×Rn × S → W , where W is a derived datatype with as-
sociated datatype functor T , and let φ be a modal formula of type U , already
translated into a function phi : S → Bool for a sort Bool of booleans. Reusing
the notation of Definition 15, we can write W = T̄X,iS. Moreover, one can
specify the type TB := T̄X,iBool by repeating the associated free %modal
block with S replaced by Bool and W replaced by TB . As laid out in Exam-
ple 16, one then recursively defines functions tphi and ttrue representing the
functions T̄X,iφ, T̄X,i> : W → TB . A truth function boxphi : S → bool which
encodes satisfaction of [f(r1, . . . , rn)]φ in a state s : S is defined by

• boxphi(s) = true ⇔ tphi(f (r1 , . . . , rn , s)) = ttrue(f (r1 , . . . , rn , s))

The translation of the ambient modal logic formula is then continued using
boxphi . At the outermost level, validity of a modal formula φ, translated into
a function phi : S → Bool , is translated into the formula

• ∀s : S • phi(s) = true

Finally, the auxiliary sorts TB and all function symbols introduced along the
way are hidden.

We conclude the section with the announced discussion of related work on
modal logic for coalgebra (omitting the logic developed in the seminal pa-
per [27], which is not immediately suitable for use in a specification language
due to the presence of infinitary conjunction and the complex nature of its
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modal operator). The syntax chosen here is largely in the spirit of [18,23] in
that modalities are indexed by observer terms. The syntax of [19], inherited
from [49], differs in that it uses instead modal operators built along the struc-
ture of the signature functor, plus a single modality for the coalgebra structure.
For the functors covered in [19], this choice does not affect expressivity at the
level of state formulae. (The syntax of [19] allows formulating modal state-
ments also at the level of the functor ingredients such as products and sums;
however, the main interest is still in state formulae.) The syntax of the modal
operators in CCSL, in turn, deviates from the others in that state variables
are kept explicit; moreover, CCSL has an explicit bisimilarity relation (which
can be emulated in CoCasl using cogeneratedness constraints). Among the
pre-existing modal logics for coalgebra, [19] is unique (along with CoCasl,
of course) in admitting several non-observable sorts. Iterative modalities as in
CoCasl are otherwise found only in CCSL.

The main novel feature of the modal logic introduced here is the generality
of the datatypes admitted as observations, i.e. in the terminology of [36] the
range of datatypes from which we generically extract modal operators. At
this point, CCSL and the logic of [19] are incomparable in terms of generality:
CCSL covers only absolutely free datatypes, while [19] admits, besides simple
and parametrized observations, only (finite or infinite) power sets (under the
heading of Kripke polynomial functors). Our notion of datatype includes both
these cases, which are in fact even non-cancellative.

9 An institution for modal CoCasl

We now describe how modal formulae are incorporated into an extended in-
stitution for CoCasl. We have shown that the modal logic can be regarded
as syntactical sugar over the remaining language. However, for some purposes
it is necessary to retain the modal formulae explicitly, e.g. in order to pass
them on to a modal theorem prover or in order to incorporate CoCasl into
a heterogeneous framework such as heterogeneous Casl [28,32], but most no-
tably in order to integrate modal CoCasl into the institution-independent
framework of Casl with regard to structured and architectural specifications.

We recall that defining an institution amounts to defining notions of signature,
signature morphism, sentence, sentence translation, model, model reduction,
and satisfaction of sentences in models. Satisfaction is subject to the satisfac-
tion condition stating that a model M satisfies the translation of a sentence φ
along a signature morphism σ iff the reduct of M along σ satisfies φ. See [14]
for detailed definitions.

For definiteness, we record the following.

31



Definition 26 The (plain) CoCasl institution is identical to the Casl in-
stitution [34], except that it has two additional types of sentences, namely,
cogeneratedness constraints and cofreeness constraints as explained in Sec-
tions 4 and 5.

From this institution, which does not record enough information on cotype
definitions in order to define the required notion of modal formula, we distin-
guish the modal CoCasl institution, defined as follows.

Definition 27 An extended CoCasl signature consists of a Casl signature
(cf. Sect. 1, see also [34] for details) and the following additional data:

• a transitive relation sees and a partial equivalence relation sibling on the
set of sorts.

• A set G of distinguished presentations, where a presentation is a pair con-
sisting of a sort generation constraint (S, F ) and a finite set E of equations
between terms of sorts in S. The distinguished presentations are required to
have pairwise disjoint sort sets; i.e. ((S1, F1), E1), ((S2, F2), E2) ∈ G implies
S1 ∩ S2 = ∅. A sort S for which there exists ((S, F ), E) ∈ G, necessarily
unique, such that S ∈ S is called a derived datatype, and in this case, (S, F )
is called the presentation of S.

A sort is called a cotype if it is in the domain of sibling (in signatures generated
by CoCasl specifications, the cotypes in this sense will indeed be the sorts
coming from cotype declarations).

Signature morphisms σ are required to

• preserve the sibling and sees relations
• reflect derived datatypes; i.e. if σ(S) is a derived datatype, then so is S
• be injective on derived datatypes
• preserve distinguished presentations; i.e. if ((S, F ), E) is a distinguished

presentation, then so is σ((S, F ), E) = ((σ[S], σ[F ]), σ[E]) (since derived
datatypes are mapped injectively, there is no need to annotate presentations
with a signature morphism as in the case of sort generation constraints in
general).

The set of sentences associated to an extended CoCasl signature Σ consists
of the sentences associated to the underlying Casl signature in the CoCasl
institution and, additionally, the modal formulae over Σ. The syntax of modal
formulae is defined as in Sections 7 and 8, with flexible constants and modal
operators determined as follows. We say that a modal operator has type U → S
if it applies to modal formulae of type U , yielding modal formulae of type S.
Each function symbol f : R1 × · · · × Rn × S → W , where S is a cotype that
sees the Ri, gives rise to
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• a parametrized flexible constant f : R1 × · · · ×Rn → W if S sees W ;
• simple modal operators [f(r1, . . . , rn)], 〈f(r1, . . . , rn)〉, [f(r1, . . . , rn)∗], and
〈f(r1, . . . , rn)∗〉 of type W → S, parametrized over ri : Ri, i = 1, . . . , n, if
W is a sibling of S;

• structured modal operators [f(r1, . . . , rn)] etc. of type U → S if W is a
derived datatype with presentation ((S, F ), E) and U is a sibling of S that
appears as an argument type of a constructor in F and is not contained in
S (if there are several possible U , then there are several modal operators
with corresponding different types).

Finally, modal operators can be combined e.g. in the form
[{f1(r11, . . . , r1n1), . . . , fl(rk1, . . . , rknk

)}], and parameters may be omit-
ted as explained in Sections 7 and 8.

Given a modal formula φ, the translation of φ along a signature morphism σ
is defined by recursion over the formula structure. Here, modal operators and
flexible constants associated to a function symbol f are translated into the
corresponding entities for σ(f), which exist by preservation of the sees and
sibling relations.

The notions of model and model reduction for extended CoCasl signatures
is the same as in the plain CoCasl institution, up to the following additional
condition on models: if W is a derived datatype with presentation ((S, F ), E),
then the interpretation of W must be an initial algebra for this presentation,
i.e. isomorphic to the corresponding sort in the term algebra of constructor
terms w.r.t. the set F of constructors modulo the equations in E.

The satisfaction relation for modal formulae is defined as described in Sec-
tion 7. The semantics of structured modal operators is determined by the
presentations of derived datatypes according to Definition 15. Explicitly, let
φ be a modal formula of type U , and let f : R1 × · · · × Rn × S → W , where
S sees the Ri, W is a derived datatype with presentation ((S, F ), E), and U
is a sibling of S that appears as an argument type of a constructor in F and
is not contained in S. The presentation ((S, F ), E) induces an initial algebra
functor T : Setn → Set, where n is the number of sorts outside S. Since
U /∈ S, we obtain a functor T̄ : Set → Set by fixing all arguments of the
functor T except the one for the sort U to their interpretations in the present
model; note in particular T̄U = W . Then [f(r1, . . . , rn)]φ holds in a state s : S
iff T̄ [[φ]](f(r1, . . . , rn, s)) = T̄>(f(r1, . . . , rn, s)), where [[φ]] : U → Bool is the
interpretation of φ and the term f(r1, . . . , rn, s) is abused to denote its own
interpretation.

Proposition and Definition 28 These data define an institution, the
modal CoCasl institution.
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PROOF. We have to establish the satisfaction condition for modal formulae.
This is done by a straightforward induction on the formula structure; the step
involving applications of structured modal operators goes through thanks to
preservation of presentations of derived datatypes. 2

The additional data for extended CoCasl signatures show up in the seman-
tics of CoCasl constructs as follows. The sees and sibling relations are de-
termined purely by the cotype declarations. W.r.t. these relations, a cotype
declaration of cotypes S1, . . . , Sn has the following effects.

• The sees relation is extended by relations Si sees U for all sorts U in the local
environment such that Si has a selector with result type U or a parameter
(i.e. argument other than Si) of type U , except when U is either one of
the Sj or when one of the Sj is a derived datatype and U appears as an
argument type of a constructor in its presentation. The transitive closure of
the resulting relation is the new sees relation.

• The cotypes S1, . . . , Sn are declared to be siblings. The partial equivalence
generated by the resulting relation is the new sibling relation.

In particular, redeclaring a cotype may increase the number of sorts it sees
as well as the number of its siblings. The derived datatypes of an extended
CoCasl signature, on the other hand, are determined by the free %modal
blocks: by the format enforced for such a block, it determines a presentation,
which is added to the set of distinguished presentations of the extended signa-
ture. The rules for free %modal blocks are such that presentations are then
indeed disjoint. Note that the restriction that signature morphisms be injec-
tive on derived datatypes does impose an additional condition on renamings,
which however does not seem to be an actual limitation in a practical sense.

The intuition behind this is that the local environment is regarded as observ-
able for purposes of observing a given cotype; i.e. the sees relation gives rise
to a local notion of observability. In particular, it is possible to instantiate
observable parameter sorts in a parametrized specification such as the speci-
fication List [sort Elem] of lists of entries of type Elem with, 〈f(r1, . . . , rn)〉,
[f(r1, . . . , rn)∗], and 〈f(r1, . . . , rn)∗〉 a non-observable argument sort to obtain
e.g. lists of streams.

Remark 29 The above definitions do not prevent the user from causing a
certain amount of havoc by abusive renaming or redeclaration of symbols. E.g.
it is possible to declare a cotype S that sees a sort T in its local environment,
and then redeclare T as a cotype that sees S and hence itself. Then an observer
f : T → T gives rise both to a flexible constant f and to a modal operator [f ],
despite the proviso in the semantics of cotypes which excludes siblings from the
sees relation. While this would certainly be regarded as a specification error
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— the sorts S and T would more appropriately be defined within a single
cotype declaration — we have preferred delegating this and further problems
to a forthcoming set of methodological guidelines rather than overburden the
definition of the signature category with further formal restrictions.

Remark 30 The definition, and hence the implementation, of the modal Co-
Casl institution can be simplified for the sublanguage of CoCasl that uses
only structured modal operators for non-cancellative datatypes (this restric-
tion can be statically checked). In this sublanguage, it is, thanks to Theo-
rem 18, unnecessary to record the equations defining a derived datatype —
we need only its constructors, which then enable us to define the semantics of
modal operators by means of Conditions (i) or (ii) of Theorem 18.

The following fact is of importance w.r.t. instantiations of parametrized spec-
ifications in the institution-independent framework of Casl structured spec-
ifications.

Proposition 31 The category of extended CoCasl signatures has pushouts.

PROOF. Let σ : Σ1 → Σ2 and τ : Σ1 → Σ3 be morphisms of extended
CoCasl signatures, and let

Σ1

σ
- Σ2

Σ3

τ

?

σ̄
- Σ4

τ̄

?

be the pushout of the underlying Casl signatures (which we denote by Σ1

etc. as well). The resulting Casl signature Σ4 is made into an extended Co-
Casl signature by taking the sees and sibling relations to be the smallest
transitive relation and partial equivalence relation, respectively, that make σ̄
and τ̄ morphisms of extended CoCasl signatures; the presentations in Σ4 are
defined as the images of the presentations in Σ2 and in Σ3 under σ̄ and τ̄ ,
respectively. This defines Σ4 as a pushout of extended CoCasl signatures.
The only points that require actual verification are those that relate to the
treatment of presentations and derived datatypes.

To begin, we have to check that σ̄ and τ̄ are injective on derived datatypes
and reflect derived datatypes. This is seen as follows: note that the sort com-
ponent of the above pushout is a pushout in Set. Since σ and τ reflect de-
rived datatypes, this pushout can be decomposed as the disjoint sum of two
pushouts in Set, one for the derived datatypes and one for the other sorts. It
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follows that τ̄ and σ̄ reflect derived datatypes; moreover, since injective maps
are stable under pushouts in Set, τ̄ and σ̄ are injective on derived sorts.

It remains to prove disjointness of presentations in Σ4. Let (S1, F1) and (S2, F2)
be distinct presentations in Σ4, and assume that there exists S ∈ S1 ∩ S2. By
injectivity of σ̄ and τ̄ on derived datatypes, we can assume that (S1, F1) and
(S2, F2) come from presentations in Σ2 and in Σ3, respectively; thus, S must
come from a derived datatype in Σ1. But then, by preservation and distinctness
of presentations, both (S1, F1) and (S2, F2) must come from the presentation
of s in Σ1, in contradiction to their distinctness in Σ4. 2

Finally, the observation that modal formulae can be regarded as syntactical
sugar now becomes the formal statement that the modal CoCasl institution
can be encoded in the institution of structured specifications over the plain
CoCasl institution via an institution comorphism [16]. We recall that a co-
morphism I → J between institutions I and J consists of a translation Φ of
I-signatures into J-signatures, a translation of Σ-sentences into ΦΣ-sentences,
and a reduction of ΦΣ-models to Σ-models, subject to various naturality con-
ditions and a satisfaction condition. In the case of CoCasl, Φ takes an ex-
tended CoCasl signature to its underlying Casl (i.e. plain CoCasl) signa-
ture, model reduction does nothing, and sentence translation is the encoding
of modal logic formulae by structured specifications described in Sections 7
and 8.

Of course, CoCasl specifications containing modal formulae need to be in-
terpreted in the modal CoCasl institution, while for CoCasl specifications
without modal formulae, it does not really matter which of the two institu-
tions is chosen. As soon as CoCasl is fully integrated into the heterogeneous
tool set [29,28], it will be possibly to move back and forth between the two in-
stitutions using the comorphism explained above and the (trivial) embedding
of the plain CoCasl institution in the modal CoCasl institution.

10 Existence of cofree models

We now turn to the problem of establishing a general format for structured
cofree specifications that guarantees consistency; essentially, this amounts to
asking which subcategories of the category CoAlg(Σ) of coalgebras for a given
functor Σ have final coalgebras. For the dual case, the answer is given in [55]:
free models exist for specifications with universally quantified Horn axioms.
Part of a corresponding coalgebraic result has been obtained in [24]. In sum-
mary, the following is known.
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(i) Cofree coalgebras exist for bounded functors Σ on Set, more generally
for accessible functors on locally presentable categories [4,40]. Here, a
functor is called (κ-)accessible if it preserves κ-filtered (equivalently: κ-
directed) colimits for some regular cardinal κ. The category Setn is locally
presentable.

(ii) Let Σ be a Set-valued functor that has a final coalgebra. Then every
subcategory of CoAlg(Σ) defined by modal axioms or, more generally,
axioms that are stable under coproducts and quotients, has a fully ab-
stract final coalgebra, i.e. a final object that is a subobject of the final
Σ-coalgebra [23,24].

The second statement has to generalized slightly in order to cope with speci-
fications with several non-observable sorts, i.e. for coalgebras over Setn. Even
more generally, we have

Proposition 32 Let C be a category equipped with a factorization system
(E,M) for sinks [1], and let Σ : C → C be a functor that preserves M, i.e.
Σ[M] ⊂M. Then

(i) (E,M) lifts to a factorization structure

(U−1[E], U−1[M]),

also denoted (E,M), on CoAlg(Σ), where U is the forgetful functor
CoAlg(Σ) → C.

(ii) If B is a full subcategory of CoAlg(Σ) that is closed under E-sinks, and
Σ has a final coalgebra, then B has a final coalgebra that is fully abstract,
i.e. an M-subobject of the final Σ-coalgebra.

PROOF. (i): Cf. e.g. [21].

(ii): The closure condition implies that B is M-coreflective in CoAlg(Σ) [1].
The coreflection of the final Σ-coalgebra is final in B. 2

For functors Σ on Setn, equipped with the componentwise factorization struc-
ture (jointly surjective, injective), the preservation condition is always almost
satisfied, since injective maps in Setn are sections and hence preserved by
all functors, provided that all components of the domain are non-empty. For
the case n = 1, it is shown in [4] (Proof of Theorem 3.2) that one can al-
ways modify Σ in such a way that it preserves injective maps and such that
both its behaviour on non-empty sets and its category of coalgebras remain
essentially unchanged. It is easy to check that the given construction works
mutatis mutandis for arbitrary n; we shall thus silently assume that Σ pre-
serves monomorphisms.
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In the following result, we make use of the notion model-theoretic conservativ-
ity as employed in Casl (annotation %cons). A specification Sp2 extending a
specification Sp1 (e.g. Sp2 = Sp1 then Sp3) is model-theoretically conservative
or, briefly, model-expansive over Sp1 if every model M of Sp1 can be expanded
to a model M ′ of Sp2, i.e. there exists an Sp2-model M ′ such that the reduct of
M ′ to the signature of Sp1 is M . Consistency in the sense of model existence
can be subsumed under this notion: a specification Sp is consistent iff it is
a model-expansive extension of the empty specification (which has a unique
model).

Theorem 33 Let Sp be a specification of the form

Sp1 then cofree Sp2 .

Call the sorts from Sp1 observable sorts. Let the specification Sp2 consist of
(no more than)

• declarations of (new) non-observable sorts;
• a free %modal block declaring a number of derived datatypes (cf. Sec-

tion 8);
• a redeclaration (cf. Section 1) of the non-observable sorts as cotypes, with

only observable sorts as parameters, and
• modal logic formulae for the non-observable sorts, using modal operators

only for derived datatypes that are either non-cancellative or have only one
non-observable type parameter,

in the given order. Then Sp is model-expansive over Sp1, provided that
Sp1 then Sp2 is model-expansive over Sp1.

PROOF. Since the derived datatypes depend functorially on the non-
observable sorts, one sees as in Proposition 2 that the non-observable sorts
and their observers form a Σ-coalgebra for a functor Σ : Setn → Setn, with n
being the number of non-observable sorts. Thus, the category B of Sp2-models
over a given Sp1-model is equivalent to a full subcategory of CoAlg(Σ). The
functor Σ is κ-accessible, with κ being the largest cardinality of a parame-
ter sort if there is an infinite parameter sort, and κ = ω otherwise; hence, Σ
admits a final coalgebra (see above).

By Proposition 32, it now suffices to show that subcategories determined by
modal logic formulae are closed under componentwise jointly surjective sinks.
Thus, let φ be a modal formula of type S, a non-observable sort. We show
that

s |= φ ⇐⇒ h(s) |= φ

for each coalgebra homomorphism h : A → B in B and each s in the carrier
AS of S in A.
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To this end, we decode diamond modalities by negation and box modalities,
box modalities with omitted parameters by universal quantification over ob-
servable sorts, combined box modalities [{. . . }] by conjunction, and iterated
box modalities by infinitary conjunction. We then proceed by induction over
the structure of φ. The base case of the induction is straightforward: the values
of observable terms, and hence the truth values of equations and definedness
assertions involving such terms, are left unchanged under h. The induction
steps for boolean operators including infinitary conjunction and disjunction
and for quantifications over observable sorts are trivial (recall that observable
sorts are fixed under h due to the fact that attention is restricted to fibres).

The remaining case is φ̄ = [f(r1, . . . , rn)]ψ, where ψ is a modal formula of type
U , f : R1×· · ·×Rn×S → W is an observer, R1, . . . , Rn are observable sorts,
and W is a derived datatype with U as one of its type parameters (it suffices to
treat the case of structured modal operators, since these semantically subsume
simple modal operators; cf. Section 8), with associated datatype functor T :
Setm → Set, where m is the number of non-observable type parameters of
W (recall that all other sorts are fixed under h). Let p be the interpretation
of ψ as a boolean-valued function on the carrier of U in the target B of h; by
induction, the interpretation of ψ in the source A of h is p ◦ hU . Moreover, let
tA : AS → AU and tB : BS → BU be the interpretations of f as a function
between carrier sets in A and B, respectively, for fixed (observable) values of
r1, . . . , rn. Since h is a Σ-coalgebra homomorphism and the datatype functor
T is part of a polynomial decomposition of Σ, we have tB ◦ hS = T h̄ ◦ tA,
where h̄ is the family of maps hV with V non-observable. By the definition of
the semantics of [f(r1, . . . , rn)], we have to show

[[tA(s)]] (p ◦ hU) ⇐⇒ [[(T h̄)(tA(s))]] p (∗)

for each s ∈ AS. If W has only one non-observable type parameter, i.e. m = 1,
then h̄ = (hU), so that the claim follows from Proposition 17. Otherwise,
T is, by assumption, non-cancellative. In this case, the claim follows from
Theorem 18: let α be a constructor term representing tA(s) in the sense laid
out in Section 8. By Condition (ii) of Theorem 18, the left hand side of (∗)
says that p ◦ h(u) = > for all u ∈ AU that appear in α, while the right hand
side states that p(u) = > for all u ∈ BU that occur in the term obtained
from α by substituting all variables v of non-observable sort V by hV (v); by
non-cancellativity of T , the two statements are equivalent. 2

Remark 34 The last proviso in the theorem is needed because the given
modal formulae may be inconsistent in the sense that they are false for all
states. In the full category of coalgebras over Setn, such formulae do of course
have a model, namely the empty coalgebra (in a sense, this observation is dual
to the fact that the equation x = y equating two free variables is consistent
because it is modeled by the singleton). However, in Casl and hence in Co-
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Casl, carrier sets are explicitly required to be non-empty, so that the model
class of, say, the modal formula false is indeed empty.

Remark 35 It should be emphasized that the above theorem, although
worded specifically for CoCasl, really applies in a much wider context —
namely, in any setting with coalgebras over an explicit signature formed as a
polynomial combination of datatypes that are either non-cancellative or have
only one type parameter.

Remark 36 The redeclaration of the non-observable sorts as cotypes serves
mainly to incorporate the axioms for cotypes ensuring that partial observers
can be combined into a single total observer into a sum type. In case there are
only total observers, the cotype declaration can be replaced by declarations of
the observers.

We conclude the section with a few warnings concerning cofree specifications
that deviate from the form sanctioned by Theorem 33:

Example 37 Restricting non-observable sorts by equational axioms, rather
than modal formulae, may lead to inconsistencies. An extreme example is

spec FinalElement =
Bool
then cofree {

sort Unit
forall x , y : Unit • x = y
op el : Unit → Bool

}
— the specification in brackets has precisely two models (three if empty car-
riers are admitted), none of which is final.

Moreover, observe that the initiality constraint for derived datatypes is es-
sential. E.g., the specification of final nondeterministic automata (Figure 13)
becomes meaningless if the initiality constraint for the type of sets is omitted
— the model it describes then has the singleton set as its state space, with
a singleton ‘power set’ that equates all subsets. In other words, enough of a
handle must be provided to actually prove distinctness of observations.

Theorem 33 can be read as supporting the nesting of certain free specifications
within cofree specifications. Nesting cofree specifications within either free or
cofree specifications is more risky, essentially due to the fact that final coal-
gebras may be rather large. E.g. one can specify the full powerset functor P
by a cofree specification (in fact even as a cofree cotype), as shown in Sec-
tion 11.1. In a surrounding free or cofree specification, one could then specify
the initial algebra or final coalgebra, respectively, for P — an inconsistency
due to Russell’s paradox.
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11 Modelling Process Algebra in CoCasl

As a comprehensive example, we now show how to model central concepts of
process algebra in CoCasl. Among the various frameworks for the descrip-
tion and modelling of reactive systems, process algebra plays a prominent rôle.
It has proven to be suitable at the level of requirement specification, at the
level of design specifications, and also for formal refinement proofs [6]. Almost
all of the underlying concepts of process algebra can be found in the lan-
guages CCS and CSP: a type system on the communications; synchronous as
well as asynchronous communication; operational semantics; and also various
notions of process equivalence like strong and weak bisimulation, observation
congruence, and trace equivalence. Typical system building operations include
sequential composition, parallel composition, and nondeterministic choice. For
details, refer to [25] (CCS) and [17,48] (CSP).

The description of the specifications is organized as follows. In Section 11.1,
we define the syntax of both process algebras using (algebraic) datatypes. In
Section 11.2, we specify the operational semantics, and in Section 11.3, we
defined the various standard process equivalences. We lay out a denotational
semantics in terms of the final non-deterministic automaton for the finitely
branching (i.e. weakly guarded) fragment of CCS in Section 11.4. Section 11.5
presents an example of a buffer specification that uses modal logic. Finally, re-
lated approaches to process algebra specification are discussed in Section 11.6.

11.1 Elements of process algebra syntax

Process algebras observe reactive systems by means of communications. While
CSP uses an unstructured set of communications, CCS has a small type sys-
tem, which we model using Casl subtyping.

Both process algebras involve higher order types constructed on top of their
set of communications, namely sets for hiding symbols and as synchroniza-
tion sets, and functions as well as (binary) relations for renamings. These
type constructions are not available in Casl, but they can be modelled co-
algebraically.

Based on communications and the above mentioned higher order types, the
syntax of processes can be specified as a free datatype. This allows also for an
inductive definition of substitution on processes, a construction necessary to
describe the semantics of recursive processes.
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11.1.1 Datatypes of communications

The language CSP is defined relative to an alphabet Σ of communications. At
the semantical level, this alphabet Σ is extended by an invisible action τ and
a termination signal

√
(tick). This can be specified in Casl as

sort Sigma
free type ExtSigma ::= sort Sigma | tau | tick

The effect of the free type declaration is that each element of ExtSigma is
either an element of Sigma or one of the two distinct new elements tau and
tick .

CCS processes communicate names. Each name n has a co-name n̄, where the
function bar : n 7→ n̄ is involutive; the intuition behind this is that parallel
execution of n and n̄ represents an internal communication of the system,
regarded as invisible to the outside. Names and co-names together form the
set of labels. Adding to this set the silent action τ results in the set of actions.

spec Action =
sort Name %% Names
free type Label ::= sort Name | bar(Name) %% Labels
free type Act ::= sort Label | tau %% Actions
op bar : Label → Label
∀ a:Name . bar(bar(a)) = a

end

Note that we have the subsort relations Name < Label < Act . The operation
bar is introduced twice: as constructor from Name into Label and as function
on Label.

11.1.2 Sets, relations, and function spaces: higher order via cofreeness

As mentioned above, process algebras need higher order types constructed on
their respective alphabet of communications. In Casl, it is not possible to
specify these types monomorphically, while CoCasl captures them in terms
of the structured cofree construct.

The syntax of CCS requires arbitrary sets of labels for restrictions. Since
the powerset, being isomorphic to the set of boolean-valued maps, enjoys a
couniversal property, we can easily specify it in CoCasl: building upon a
specification of a type Bool of booleans and the type Label as above,

cofree cotype Set [Label ] ::= ( isIn : Label → Bool)
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specifies Set [Label ] as the powerset of the set of labels (compare this to the
specification of function types in Figure 6). Concerning CoCasl syntax, note
that Set [Label ] is a so-called compound identifier, which can, for the purposes
of this paper, be regarded as a sort name like any other (in instantiations
of the parametrized syntax specification that assign particular label sets to
the parameter Label , the part of the name in square brackets will be syntac-
tically replaced by the name of the concrete label set). Corresponding com-
ments hold for other uses of this mechanism further below, e.g. Fun[Label ] or
Relation[Sigma].

Similarly, one specifies the function spaces needed for relabelling. Since only
bijections that commute with the ‘bar’ operation are admissible as CCS rela-
bellings, the actual type of relabellings is defined as a subtype:

cofree cotype Fun[Label ] ::= (eval : Label → Label)
then

sort Relabelling = { f : Fun[Label ] .
∀ l :Label . eval(bar(l), f ) = bar(eval(l, f ))

∧ ∀ l, k :Label . (eval(l, f ) = eval(k, f ) ⇒ k = l
∧ ∀ l :Label . ∃ k :Label . l = eval(k, f )) }

Sets of communications are also needed for the hiding and generalized parallel
operators of CSP. Finally, the relational renaming operator of CSP requires
a type of binary relations on the communication alphabet Σ:

cofree cotype Relation[Sigma] ::= (holds : Sigma × Sigma → Bool)

11.1.3 Process syntax and substitution: inductive types

Using the higher order types introduced above, the respective syntaxes of CCS
and CSP can be specified as free types, c.f. Figures 17 and 18. The freeness
constraint on the type declarations means that the elements of the types are
precisely the terms formed from the parameter sorts (e.g. in Figure 17 the
sorts AgentVariable, AgentConstant , Act , Set [Label ] and Relabelling) and the
constructor operations.

In [25], Milner introduces CCS as a class of agent expressions. The crucial
point is that the summation operator (non-deterministic choice) involves ar-
bitrary index sets. This is beyond the scope of Casl and CoCasl, as the
specified models interpret sorts by carrier sets. Therefore, we restrict the lan-
guage to finite nondeterministic choice — this is expressive enough to retain
full computational power (cf. [25], p. 135). Similarly, we limit the internal
choice operator of CSP to the finite case.
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free type
AgentExpression ::= sort AgentVariable

| sort AgentConstant
| 0 %% inactive agent
| → (Act ; AgentExpression) %% Prefix
| + (AgentExpression; AgentExpression) %% Sum
| || (AgentExpression; AgentExpression) %% Parall.
| − (AgentExpression; Set [Label ]) %% Restriction
| rel(AgentExpression; Relabelling) %% Relabelling
| fix (AgentVariable; AgentExpression) %% Recursion

Fig. 17. The CCS Syntax as a free type.

free type
Process ::= Skip

| Stop
| Omega
| sort ProcessVar
| → (Sigma; Process) %% Prefix
| seq (Process ; Process) %% Sequential Composition
| [] (Process ; Process) %% External Choice
| | ˜| (Process ; Process) %% Internal Choice
| − (Process ; Set [Sigma]) %% Hiding
| ren (Process ; Relation[Sigma]) %% Relational Renaming
| [ ] (Process ; Set [Sigma]; Process) %% Generalized Parallel
| mu(ProcessVar ; Process) %% Recursion

Fig. 18. The CSP Syntax as a free type.

While CCS uses environments that bind agent constants to agent expressions,
the version of CSP in [48], which we specify here, is restricted to a core lan-
guage without environments. The full language including e.g. the various CSP
parallel operators can be recaptured as a definitional extension.

Thanks to the construction of the process syntax as a free type, it is straight-
forward to define substitution as a recursive function, as carried out for the
case of CCS in Figure 19.

11.2 Structural Operational Semantics

For both process algebras, their semantics as a transition system is defined
by structural operational semantics. A node of the transition system is an
AgentExpression or a Process , respectively. The transitions are defined to be
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op { / }:
AgentExpression × AgentExpression × AgentVariable → AgentExpression
∀ P :AgentExpression; X :AgentVariable
• ∀ Y :AgentVariable . Y { P / X } = P when Y = X else Y
• ∀ C :AgentConstant . C { P / X } = C
• 0 { P / X } = 0
• ∀ a:Act ; E :AgentExpression . (a → E ) { P / X } = a → E { P / X }
• ∀ E, F :AgentExpression .

(E + F ) { P / X } = E { P / X } + F { P / X }
. . .

Fig. 19. Inductive definition of substitution in CCS.

the smallest relation satisfying a certain set of inference rules. This relation is
modelled by a structured free specification, which has the effect that the intro-
duced predicate, e.g. − → : AgentExpression ∗Act ∗AgentExpression,
holds on a minimal subset. Figures 20 and 21 show (part of) the operational
semantics of CCS and CSP, respectively. (Omega is a theoretical construct
introduced in [48] in order to deal with termination in the operational seman-
tics). Within the structured free construct of both CoCasl specifications, only
positive Horn clauses appear, so that the specifications are consistent (note
that due to the definition of Act as free type, axioms with premise ¬a = tau
can be replaced by two axioms with equational premise).

Figure 20 includes the CCS inference rule for recursion, which makes use of
the substitution operator described above. CSP models recursion in the same
way. Note how the rules for external choice in CSP are formulated along the
type system of CSP communications on the semantical level. It is interesting
to observe the difference between CCS and CSP in the modelling of nonde-
terminism. While CCS directly proceeds with an action, the CSP semantics
uses an invisible action τ. This inference rule among other, similar ones, is the
reason why it is necessary to carefully extract the transitions with observable
actions from the specified transition system. The advantage of the — at first
sight slightly complicated — transition system semantics for CSP is that it
can also be taken as the basis for working out the denotations of processes in
the failures and failures/divergences semantics of CSP.

11.3 Process Equivalences

Milner introduces strong bisimulation, weak bisimulation, and observation
congruence as notions of equivalence on CCS agent expressions, which we
model in a uniform way. For CSP, we study trace equivalence and show that
it is essentially of algebraic nature although there exists a characterization in
terms of bisimulation.
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free { pred − → : AgentExpression × Act × AgentExpression
%% (Act):
∀ a:Act ; E :AgentExpression
• (a → E)− a → E
%% (Sum1):
∀ E, E ′, F :AgentExpression; a:Act
• E− a → E ′ ⇒ (E + F)− a → E ′

. . .
%% (Rec):
∀ X :AgentVariable; E, E ′:AgentExpression; a:Act
• E{fix(X,E)/X} − a → E ′ ⇒ fix(X,E)− a → E ′ }

Fig. 20. Part of the CCS Semantics.

free { pred − → : Process × ExtSigma × Process
. . .
%% External Choice:
∀ P, P ′, Q :Process
• P− tau → P ′ ⇒ (P[]Q)− tau → (P ′[]Q)
∀ P, Q, Q′:Process
• Q− tau → Q′ ⇒ (P[]Q)− tau → (P[]Q′)
∀ a:ExtSigma; P, P ′, Q :Process
• ¬ a = tau ⇒ P− a → P ′ ⇒ (P[]Q)− a → P ′

∀ a:ExtSigma; P, Q, Q′:Process
• ¬ a = tau ⇒ Q− a → Q′ ⇒ (P[]Q)− a → Q′

%% Internal Choice:
∀ P, Q :Process
• (P| ˜|Q)− tau → P
∀ P, Q :Process
• (P| ˜|Q)− tau → Q
. . . }

Fig. 21. Semantics of CSP External and Internal Choice.

11.3.1 Strong Bisimulation

Modelling strong bisimulation is straightforward. We build up a new transition
system, which — as a starting point — is a nearly identical copy of the CCS
operational semantics. The difference is that the sort Process is introduced as a
generated type, i.e. at this point the equivalence relation on its elements is left
open. By choosing the transition predicate as observer for the sort Process in
the cogenerated construct, the processes are identified by bisimulation. Finally,
this notion is carried over to the sort AgentExpression via a predicate ∼ .

generated type Process ::= ::= semBisim(AgentExpression)
pred − → : Process × Act × Process
∀ E, E ′:AgentExpression; a:Act
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• E− a → E ′ ⇔ semBisim(E ) − a − > semBisim(E ′)

cogenerated { sort Process
pred − → : Process × Act × Process }

pred ∼ : AgentExpression × AgentExpression
∀ E, F :AgentExpression
• E ∼ F ⇔ semBisim(E ) = semBisim(F )

The cogeneratedness constraint guarantees full abstractness via a coinduction
axiom, which in this case amounts to stating that strong bisimulation is equal-
ity, cf. [52,25]. Since strong bisimulation is a congruence, it is consistent to
shift the operations of the process syntax from the level of agent expressions
to the level of processes. Note that there are other abstraction principles on
processes, like weak bisimulation as discussed below, that fail to be congru-
ences.

11.3.2 Weak Bisimulation

In the specification of weak bisimulation in our setting, we make use of the fol-
lowing characterization in terms of strong bisimulation, reformulating a result
of [10] (see also [50] for a general coalgebraic treatment of weak bisimulation
in a similar spirit):

Theorem 38 (Weak vs. Strong Bisimulation) Let Ti = (Si, si, Act,→i)
be transition systems over Act with state sets Si, initial states si ∈ Si and
transition relations →i, i = 1, 2. Then

T1 ≈ T2 ⇐⇒ W (T1) ∼ W (T2),

where ≈ denotes weak bisimulation [25], and ∼ stands for strong bisimulation.

The operator W maps a transition system T = (S, s, Act,→) to a transition
system W (T ) = (S, s, Act′,→w) with Act′ consisting of empty or one element

lists over Act, r
α̂→w r

′ : ⇐⇒ r
α̂⇒ r′, where ˆ : Act→ Act′ with

α̂ :=

α ;α 6= τ

ε ;α = τ
, and

α̂⇒ :=

 (
τ→)∗

α→ (
τ→)∗ ;α 6= τ

(
τ→)∗ ;α = τ.

PROOF. To prove ‘⇒’, we claim that any weak bisimulation relation R be-
tween the transition systems Ti, i = 1, 2, is also a strong bisimulation between
W (Ti), i = 1, 2. This follows from the fact that for any weak bisimulation
R the following holds: if (r, s) ∈ R and r ⇒ r′ for some r′, then s ⇒ s′ and
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(r′, s′) ∈ R for some s′. This establishes the proof together with the observation
that any step r

α→w r′ with α 6= τ in a transition system W (T ) corresponds
to a derivation r(

τ→)∗r1
α→ r2(

τ→)∗r′ in T . The reverse implication ‘⇐’ holds

because the transition systems W (Ti) have essentially
α̂⇒i as their transition

relations. 2

Thus, in order to model weak bisimulation, it is necessary to specify the op-

erator W , i.e. the transition relation
α̂⇒, in CoCasl. The specification below

shows how to iterate tau-transitions on processes of type AgentExpression in
terms of a predicate −→ . Then, a new transition system is defined. The

state set remains, but the transition relation is
α̂⇒, which has Act’ as labels.

pred − → : AgentExpression × Nat × AgentExpression
∀ E, E1, E3 :AgentExpression; n:Nat
• E− 0 → E
• E1− (n + 1) → E3 ⇔
∃ E2 :AgentExpression . E1− n → E2 ∧ E2− tau → E3

pred −→ : AgentExpression × AgentExpression
∀ E1, E2 :AgentExpression . E1 −→ E2 ⇔ ∃ n:Nat . E1− n → E2

generated type WProcessWProcess ::= semWeakBisim(AgentExpression)
free type Act′ ::= sort Label | epsilon
pred − → : WProcess × Act′ × WProcess
∀ E, E ′:AgentExpression; l :Label
• semWeakBisim(E ) − l → semWeakBisim(E ′) ⇔
∃ E1, E2 :AgentExpression . E −→ E1 ∧ E1− l → E2 ∧ E2 −→ E ′

• semWeakBisim(E ) − epsilon → semWeakBisim(E ′) ⇔ E −→ E ′

Having this available, we can apply Theorem 38, i.e. strong bisimulation is
defined as equality on WProcess and transferred to the CCS AgentExpression:

cogenerated { sort WProcess
pred − → : WProcess × Act′ × WProcess }

pred ≈ : AgentExpression × AgentExpression
• ∀ E, F :AgentExpression • E ≈ F ⇔ semWeakBisim(E ) = semWeakBisim(F )

Note that — as in the case of strong bisimulation — we obtain a fully ab-
stract model, despite the fact that weak bisimulation fails to be a congruence
for CCS, c.f. Milner’s counterexample: b.0 ≈ τ.b.0, but a.0+b.0 6≈ a.0+τ.b.0.
In the end, this means that the semantical operator [[[ ]]] fails to be a homo-
morphism w.r.t. the CCS operations, here +.
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11.3.3 Observation Congruence

With the notion of weak bisimulation available, we can express Milner’s def-
inition of observation congruence in [25], p.153, directly in CoCasl. The
crucial point of this definition is that it involves a new transition relation

== =⇒ , which also takes the tau action into account:

pred == =⇒ : AgentExpression × Act × AgentExpression
∀ E, E ′:AgentExpression; alpha:Act
• E == alpha =⇒ E ′ ⇔
∃ E1, E2 :AgentExpression . E −→ E1 ∧ E1− alpha → E2 ∧ E2 −→ E ′

pred == : AgentExpression × AgentExpression
∀ P, Q :AgentExpression; alpha:Act
• P == Q ⇔ (∀ P ′: AgentExpression . P− alpha → P ′ ⇒

(∃ Q′:AgentExpression . Q == alpha =⇒ Q′ ∧ P ′ ≈ Q′))
∧ (∀ Q′:AgentExpression . Q− alpha → Q′ ⇒

(∃ P ′:AgentExpression . P == alpha =⇒ P ′ ∧ P ′ ≈ Q′))

Although this construction does not involve a ‘copy’ of the CCS transition
system, it is easy to define a new process type ObservationProcess, which has
observation congruence as equality:

generated type ObservationProcess ::= Obs(AgentExpression)
• ∀ E, F :AgentExpression • Obs(E ) = Obs(F ) ⇔ E == F

11.3.4 Trace Equivalence on CSP

Similar to the modelling of weak bisimulation, it is possible to express trace
equivalence in terms of bisimulation. This indicates once more the fundamen-
tal nature of bisimulation and, consequently, of the CoCasl cogenerated
construct for the theory of concurrency.

Theorem 39 (Trace Equivalence vs. Strong Bisimulation) Let Ti =
(Si, si,Σ,→i) be transition systems over Σ with state sets Si, initial states
si ∈ Si and transition relations →i, i = 1, 2. Then

T1 =trace T2 ⇐⇒ P (T1) ∼ P (T2),

where =trace denotes trace equivalence, and ∼ stands for strong bisimulation.

The operator P describes the usual powerset construction. It maps a transition
system T = (S, s,Σ,→) to a transition system P (T ) = (2S\∅, {s},Σ,→P ),
where

X
α→P Y : ⇐⇒ Y = {r′ ∈ S | ∃ r ∈ X . r

α→ r′}.
for all X, Y ∈ 2S\∅.
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PROOF.

“⇐”: Is a direct consequence of the facts that (i) bisimilar transition systems
are trace equivalent and (ii) that the above described powerset construction
yields a trace equivalent transition system.

“⇒”: Let R ⊆ 2S1× 2S2 be the smallest set such that

(1) ({s1}, {s2}) ∈ R and
(2) if (X, Y ) ∈ R, X α→P X ′ in P (T1), Y

α→P Y ′ in P (T2), then (X ′, Y ′) ∈ R.

We claim that R is a bisimulation.

Let (X, Y ) ∈ R, let X
α→P X ′ be a transition in P (T1). As (X, Y ) ∈ R,

there exists a trace u ∈ Σ∗ such that {s1}
u→P X is a derivation of u in

P (T1) and {s2}
u→P Y is a derivation of u in P (T2). As X

α→P X ′, also uα
is a trace of P (T1). As P (T1) is trace equivalent to P (T2), uα is also a trace
of P (T2). In P (T2) any derivation for the prefix u ends in Y because P (T2)
is deterministic. Therefore, there exists a state Y ′ such that Y

α→P Y ′. As
(X, Y ) ∈ R, by definition of R we also obtain (X ′, Y ′) ∈ R. 2

Again, a similar result can be found in [10].

In order to apply this theorem to CSP processes, we first have to provide a
powerset construction:

cofree cotype Powerset [Process ] ::= (eps : Process → Boolean)
then

op { } : Process → PowerSet[Process]
∀ P, Q :Process
• P = Q ⇒ eps(P, {Q}) = True
• P 6= Q ⇒ eps(P, {Q}) = False
sort NonEmtpyPS [Process ]= { PS : PowerSet [Process ] .

∃ P :Process . eps(P, PS ) = True}

The next step is to define the transition relation according to the operator P.
To this end, it is necessary to extract all ‘true’ steps from the CSP transition
system. The reason is that the CSP operational semantics introduces certain
tau steps in order to deal with the different forms of non-determinism. Having
the extracted relation of all true observations in Sigma available, we can apply
the powerset construction.
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generated type TraceProcess ::= tr(NonEmptyPS[Process])
pred − → : TraceProcess × Sigma × TraceProcess
∀ X, Y :NonEmptyPS[Process] ; a:Sigma
• tr(X)− a → tr(Y) ⇔

(∀ Q :Process . eps(Q,Y) = True ⇔
∃ P :Process . eps(P,X) = True ∧ P− a → Q)

According to Theorem 39, trace equivalence can now be defined in terms of
strong bisimulation. Here, the embedding operation { } of processes into the
powerset of processes relates the two transition systems.

cogenerated
{ sort TraceProcess

pred − → : TraceProcess × Sigma × TraceProcess }
pred =trace : Process × Process
∀ P, Q : Process . P =trace Q ⇔ tr({ E }) = tr({ F })

Note that trace equivalence is not only of coalgebraic nature. The extraction
of CSP process traces, as described in [48], can also be formulated in CoCasl
directly. This extraction uses essentially algebraic constructs. Thus, CoCasl
provides a framework which captures both approaches and — via the concept
of a view — even allows relating them.

11.4 A Coalgebraic Denotational Semantics for CCS

There are several possibilities to apply coalgebras and coinduction to the for-
malization of processes. In the previous sections, we have defined the syntax
and operational semantics of the process calculi CSP and CCS in an inductive
way, by a free type. Only for the definition of the bisimulation relation as a
greatest relation we have used a coalgebraic construct, namely a cogeneration
constraint. In this section, we will follow another path, which offers a more
direct coalgebraic view at processes. We look for the appropriate system of
observers, for the specific class of processes and later define, by coinduction,
suitable operations on the final coalgebra. This approach makes clear that the
semantics does not depend on these operations, since coinductive definitions
of operations on the final coalgebra do not change the semantics of the process
type, like inductive definitions of operations on free types do not change the
semantics of the corresponding data type. In the sequel, we will illustrate this
approach by defining operations on the final nondeterministic automaton that
are inspired by the operations of CCS processes.

Remark 40 The exposition below is restricted to the finitely branching case,
with all limitations this entails. The case with unlimited branching is more
complicated, since the power set functor does not admit a final coalgebra; how-
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ever, an analogous treatment is still possible using a loose semantical domain
that admits the interpretation of all CCS expressions.

Recall that handshake synchronization of parallel processes is modeled by
the structure of the set of actions as given by specification Action from
Sect. 11.1.1: one has an operation bar on the sort Act of actions; two actions
x, y are called complementary if bar(x) = y or equivalently bar(y) = x.

First we define the process type of non–deterministic automata, which is rep-
resented by the final non–deterministic automaton, specified similarly as in
Figure 13.

spec Set [sort Elem] =
free {type Set [Elem] ::= {}

| { }(Elem)
| ∪ (Set [Elem]; Set [Elem])

op ∪ : Set [Elem] × Set [Elem] → Set [Elem],
assoc, comm, idem, unit {}

}
end

spec ExtSet [sort Elem] =
Set [sort Elem]

then
pred eps : Elem × Set [Elem]
op intersection : Set [Elem] × Set [Elem] → Set [Elem]
∀ a, b: Elem; s1, s2 : Set [Elem]
• ¬ a eps {}
• a eps { b } ⇔ a = b
• a eps (s1 ∪ s2 ) ⇔ a eps s1 ∨ a eps s2
• a eps (s1 intersection s2 ) ⇔ a eps s1 ∧ a eps s2

end

spec FinalNonDeterministicAutomaton [Action] =
cofree {Set [sort State]
then

cotype State ::= (next : Act→ Set[State])
}

end

Now we can easily define a specific process

spec Zero =
FinalNonDeterministicAutomaton [Action]

52



then
op zero : State
var a: Act
• next(a, zero) = {}

end

This introduces the name zero for the process which cannot perform any ac-
tion.

The next operation is the action prefixing :

spec ActionPrefixing =
FinalNonDeterministicAutomaton [Action]

then
op → : Act × State → State
∀ x, y : Act ; s : State
• next(x, y → s) = { s } when x = y else {}

end

Using rules which define the operational semantics in process algebras like
CCS, the behavior of a process constructed by action prefixing would be
defined by the axiom a.s

a→ s, as done e.g. in Section 11.2.

For the definition of binary operations on the final non–deterministic automa-
ton, we need a data type of binary relations, equipped in particular with an
image function for binary operations.

spec BinRel [sort S ] =
Set [sort S ] and Pair [sort S ] [sort S ] and Set [sort Pair [S,S ]]

then
ops ∗ : S × Set [S ] → Set [Pair [S,S ]];

∗ : Set [S ] × Set [S ] → Set [Pair [S,S ]];
∗ : Set [S ] × S → Set [Pair [S,S ]]

∀ a: S ; b: S ; U, X : Set [S ]; Y, Z : Set [S ]
• a ∗ {} = {}
• a ∗ { b } = { pair(a, b) }
• a ∗ (Y ∪ Z ) = a ∗ Y ∪ a ∗ Z
• {} ∗ Y = {}
• { a } ∗ Y = a ∗ Y
• (U ∪ X ) ∗ Y = U ∗ Y ∪ X ∗ Y
• X ∗ b = X ∗ { b }

end

spec BinRelFun [sort S ; op + : S × S → S ] =
BinRel [sort S ]

then
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op power[ + ] : Set [Pair [S,S ]] → Set [S ]
∀ s1, s2 : S ; set1, set2 : Set [Pair [S,S ]]
• power[ + ]({}) = {}
• power[ + ]({ pair(s1, s2 ) }) = { s1 + s2 }
• power[ + ](set1 ∪ set2 ) = power[ + ](set1 ) ∪ power[ + ](set2 )

end

The summation of two processes represents nondeterministic choice:

spec Summation =
Zero

and
BinRelFun [sort State; op + : State × State → State]

then
∀ a: Act ; s1, s2 : State
• next(a, s1 + s2 ) =

power[ + ](zero ∗ next(a, s2 ) ∪ next(a, s1 ) ∗ zero)
end

Using this coinductive definition, we can prove properties of the defined opera-
tion. We will prove that the constant automaton zero is a unit for summation,
and that summation is commutative.

Let be h0 = λs.(s + zero). The equality s = s + zero is proved coinduc-
tively if we can show that h0 is a homomorphism; i.e. we have to prove
power[h0](next(a, s)) = next(a, s + zero) 1 . In order to improve readability,
the proof is conducted in standard notation (P(+) in place of power [ + ]
etc.):

next(a, s+ zero)

= P(+)((zero× next(a, zero)) ∪ (next(a, s)× zero))

= P(+)((zero× {}) ∪ (next(a, s)× zero)))

= P(+)(({} ∪ (next(a, s)× zero)))

= P(+)(next(a, s)× zero)

= {s′ + zero | s′ ∈ next(a, s) }

= P(h0)(next(a, s))

In the same way one can prove the equality s = zero+ s.

1 Note that power is applied to a unary function here; adding this case is straight-
forward.
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An immediate consequence of this two equations is

next(s1 + s2) = next(s1) ∪ next(s2)

This equality together with the commutativity of set union implies the com-
mutativity of summation of nondeterministic automata.

In case the set of actions is finite, one can define the parallel composition of
processes with handshake synchronization represented by the silent action tau
(cf. Section 11.1.1).

spec FinAct =
ExtSet [sort Label ]

then
op actions : Set [Label ]
∀ l : Label • l eps actions

end

spec Composition =
FinAct

and
FinalNonDeterministicAutomaton [Action]

and
BinRelFun [sort State; op || : State × State → State]

and
ExtSet [sort State] and ExtSet [sort Act ]

then
ops || : State × State → State;

h : State × State × Set [Label ] → Set [State]
vars l : Label ; s1, s2 : State; set1, set2 : Set [Label ]
• h(s1, s2, {}) = {}
• h(s1, s2, { l }) = next(l, s1 ) intersection next(bar(l), s2 )
• h(s1, s2, set1 ∪ set2 ) = h(s1, s2, set1 ) ∪ h(s1, s2, set2 )
• next(l, s1 || s2 ) = power[ || ](next(l, s1 ) ∗ s2 ∪ s1 ∗ next(l, s2 ))
• next(tau, s1 || s2 ) =

power[ || ]((next(tau, s1 ) ∗ s2 ∪ s1 ∗ next(tau, s2 )) ∪
h(s1, s2, actions))

end

Hiding and relabelling of actions is defined in a straightforward manner:

spec Hiding =
FinalNonDeterministicAutomaton [Action]

and
ActionRelabelling
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then
op − : State × Set [Label ] → State
∀ l : Label ; s : State; L: Set [Label ]
• next(l, s − L) = {} when l isIn L = True else next(l, s)
• next(tau, s − L) = next(tau, s)

end

spec Relabelling =
FinalNonDeterministicAutomaton [Action]

and
ExtSet [sort Act ] and ActionRelabelling

then
op rel : State × Relabelling → State
∀ l : Label ; s : State; f : Relabelling
• next(l, rel(s, f )) = next(eval(f, l), s)
• next(tau, rel(s, f )) = next(tau, s)

end

Using the specifications introduced so far, we now give a denotational se-
mantics to the CCS language introduced in Sect. 11.1.3. The only feature not
realized so far is fixpoint equations. Indeed, it is not entirely clear how to treat
these directly at a semantic level (one would need some analogue of cpos, en-
suring the existence of least fixed points). Hence, we introduce fixed points
only during the definition of the denotational semantics, and restrict them to
weakly guarded expressions (i.e. expressions in which each variable is directly
or indirectly prefixed by an action). It is well-known that for this restricted
case, fixed points exist and are unique [26] and even finitely branching. The
latter ensures that the fixed points can be expressed in our framework based
on finite sets.

spec CCS Coalgebraic Semantics =
FinAct and Zero and ActionPrefixing and Summation

and Composition and Hiding and Relabelling and CCS
and

Map [sort AgentVariable] [sort State]
with Map[AgentVariable,State] 7→ Env

then
preds prefixedVars, isWeaklyGuarded : AgentExpression
op {{ }} : AgentExpression × Env →? State
∀ a: Act ; env : Env ; C : AgentConstant ;
E, E1, E2 : AgentExpression; X : AgentVariable; set : Set [Label ];
f : Relabelling
• prefixedVars(C )
• ¬ prefixedVars(X )
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• prefixedVars(0 )
• prefixedVars(a → E )
• prefixedVars(E1 + E2 ) ⇔

prefixedVars(E1 ) ∧ prefixedVars(E2 )
• prefixedVars(E1 || E2 ) ⇔

prefixedVars(E1 ) ∧ prefixedVars(E2 )
• prefixedVars(E1 − set) ⇔ prefixedVars(E1 )
• prefixedVars(rel(E, f )) ⇔ prefixedVars(E )
• prefixedVars(fix (X, E )) ⇔ prefixedVars(E )
• isWeaklyGuarded(C )
• isWeaklyGuarded(X )
• isWeaklyGuarded(0 )
• isWeaklyGuarded(a → E ) ⇔ isWeaklyGuarded(E )
• isWeaklyGuarded(E1 + E2 ) ⇔

isWeaklyGuarded(E1 ) ∧ isWeaklyGuarded(E2 )
• isWeaklyGuarded(E1 || E2 ) ⇔

isWeaklyGuarded(E1 ) ∧ isWeaklyGuarded(E2 )
• isWeaklyGuarded(E1 − set) ⇔ isWeaklyGuarded(E1 )
• isWeaklyGuarded(rel(E, f )) ⇔ isWeaklyGuarded(E )
• isWeaklyGuarded(fix (X, E )) ⇔

isWeaklyGuarded(E ) ∧ prefixedVars(E )
• {{ X }} env = lookup(X, env)
• {{ C }} env = {{ definitionOf (C ) }} env
• {{ 0 }} env = zero
• {{ a → E }} env = a → {{ E }} env
• {{ E1 + E2 }} env = {{ E1 }} env + {{ E2 }} env
• {{ E1 || E2 }} env = {{ E1 }} env || {{ E2 }} env
• {{ E − set }} env = {{ E }} env − set
• {{ rel(E, f ) }} env = rel({{ E }} env, f )
• isWeaklyGuarded(E ) ⇒
{{ fix (X, E ) }} env =
{{ E }} env [ {{ fix (X, E ) }} env / X ]

• ¬ isWeaklyGuarded(E ) ⇒ ¬ def {{ fix (X, E ) }} env
then %implies

∀ a: Act ; env : Env ; E, E1, E2 : AgentExpression;
X : AgentVariable
• isWeaklyGuarded(E ) ⇒ def {{ fix (X, E ) }} env
• isWeaklyGuarded(E1 ) ∧ isWeaklyGuarded(E2 ) ⇒

(E1 − a → E2 ⇔ {{ E2 }} env eps next(a, {{ E1 }} env))
end

We finally express as implied statements that fixed points are unique and that
the denotational semantics coincides with the operational one.
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11.5 A Simple Buffer in CCS

In order to illustrate the use of modal logic formulae in connection with the
formalization of CCS in CoCasl, consider the following specification (adapted
from [25]) of two very simple two-element and three-element buffers (specified
by the agent constants B and C, respectively). The buffer can input or output
symbols. For simplicity, the symbols are just bits here.

spec Buffer =
CCS

then
free type Elem ::= 0 | 1
free type Name ::= input(Elem) | output(Elem)
free type

AgentConstant ::= B | B 0 | B 1
| C | C 0 | C 1
| C 00 | C 01 | C 10 | C 11

• definitionOf (B) = (input(0 ) → B 0 ) + (input(1 ) → B 1 )
• definitionOf (B 0 ) = bar(output(0 )) → B
• definitionOf (B 1 ) = bar(output(1 )) → B
• definitionOf (C ) = (input(0 ) → C 0 ) + (input(1 ) → C 1 )
• definitionOf (C 0 ) =

(input(0 ) → C 00 ) + (input(1 ) → C 10 ) + (bar(output(0 ))
→ C )

• definitionOf (C 1 ) =
(input(0 ) → C 01 ) + (input(1 ) → C 11 ) + (bar(output(1 ))
→ C )

• definitionOf (C 00 ) = bar(output(0 )) → C 0
• definitionOf (C 01 ) = bar(output(1 )) → C 0
• definitionOf (C 10 ) = bar(output(0 )) → C 1
• definitionOf (C 11 ) = bar(output(1 )) → C 1

end

A desirable property of both buffers is that every input symbol is eventually
output. This means more precisely that if a process performs input(a), it must
in a finite number of steps reach a state where it can perform bar(output(a)).
This is an invariant required to hold at any point of time during the execution
of the process. Formally

∀ a: Elem • [next(input(a))] <next∗> <next(bar(output(a)))> true

The two buffers B and C are distinguished by their capacity. We can express
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Fig. 22. Relationship between CoCasl and other reactive Casl extensions

that a buffer has capacity of at least two as follows: from any state, we can
reach — in a finite number of steps — a state where it is possible to perform
two arbitrary input operations consecutively. Formally:

∀ a, b: Elem • <next∗> <next(input(a))> <next(input(b))> true

Capacity of at least n is expressed similarly, and capacity smaller or equal to
n is expressed by the negation of capacity of at least n − 1. The conjunction
of both specifies capacity exactly n.

11.6 Related Approaches in Modelling Process Algebra

We have presented a general scheme for specifying models of concurrency: a
clear distinction between syntax, operational semantics, and a (fully abstract)
domain representing the chosen notion of equivalence has turned out to be the
most adequate design.

There are various proposals of reactive Casl extensions – see Figure 22 for
a small selection. Our definition of CoCasl differs from Casl extensions
like CSP-Casl [47], CCS-Casl [53,54] or Casl-Chart [42]. These Casl
extensions combine Casl with reactive systems of a particular kind, the se-
mantics of which is defined in terms of set theory. We use CoCasl (being
much simpler than full set theory) as a meta-framework suitable for the for-
malization of (the semantics of) different frameworks for reactive systems.
Hence, the proof support presented here can be used to prove meta-properties
about these frameworks.

Casl-LTL [41] is similar to CoCasl inasmuch as it is suitable as a meta-
framework: for example, CCS has been formalized in Casl-LTL. However,
the formalization in [41] has important drawbacks: only the transition relation
is modelled, but the various forms of bisimulation are not covered, nor are
infinite state systems and recursion. It is unclear whether these shortcomings
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can be repaired in Casl-LTL.

12 Conclusion and related work

We have introduced CoCasl as a light-weight but expressive extension of
Casl. CoCasl allows algebraic and coalgebraic specification to be mixed.
CoCasl has a multi-sorted modal logic for reasoning with implicit states,
partly modeled on predecessors from the literature but equipped with the
crucial new feature of modal operators for structured observations in datatypes
such as finite sets or lists of states. We have given a sufficient criterion for the
existence of cofree models for specifications using initial datatypes and modal
formulae. Moreover, we have described an institution for modal CoCasl that
incorporates a local notion of observability; this institution can be encoded in
structured specifications in plain CoCasl.

As an application, we have presented CoCasl specifications for the process
algebras CCS and CSP including established notions of process equivalence,
namely strong bisimulation, weak bisimulation, observation congruence, and
trace equivalence, in the latter case illustrating how algebraic and coalgebraic
notions interact in CoCasl. Moreover, we have given a coalgebraic denota-
tional semantics to the finitely branching fragment of CCS, and we have ex-
pressed the relation between the operational semantics and the denotational
semantics in CoCasl. In general, our specifications deal with the concepts
involved in a natural way, indicating that CoCasl is an expressive language
which is able to deal with reactive systems at an appropriate level.

CoCasl is more expressive than other algebra-coalgebra combinations in the
literature: [11] uses a simpler logic, CCSL [51] has fewer datatypes available,
while hidden algebra such as in BOBJ [46] and reachable-observable algebra
such as in COL [7] do not support cofree types. If, for example, streams are not
specified as the final (=cofree) model, then there are stream models which do
not contain all corecursively definable functions (like the flipping of streams),
so that corecursive definitions fail to be conservative.

By contrast, cofree cotypes in CoCasl support a style of specification separat-
ing the basic process type (with its data sorts, observers and other operations)
from further, derived operations defined on top of this in a conservative way.
Note that this is not a purely theoretical question: programming languages
such Charity [12] and Haskell [39] support infinite data structures that corre-
spond to the infinite trees in the behaviour algebras, and one should be able
to specify that as many infinite trees as needed for all programs over some
data structure expressible in these languages are present in the models of a
specification. The Haskell semantics for lazy data structures (at least for the
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non-left-→-recursive case) indeed comprises all infinite trees, i.e. is captured
exactly by a behaviour algebra.

The institution of Constructor-based Observational Logic (COL) [7] combines
reachability induced by constructors with observational equality induced by
observers. CoCasl does not directly support observational equality or bisim-
ilarity, but full abstractness (‘bisimilarity is equality’) can be expressed via
cogeneration constraints, as shown in the process algebra examples. In COL,
observability is a global notion and required to be preserved and reflected by
signature morphisms. CoCasl’s local notion of observability provides an ex-
tra degree of flexibility — in particular, it allows instantiating observable sorts
with non-observable ones. Unlike COL, CoCasl does not simultaneously sup-
port a glass-box and a black-box view on a specification. However, we plan to
develop a notion of behavioural refinement between CoCasl specifications.
Then, the black-box/glass-box view of [7] could be expressed in CoCasl as a
refinement of a black-box specification into a glass-box one, thus also providing
a clear separation of concerns.

The Coalgebraic Class Specification Language CCSL [51], developed in close
cooperation with the LOOP project [57], is based on the observation of [43]
that coalgebras can give a semantics to classes of object-oriented languages.
CCSL provides a notation for parametrized class specifications based on fi-
nal coalgebras. Its semantic is based on a higher-order equational logic and it
provides theorem proving support by compilers that translate CCSL into the
higher-order logic of PVS and Isabelle. In its current version, CCSL does not
support data type specifications with partial constructors, axioms or equa-
tions, i.e. it only supports free types without axioms in the sense of Casl.
This also implies that, in contrast to CoCasl, CCSL does not support modal-
ities for coalgebras mapping states to finite sets of states (since finite sets are
defined by a structured free specification using equational axioms). Recently,
CCSL has been extended by binary methods [56] (i.e. observers with two non-
observable arguments). These are also available in CoCasl and can be used
in connection with cogeneration (= full abstraction) constraints; cofree models
usually fail to exist in the presence of binary observers.

Future work will concentrate in particular on the development of tools for
CoCasl. The heterogeneous tool set [29,28] already provides a parser and
static analysis for Casl and CoCasl basic and structured specifications.
Concerning proof support, it is planned to extend the coding of Casl
into Isabelle/HOL [30] to CoCasl. While cogenerated and cofree cotypes
are easily expressible (and partly already available in Isabelle/HOL), struc-
tured cofree specifications will be a challenge. Moreover, we expect that re-
cent research about circular coinduction [15] and terminal sequence induc-
tion [37] will provide useful tactics for the encoding of CoCasl into Is-
abelle/HOL. All the specifications shown in this paper are available under
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http://www.cofi.info/Libraries.
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