# Monads in Category Theory

Günter Landsmann

## What a monoid is

$$(m, m \times m \xrightarrow{\mu} m, \star \xrightarrow{e} m)$$

## m a set

 $m \times m \stackrel{\mu}{\longrightarrow} m$  operation

 $\star \stackrel{e}{\longrightarrow} m$  element

obeying conditions

## **Associativity**

$$\begin{array}{c|c} m \times m \times m \xrightarrow{\mu \times 1} m \times m \\ 1 \times \mu & & \downarrow \mu \\ m \times m \xrightarrow{\mu} m \end{array}$$

#### **Identity** element

$$m \xrightarrow[]{\langle e,1\rangle} m \times m \xrightarrow[]{\langle 1,e\rangle} m$$

# 1st Generalization: Monoid in a category C

$$(m, m \times m \xrightarrow{\mu} m, \star \xrightarrow{e} m)$$

$$m$$
 an object  $m \times m \stackrel{\mu}{\longrightarrow} m$  arrow  $\star \stackrel{e}{\longrightarrow} m$  arrow

where  $\star$  is a terminal object

subject to





The same game can be played with groups, rings, algebras etc.

#### Examples

```
Monoid (group, ring, ...) in cat of set = ordinary monoid (group, ring, ...)
```

group in cat of topological spaces  $\ = \$  topological group

group in cat of groups = abelian group

group in cat of  $C^{\infty}$ -manifolds = Lie group

# 2nd generalization: Monoidal Categories

A category C is **strict monoidal** if it is equipped with

a functor:  $\otimes$ :  $C \times C \longrightarrow C$  (the **tensor product**) an object  $e \in C$  (the **unit object**)

#### subject to

1. Associativity

$$\begin{array}{ccc}
C \times C \times C & \xrightarrow{\otimes \times 1} C \times C \\
\downarrow^{1 \times \otimes} & & \downarrow^{\otimes} \\
C \times C & \xrightarrow{\otimes} C
\end{array}$$

2. Unit

$$C \xrightarrow{\langle e, 1 \rangle} C \times C \xrightarrow{\langle 1, e \rangle} C$$

So, in order that  $(C, C \times C \xrightarrow{\otimes} C, e)$  be strictly monoidal, it has to obey the rules

$$g_1 f_1 \otimes g_2 f_2 = (g_1 \otimes g_2) \circ (f_1 \otimes f_2)$$

$$1_a \otimes 1_b = 1_{a \otimes b}$$

$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

$$e \otimes a = a = a \otimes e$$

$$1_e \otimes f = f = f \otimes 1_e$$

Here a, b, c are objects,  $f, g, h, f_i, g_i$  are morphisms.

### Examples

- 1.  $(M, \cdot, e)$  ordinary monoid as discrete category. Multiplication  $M \times M \xrightarrow{\cdot} M$  is a functor  $e \in M$  the unit object.
- 2.  $(M, \cdot, e)$  commutative monoid as one-object category  $(\star, M)$ . Multiplication is a functor  $(\star, M) \times (\star, M) \longrightarrow (\star, M)$   $\star$  is the unit object.
- 3. (End  $A, \otimes, 1_A$ ) where A is an arbitrary category.

 $1_A: A \longrightarrow A$  is the unit object.

## General monoidal categories

This may exhausted even more in that commutativity of the fundamental diagrams is relaxed to natural isomorphism.

Then we have

## Examples (Monoidal categories)

- 1. Any category  $(A, \times, t)$  where  $\times$  is the product, t a terminal object
- 2. Any category  $(A, \sqcap, i)$  where  $\sqcup$  is the coproduct, i an initial object
- 3.  $(\Lambda\Lambda$ -bimodules,  $\otimes_{\Lambda}, \Lambda)$  where  $\Lambda$  is a ring;
- 4. (vectorspaces,  $\otimes_k$ , k), (abelian groups,  $\otimes_{\mathbb{Z}}$ ,  $\mathbb{Z}$ );
- 5.  $(\mathcal{ALG}_R, \otimes_R, R)$  where R is a commutative ring;
- 6. (pointed spaces, smash product, pointed 0-sphere);
- 7. (bounded semilattices, meet, 1).

Furthermore: graded modules, chain complexes, ...



# 3rd Generalization: Monoids in strict monoidal categories

Let  $A = (A, \otimes, e)$  be a strict monoidal category

$$A = (A, A \times A \xrightarrow{\otimes} A, e \in A).$$

A **monoid** in A is a triple  $(m, \mu, \eta)$ , where

$$m \in A$$
 is an object  $m \otimes m \stackrel{\mu}{\longrightarrow} m$  is an arrow  $e \stackrel{\eta}{\longrightarrow} m$  is an arrow subject to



A morphism of monoids  $(m, \mu, \eta) \longrightarrow (m', \mu', \eta')$  is an A-arrow  $f: m \longrightarrow m'$  such that



For arbitrary category A, (End A,  $\otimes$ ,  $1_A$ ) is monoidal.

$$\operatorname{End} A \times \operatorname{End} A \xrightarrow{\otimes} \operatorname{End} A$$

$$(G, F) \xrightarrow{(\varepsilon, \delta)} (K, H) \stackrel{\otimes}{\longmapsto} GF \xrightarrow{\varepsilon \star \delta} KH$$

$$A \xrightarrow{\delta} A \xrightarrow{\mathcal{S}} A \xrightarrow{\varepsilon} A \xrightarrow{\mathcal{S}} A \xrightarrow{\mathcal{S}}$$

where  $\varepsilon \star \delta \colon \mathit{GF} \longrightarrow \mathit{KH}$  is given by the dotted arrow below

$$a \in A \qquad \Longrightarrow \qquad Fa \stackrel{\delta_a}{\longrightarrow} Ha \qquad \Longrightarrow \qquad \stackrel{\varepsilon_{Fa}}{\Longrightarrow} \bigvee_{KFa} \stackrel{\varepsilon_\star \delta}{\underset{K(\delta_a)}{\longmapsto}} KHa$$

Thus,  $(\varepsilon\star\delta)_a=arepsilon_{Ha}\circ G(\delta_a)=K(\delta_a)\circarepsilon_{Fa}$ .

#### Definition

Let A be a category. A monad in A is a monoid in  $(\operatorname{End} A, \otimes, 1_A)$ .

Thus, a monad is a triple  $(T, \mu, \eta)$  where  $T \circ T \xrightarrow{\mu} T$ ,  $1_A \xrightarrow{\eta} T$  such that

#### **Examples**

1.  $G = (G, \cdot, ^{-1}, e)$  ordinary group.

defines a monad in SET.

2. A ordinary ring, AB category of abelian groups

defines a monad in AB.



Let  $(T, \mu, \eta)$  be a monad in X. Because  $\mu$  and  $\eta$  are natural transformations we get

Therefore, together with the commutativity relations in the definition we obtain the following rules.

# Every adjunction $A \underbrace{\mathcal{G}}_{F} X$ defines a monad in X:

Together with F, G there come 2 transformations

$$1_X \stackrel{\eta}{\longrightarrow} \mathit{GF} \ (\mathsf{unit}) \qquad \mathsf{and} \qquad \mathit{FG} \stackrel{arepsilon}{\longrightarrow} 1_A \ (\mathsf{counit})$$

We set  $T := GF \in \operatorname{End} X$ . Then the situation is



Define  $\mu := G \star \varepsilon \star F$ . Then

$$\underbrace{\mathsf{GFGF}}_{T \circ T} \xrightarrow{\mu} \underbrace{\mathsf{GF}}_{T}, \quad 1_{X} \xrightarrow{\eta} \underbrace{\mathsf{GF}}_{T}$$

and  $(T, \mu, \eta)$  is a monad.

For a fixed category X the association defined by the last construction is a surjection

$$\left\{ \text{adjunctions } A \underset{F}{\overset{G}{\longrightarrow}} X \ \mid \ A \text{ cat }, F, G \text{ functors} \right\} \longrightarrow \left\{ \text{monads in } X \right\}$$

For a given monad T in a category X there are plenty of adjunctions producing T. The minimal one is the **Kleisli-adjunction**.

## The Kleisli-construction

Given a monad  $(T, \mu, \eta)$  in a category X. Define new cat  $X_T$ :

$$\operatorname{objects}(X_T) = \{x^\sharp \mid x \in \operatorname{objects}(X)\}$$

$$\operatorname{hom}_{X_T}(x^\sharp, y^\sharp) = \{f^\sharp \mid f \in \operatorname{hom}_X(x, Ty)\}.$$

$$x \in X \quad \Rightarrow \quad x^\sharp \quad x \xrightarrow{f} Ty \quad \Rightarrow \quad x^\sharp \xrightarrow{f^\sharp} y^\sharp$$
object in  $X$  new object arrow in  $X$  new arrow

objects
$$(X_T) \cong \text{objects}(X)$$
 and  $\text{hom}_X(x, Ty) \cong \text{hom}_{X_T}(x^{\sharp}, y^{\sharp})$ .

**Composition:** Given  $x^{\sharp} \xrightarrow{f^{\sharp}} y^{\sharp} \xrightarrow{g^{\sharp}} z^{\sharp}$ .





#### Composition is associative:

Let 
$$x^{\sharp} \xrightarrow{f^{\sharp}} y^{\sharp} \xrightarrow{g^{\sharp}} z^{\sharp} \xrightarrow{h^{\sharp}} w^{\sharp}$$
. Then

$$h^{\sharp} \circ (g^{\sharp} \circ f^{\sharp}) = h^{\sharp} \circ (\mu_{z} \circ Tg \circ f)^{\sharp} = (\mu_{w} \circ Th \circ \mu_{z} \circ Tg \circ f)^{\sharp}$$

$$= (\mu_{w} \circ \mu_{Tw} \circ T^{2}h \circ Tg \circ f)^{\sharp} = (\mu_{w} \circ T(\mu_{w}) \circ T^{2}h \circ Tg \circ f)^{\sharp}$$

$$= (h^{\sharp} \circ g^{\sharp}) \circ f^{\sharp}$$

Every object has a unit: Let  $x^{\sharp} \xrightarrow{f^{\sharp}} y^{\sharp}$ . Then

$$\eta_y^{\sharp} \circ f^{\sharp} = (\mu_y \circ T(\eta_y) \circ f)^{\sharp} = (1_{Ty} \circ f)^{\sharp} = f^{\sharp}$$
  
$$f^{\sharp} \circ \eta_x^{\sharp} = (\mu_y \circ T(f) \circ \eta_x)^{\sharp} = (\mu_y \circ \eta_{Ty} \circ f)^{\sharp} = (1_{Ty} \circ f)^{\sharp} = f^{\sharp}$$

Thus  $X_T$  is indeed a category.

# Adjoint functors

$$F_T: X \longrightarrow X_T:$$

$$x \xrightarrow{u} y \Longrightarrow x \xrightarrow{u} y \xrightarrow{\eta_y} Ty$$

$$F_T(x \xrightarrow{u} y) := x^{\sharp} \xrightarrow{(\eta_y \circ u)^{\sharp}} y^{\sharp}$$

 $G_T: X_T \longrightarrow X$ :

$$x^{\sharp} \xrightarrow{f^{\sharp}} y^{\sharp} \Longrightarrow Tx \xrightarrow{Tf} T^{2}y \xrightarrow{\mu_{y}} Ty$$

$$G_T(x^{\sharp} \xrightarrow{f^{\sharp}} y^{\sharp}) := T_X \xrightarrow{\mu_y \circ Tf} T_Y$$

Thus  $G_T(x^{\sharp}) = Tx$  on objects.

 $X_T \xrightarrow{G_T} X$  is an adjunction which produces the given monad T.

#### Kleisli star

For the following construction we assume that the category X is concrete, i.e., the objects of X do have elements.

Let  $(X \xrightarrow{T} X, T^2 \xrightarrow{\mu} T, 1_X \xrightarrow{\eta} T)$  be a monad in X such that  $T: X \longrightarrow X$  is injective on objects. We define

$$hom(x, Ty) \xrightarrow{*} hom(Tx, Ty) \qquad Tx \times hom(x, Ty) \xrightarrow{\bowtie} Ty$$
$$f \mapsto f^* := \mu_y \circ Tf \qquad (\xi, f) \mapsto f^*(\xi) =: \xi \ltimes f$$

The operation  $Tx \times \text{hom}(x, Ty) \xrightarrow{\ltimes} Ty$  - called the **bind** operator - is an obvious version of the operator  $f \mapsto f^*$ .

The following three **monad laws** are easily verified:

$$\begin{array}{rcl} f^{\star} \circ \eta_{\mathsf{X}} & = & f & \qquad \text{for } x \stackrel{f}{\longrightarrow} \mathit{Ty} \\ \eta_{\mathsf{X}}^{\star} & = & 1_{\mathit{Tx}} & \qquad \text{for } x \in \mathsf{objects}(X) \\ (g^{\star} \circ f)^{\star} & = & g^{\star} \circ f^{\star} & \qquad \mathsf{for } x \stackrel{f}{\longrightarrow} \mathit{Ty}, \ y \stackrel{g}{\longrightarrow} \mathit{Tz}. \end{array}$$



# Bind operator

The three monad laws written in terms of the bind operator are:

$$\eta_{x}(\xi) \ltimes f = f(\xi) \qquad (\xi \in x) \\
\xi \ltimes \eta_{x} = \xi \qquad (\xi \in Tx) \\
(\xi \ltimes f) \ltimes g = \xi \ltimes (f(\bullet) \ltimes g) \qquad (\xi \in Tx).$$

#### Basic category theory:

www.risc.jku.at/education/courses/ss2012/alg - alggeo/

