Swinging Types =
Functions 4+ Relations 4+ Transition Systems

Peter Padawitz
padawitz@cs.uni-dortmund.de
http://1s5.cs.uni-dortmund.de/~peter
University of Dortmund

April 14, 2000

Abstract

Swinging types provide a specification and verification formalism for designing software in terms of
many-sorted logic. Current formalisms, be they set- or order-theoretic, algebraic or coalgebraic, rule-
or net-based, handle either static system components (in terms of functions or relations) or dynamic
ones (in terms of transition systems) and either structural or behavioral aspects, while swinging types
combine equational, Horn and modal logic for the purpose of applying computation and proof rules from
all three logics.

A swinging specification separates from each other visible sorts that denote domains of data identified
by their structure; hidden sorts that denote domains of data identified by their behavior in response to
observers; p-predicates (least relations) representing inductive(ly provable) properties of a system; and v-
predicates (greatest relations) representing complementary “coinductive” properties, which often describe
behavioral aspects “in the infinity”.

A model that combines static with dynamic features and structural with behavioral aspects of a
system is obtained naturally if all involved entities (objects, states, etc.) are presented as terms built up of
constructors for visible or hidden sorts and if functions are specified by conditional equations (= functional
programs), least relations by Horn clauses (= logic programs or transition system specifications) and
greatest relations by co-Horn clauses. Term equivalences are either structural or behavioral, the former
being least, the latter being greatest solutions of particular axioms derived from the type’s signature.

This paper mainly presents the theoretical foundations of swinging types, such as standard (term)
models, criteria for structural and behavioral consistency, and proof rules. Swinging types admit flexible
design guidelines, tailored to particular objectives or application fields. Suitable design methods may
be based upon this and the companion paper [62] that explores various application areas and illustrates
how swinging types may realize different programming or specification styles. As to structuring concepts
for swinging types, parameterization and genericity are involved in this paper, while [64] deals with
extensions and refinements.

Contents

1 Introduction 2
2 The syntax of swinging types 6
3 Structures and congruences 17
4 Functionality, fixpoints, standard models 24
5 The final model and hierarchy conditions 34
6 Coinductive axioms 43
7 A modal invariance theorem 52
8 Conclusion 56

References 57

1 Introduction

In contrast to modal logic and most approaches for specifying dynamic systems (see, e.g., [1, 25]) we propose a
one-tiered framework that admits the specification of “static” data types and “dynamic” transition systems
within a uniform logic. In modal logic, state transitions are interpreted on a higher level that does not
interfere with the structure of individual states. Swinging types regard states as hidden objects, transition
labels as visible data and transition relations as dynamic predicates. The behavioral identity of a hidden
object depends on functional or relational observers, in other approaches also called selectors, accessors,
attributes, inquiry operations, methods, mutators, destructors, etc. In functional approaches, behavioral
equality usually comes as a sort of contextual equivalence, in modal logic as bisimilarity. In both cases
behavioral equality is dual to structural equality insofar as the former is the least and the latter the greatest
relations satisfying certain compatibility axioms. Swinging types admit all ways of specifying a behavioral
equality, be they functional, relational or “transitional”, i.e., determined by dynamic predicates. The latter
case motivates the introduction of weak congruences that are compatible with static predicates, but only

zigzag compatible with dynamic ones.

A swinging specification starts out from constructors for building up both visible and hidden data do-
mains. Visible domains precede the hidden ones. A visible domain is characterized by the coincidence
of its structural with its behavioral equality. Constructors of visible data are not allowed to have hidden
arguments. This ensures that the theory of a hidden type is consistent w.r.t. its visible subtype. A swing-
ing specification need not have hidden sorts, but if there are hidden sorts, there must also be visible ones.
Otherwise hidden objects cannot be distinguished from each other. Formally, each hidden domain must be
equipped with at least one functional observer that maps to a visible sort or one relational observer, regarded
as a function that maps to the visible domain of truth values. Otherwise the hidden domain collapses because

its behavioral equality identifies all its elements.

Besides constructors, a swinging specification defines functions and p-predicates in terms of Horn axioms
that represent functional-logic programs or transition system specifications. p-predicates are interpreted as
the least solutions of their axioms. pu-predicates are often existential properties such as liveness or reach-
ability. Roughly said, all inductively definable properties are p-predicates. Hence structural equalities are
p-predicates. p-predicates dealing with “infinite” objects are often “limits” of conditions on the objects’
finite approximations. v-predicates are usually complements of p-predicates. They represent universal prop-
erties, and, if they cannot be turned into equivalent p-predicates, they often express aspects of behavior
“in the infinity”, such as safety and invariance conditions on state sequences. Formally, v-predicates are
specified in terms of co-Horn clauses and interpreted as the greatest solutions of their axioms. Behavioral
equalities are v-predicates. Above the v-predicates, a swinging type may have further p-predicates whose
axioms are generalized Horn clauses. As co-Horn clauses may involve existential quantifiers in the conclu-
sion, generalized Horn clauses may involve universal quantifiers in the premise. Since these quantifiers may
violate the continuity of the consequence operators induced by the axioms, we provide a continuity criterion

that generalizes the notion of image finiteness from transition systems to arbitrary goals.

The notions “p-predicate” and “v-predicate” stem from modal logic’s p-calculus (cf., e.g., [48, 73]) and
relational fixpoint semantics (cf., e.g., [36]). The least and greatest fixpoints of state set operators used
to define alternation-free p-formulas can be translated directly into swinging specifications of p- resp. v-

predicates (see Section 2).

Besides modal logic, swinging types integrate concepts, methods and results from many other formal

approaches to system specification and verification. First of all, there is final-semantics approach to data

types that was introduced for modelling permutative types such as finite sets, multisets and arrays with a
finite domain (cf., e.g., [28, 75, 46]). [29, 32] extended it to the hidden-type approach that also covers object-
oriented—though purely functional—specifications. From dynamic data types we adopt the specification of
labelled transition systems (LTS) as ternary predicates (cf. [8, 7, 4]). Stratified logic programs with stable or

perfect models provide ideas for constructing swinging types hierarchically (cf. [2]).

Coinductive function definitions in category theory [68, 44] and formats of transition system specifications
[37] led us to the criterion of coinductivity for the behavioral consistency of a swinging type (see Section 6).
Given a suitable functor F'| category theorists call a function to be defined by coinduction if the definition
is derived from the unique morphism that maps an F-coalgebra to the final F-coalgebra. This dualizes the
category-theoretic notion of a definition by induction that is derived from the unique morphism that maps
the initial F-algebra to an F-algebra. Initial F-algebras and final F-coalgebras are isomorphisms that are
composed of the constructors and destructors of the type described by F'. The connections between swinging
types and the category-theoretic approach to data types is treated in detail in [62]. Besides the notion of
coinductivity the category-theoretic approach yields the insight that not only visible, but also hidden types
have constructors. On the other hand, it is purely functional and thus does not contribute to the axiomatic
specification of predicates; in particular dynamic ones. Here modal logic and process algebra provide more

inspirations.

The rewriting-oriented criteria developed in [57, 59, 60] are fully applicable to swinging types. This pro-
vides the basis for ensuring that a swinging type is functional, i.e. each of its ground terms is structurally
equivalent to a unique normal form (= term consisting of constructors). This seems to exclude the specifica-
tion of partial functions. However, partiality can always be simulated by introducing sum sorts that comprise
“defined” and “undefined” values such as exceptions, error messages, etc. (see, e.g., [34] and the exception
monad of [54] as used in [62]). Moreover, strong equality turns out to be a behavioral equality induced
by a destructor that identifies exceptions, and even arbitrary partial-recursive functions can be specified by
axioms of a swinging type (cf. [62], Section 7). Each functional specification can be transformed into an
equivalent relational one whose only functions are constructors, while defined functions are transformed into
corresponding input-output relations. This fact is crucial for the correctness of applying one of the main
proof rules for swinging types, namely fixpoint induction, not only to (p-)predicates, but also to defined
functions. A functional specification can also be extended systematically by axioms for the complements of
its structural equalities, in other words, axioms for inequalities. This entails the correctness of practically
indispensable proof rules such as term splitting and clash. The complements of non-equality predicates are

accomplished by simply negating axioms (see Section 4).

The axioms for behavioral equalities are determined by those defined functions, static or dynamic pred-
icates that are declared as destructors, separators and transition predicates, respectively, altogether called
observers. Observational specifications in the sense of [17, 41, 16] and behavioral or hidden ones in the sense
of [32, 69] deal exclusively with destructors (called attributes/methods in [32]). A-calculi, process logics and
dynamic data types are based on labelled transition systems (LTS), i.e. transition predicates. On the one
hand, only [8] and [21] regard an LTS as a predicate of a many-sorted specification. On the other hand,
the dynamic-type approach lacks specification and proof methods that are as powerful as those invented in
process algebra [9] and modal logics for proving properties of LTS (“model checking”). But the dynamic-type
approach keeps to first-order logic, while the modal-logic and process-algebra reasoning about processes and

LTS leaves the structure of individual states out of its discourse.

Similarly to functional-logic programs and transition system specifications, the axioms of a swinging

type represent more or less inductive definitions of (defined) functions or (u-)predicates on constructors.

This is necessary for ensuring that the specification is functional. Coinductive azioms, on the other hand,
guarantee that the specification is behaviorally consistent (see below). For instance, both the visible type
of (finite) lists and the hidden type of (infinite) streams have a constructor append-to-the-left, denoted by
_u_rentry x list — list and _&_ : entry x stream — stream, respectively. In both cases, there are defined

functions head and tail, specified by the same axioms:

head(x = Ly==2 tail(z = L)=1TL
head(z&s) = x tail(z&s) = s

Obviously, these equations are part of inductive definitions of head and tazl and thus part of a functional
list resp. stream specification. Coinductivity, however, is a requirement to axioms for hidden symbols only
and thus may or not hold only for the last two equations. Indeed, they are coinductive because we have
declared head and tail as observers. In this simple case it 1s quite easy to conclude that behavioral stream
equality, say ~, is compatible with all involved functions, i.e. head, tail and &. Declaring head and tail as

observers means to axiomatize ~ as follows:
s~s = head(s) = head(s') Atail(s) ~ tail(s). (1)

(1) is the compatibility of ~ with head and tail. But ~ is also compatible with & because ~ denotes the
greatest solution of (1) and thus s ~ s holds true if and only if the conclusion of (1) holds true. The argument
would fail if head and tail were not declared as observers. Indeed, the coinductivity requirement to axioms for
“non-observing” symbols are more restrictive (see Section 6). For instance, suppose that the list specification
is extended by a hidden sort bag for finite multisets, the defined function card : bag X entry — nat returning
the number of occurrences of an element in a bag is declared as an observer and the embedding mkbag : list —
bag of lists into bags is the only bag constructor. Then there is a defined function chooselist : list — bag
specified inductively by the axiom

chooselist(bag(L)) = L. (2)
Declaring chooselist as an observer would lead to the axiom
b~V = chooselist(b) = chooselist(b")

for behavioral bag equality, which does not comply with our intuition about this equality. Hence chooselist
cannot be an observer and thus—as the reader of Section 6 will confirm—(2) is not coinductive. Indeed, if

behavioral bag equality were compatible with chooselist, it would coincide with list equality!

An “LTS-inspired” stream specification replaces the functional observers head and tail by a transition

predicate _ —» _: stream X entry x stream, the axioms for head and tail by z&s — s and (1) by:

s~s > (st = (s S UN~T)),
s~s = (8t = (s S tAt~t)).

The syntax of a swinging type leads directly to its Herbrand model, Her(SP), which is a pure term
model and thus interprets both structural equalities and behavioral ones as term relations, called structural
and behavioral SP-equivalence, respectively, denoted by =gp resp. ~gp. The initial SP-model, Ini(SP),
is the quotient of Her(SP) by structural SP-equivalence, the final SP-model, Fin(SP), is the quotient of
Her(SP) by behavioral SP-equivalence. The latter deviates from other final-semantics approaches where

the final model comes as a quotient of the initial one. In fact, =gp 1s included in ~gp and thus some

quotient of Ini(SP) is isomorphic to Fin(SP). However, the theory of the final model is easier to handle if

one constructs it as a quotient of the Herbrand model.

The standard axioms for structural equalities render =gp a congruence relation. The algebraist likes
congruences because they admit the construction of quotient models. The theorem prover is less keen on new
models, but on the correctness of term replacement w.r.t. an equivalence relation, and this is guaranteed for
all first-order formulas only if the relation is a congruence, in other words, first-order formulas are congruence

mvartant:
t=spt = forall first-order formulas ¢ : Her(SP) £ ¢(t) & o(t'). (3)

Behavioral SP-equivalence is not a congruence, but a weak congruence. Weak congruences are compatible
with functions and static predicates, but only zigzag compatible with dynamic predicates. Roughly said, they
are bisimulations, generalized to arbitrary dynamic predicates. Modal logic provided us the idea of possible

classes of first-order formulas whose elements are weak-congruence invariant:

t ~spt’ = for all poly-modal formulas ¢ : Her(SP) k= ¢(t) < o(t). (4)

We introduce three classes of modal first-order formulas. Those called modal formulas are the results of
direct translations of modal-logic sentences into predicate logic. Such translations—whose images are also
called modal or guarded fragments of first-order logic—have been studied by, e.g., Ohlbach [55], Bergstra
and van Benthem [13, 14]. The main idea is to “internalize” the “frame” or LTS, which determines the
interpretation of modal-logic sentences, as a binary, or if the LTS is labelled, ternary predicate (see Section
2). Modal formulas have a single (“state”) variable and can be shown to be bisimulation invariant (see
below). The greater class of poly-modal formulas admits several variables, but restricts (analogously
to modal formulas) the “target term” of each dynamic-predicate occurrence to an existentially quantified
variable. A weakly modal formula may also have free variables as target terms, which comprise the output
of the formula (see Section 2). Weakly modal formulas with empty output are poly-modal. For guaranteeing
that the final model of a swinging specification satisfies its axioms, the premises of the Horn axioms must

be weakly modal, while the conclusions of the co-Horn axioms must be poly-modal (see Section 3).

There are differences between van Benthem’s modal fragment and poly-modal formulas that forbid the
direct application of his results to swinging types. [14] translates propositional modal logic and thus formulas
of the modal fragment are built over a one-sorted signature with only unary (static) and binary (dynamic)
predicates, while we start out from a many-sorted signature with predicates of various arities. Nevertheless,

even poly-modal formulas enjoy a Hennessy-Milner theorem!, i.e. (4) together with the converse:
t ~spt <« forall poly-modal formulas ¢ : Her(SP) | ¢(t) < ¢(t'). (5)
This is trivially valid because ~gp is reflexive and ¢ ~ x 1s a poly-modal formula.

However, van Benthem ([14], Thm. 4.18) characterizes his modal fragment as the class of (bisimulation)
invariant first-order formulas. In Section 7, we generalize this modal invariance theorem to many-sorted logic
and our class of modal (not of poly-modal) formulas. Moreover, it is not the weak congruences that replace
the bisimulations in van Benthem’s theorem, but something in between: on the one hand, weak congruences,
but only w.r.t. unary (static) and binary (dynamic) predicates, on the other hand, pairs (a,b) € A x B where
A and B are different models. Hence our Hennessy-Milner theorem deals with terms replacements within
a single model A, while our modal invariance theorem deals with model replacements and thus adopts the

two-tiered modal-logic view that different states pertain to different models (see above).

!For the original modal-logic version, see [40], Thm. 2.2, or [73], Thms. 5.3.2 and 5.3.3.

In the dynamic-data-type approach of [5], the Hennessy-Milner Theorem has been generalized to a class
of observational formulas with patterns of expertments. They somewhat resemble poly-modal formulas, but

are built upon a fixed, rather unstructured interpretation of their visible components.

A structure A interpreting the signature of a swinging specification SP is behaviorally SP-consistent if
A interprets behavioral equality as a weak congruence and if the quotient of A by that weak congruence
satisfies the axioms of SP. SP itself is behaviorally consistent if the Herbrand model of SP interprets
behavioral equality as a weak congruence. The interpretation is denoted by ~gp, the quotient is called the
final SP-model (see above). The modality assumptions on the axioms of SP (see above) imply that each
model of SP with a weakly congruent interpretation of behavioral equality is behaviorally SP-consistent
(Thm. 3.9(b)). Hence the final model is really a model if ~gp is a weak congruence. This justifies the notion

of behavioral consistency and shows the significance of syntactic criteria for this property.

Swinging types “swing” between many poles: between visible and hidden domains, between several
states (= individual hidden objects), between functions declared as constructors and those used as defined
functions, between structural and behavioral equalities, between functional-logic programs for functions and
static predicates and “transitional programs” for dynamic predicates, between u- and v-predicates. Usually,
not all these concepts are needed simultaneously. There are swinging types where structural equalities play
the dominant role, while other types are specified adequately only in terms of observers and behavioral
equalities. The integrative approach just makes it easier to state and understand both similarities and
conceptual differences between specification formalisms, which so far have been presented separately from
each other. Readers who are familiar with other specification approaches are invited to reformulate results
of this paper in terms of those approaches. This is also a goal of the integration: to make use of theorems

about rule correctness, consistency, etc. in various formal settings.

Section 2 provides the syntax of swinging specifications, recapitulates basic notions of many-sorted logic
and introduces modal, co-Horn and generalized Horn formulas. Section 3 deals with the semantics of swinging
specifications, in particular, bisimulations, weak congruences and monotone structures. General connections
between modality and weak congruences are established by Theorems 3.8 and 3.9. Section 4 focuses on
functionality, reviews relational-fixpoint theorems, defines the standard models of a swinging specification
and presents basic proof rules that draw on the syntax of swinging types, the Herbrand model’s interpretation
of predicates as least or greatest solutions of axioms and, as far as defined functions are concerned, on
functionality. Section 5 deals with particular properties of the final model and with relationships between
several specifications, such as relative completeness, monotonicity, consistency and inductive equivalence.
Moreover, image finiteness is established as a criterion for the continuity of the consequence operators that
build up the Herbrand model. Section 6 is devoted the behavioral-consistency criterion of coinductivity. The

modal invariance theorem is presented and proved in Section 7.

2 The syntax of swinging types

We assume familiarity with the basic notions of many-sorted logic with equality (cf., e.g., [35, 24, 77]). As
has been shown by, e.g., [31, 53, 56, 57, 60], this logic admits presenting and verifying not only primitive data
types with first-order functions, but also generic types with almost all features of current functional-logic

specification or programming languages.

For all expressions e, var(e) and free(e) denote the sets of all resp. free variables of e. ¢ is ground if

var(e) is empty. e(t) denotes an expression that includes the (tuple of) subexpression(s) t. e[t/u] stands

for e with t substituted for u.

Given a set S of sorts, w = s1...s, € S™ and an S-sorted set A, A,, stands for the product A5, x---x A, .
Given two S-sorted sets A and B, an S-sorted binary relation ~ C A x B is a family of relations
{~sC As X Bs}ses. ~ extends to a family of relations {aty, C Ay X By }wes+ on products and to a relation
~ C [I = A] x [I — B] on functions as follows:

(a1,...,an) & (b1,...,by) <ger VI<i<n:a; b vresp. frg <ar Viel: f(i)~g(i).

Example 2.1 We start with an introductory example of a swinging specification. Precise definitions are

given afterwards.

ORDER
sorts entry
preds _Z _:enlry X enlry (predicates)
< _:entry X eniry
_> _:eniry X eniry
vars x,y:entry (variables)
axioms r=yVaZy rZysa(z=y)
r<yVa>y x>y o(r<y)
LISTORD = ORDER then
vissorts bool list = list(entry) (visible sorts)
hidsorts entry — entry entry — bool (hidden sorts)
constructs true, false :— bool (constructors)
nil - — list
__:entry X list — list
Ay.not(eq(-,y)) : entry — (entry — bool)
destructs apply : ((entry — entry) x entry) — entry (destructors)
apply : ((entry — bool) x entry) — bool
defuncts not : bool — bool (defined functions)
eq : entry x entry — bool
[]: entry — list
@:list x list — list
map : (entry — entry) x list — list
filter : (entry — bool) x list — list
remove : entry X list — list
static p-preds _Z _:bool x bool
- < _:bool x bool
_> _: bool x bool
_E _:entry X list
¢ _:eniry x list
sorted : list
exists, forall : (entry — bool) x list
vars z,y:entry b:bool L,L':list f:entry— entry g :entry — bool
Horn axioms not(true) = false eq(z,y) =true < =y

not(false) = true eq(z,y) = false < v %y

[x] = @ nil

nil@QL = L
(z = D)QL = (LQL)
map(f, nil) = nil
(A) map(f,z : L) = f(x) = map(f, L)

filter(g,nil) = nil
filter(g,x 2 L) = x :: filter(g, L) < g(x) =true
filter(g,x :: L) = filter(g,L) < g(x) = false

(B) remove(x, L) = filter(Ay.not(eq(z,y)), L)
true Z false
false <true true > false
b<b
r€x: L z ¢ nil
€yl « €L vyl < xZFyhaeédl
sorted(nil)

sorted(z :: nil)
sorted(x =y L) < o <yAsorted(y:: L)

exists(g,x :: L) < g(x) = true
exists(g,x 2 L) < ewxists(g, L)
forall(g, nil)

forall(g,z - L) < g(x) = true A forall(g, L)
(©) apply(Ay.not(eq(x,y)),y) = not(eq(z,y)) O

A parameterized specification SP such as LISTORD contains parameter specifications (here:
ORDER) that consist of empty sorts, defined functions, predicates and arbitrary first-order axioms. A
sort s of SP is empty if SP does not contain constructors of type w — s. Empty sorts correspond to the type
variables of polymorphic type expressions. Consequently, structured sort symbols such as list(entry) denote
polymorphic types. The equation list = list(entry) declares list as a short notation for list(entry). We use
CASL notations for structuring specifications (cf. [19]): then denotes the extension operator that combines
a specification S P with additional signature symbols and axioms, and builds the union of specifications and

identifies synonymous (and equally-typed) symbols of the argument specifications.

Given terms t,u and x € var(t), the A-abstraction Ax.t is an implicit constructor and the expression
t(u) is a short notation for the term apply(t,u) where apply is a (usually implicit) defined function. For
instance, Axiom A implicitly involves the defined function apply : ((entry — bool) x entry) — bool and
Axiom B uses the constructor Ay.not(eq(,y)) : entry — (entry — bool). Functional sorts, A-constructors,

apply-functions and axioms like C are usually not listed explicitly.

Swinging signatures mainly distinguish between visible and hidden sorts, constructors and defined func-
tions, p- and v-predicates and static and dynamic predicates. These sets of symbols cover structural as
well as behavioral equalities and the observers that determine the latter. The distinctions were motivated
intuitively in Section 1. Further more technical reasons can only be given after the signatures are equipped
with axioms (see Def. 2.4).

Definition 2.2 (signatures, terms, atoms) A signature ¥ = (5, F, P) consists of a set S of sorts
and St-sorted sets I of function symbols and P of predicates such that P splits into sets uP of u-
predicates and vP of v-predicates. s,s’, etc. stand for single sorts, w for sort sequences. A function

symbol f € Fy 4, is written as f : w — s and a predicate r € Pg,, as r : w.

For all s € S, pP implicitly includes the (structural) equality (predicate) =;: ss.? ¥ is swinging if
the following conditions hold true:

e S splits into a set visS of visible sorts and a set hidS of hidden sorts.

e F splits into a set of constructors and a set DF of defined functions.

e For all s € hidS, DF includes a set of destructors [: sw — 5.

e For all s € hidS, pP includes a set of separators r : sw and a set of transition predicates § : sws’.

For all s € S, v P implicitly contains the behavioral equality (predicate) ~;: ss.

A function symbol f : w — s is visible if ws € visST. fis hiddenif f is not visible. For all constructors
c:w — s, s €visS implies w € visS*. A predicate r : w is logical if r is not an equality predicate. r is
visible if w € visSt. r is hidden if r is not visible. Structural equalities are y-predicates. Destructors,

separators and transition predicates are called observers.

o Visible equality predicates, separators and v-predicates belong to the set stat P of static predicates.

e Transition and hidden equality predicates belong to the set dyn P of dynamic predicates, which are

always p-predicates.

Each predicate is static or dynamic. Only visible equality predicates are static and dynamic.

Let X be a set of S-sorted variables. T5(X) and Ty denote the S-sorted sets of X-terms and ground
Y-terms, respectively, which are defined as usual. Each X-term defines a new function symbol: if ¢ € T (X);,
var(t) = {x1,...,2,} and for all 1 < i < n, s; is the sort of ;, then ¢ : s1...s, — 5. We write Fy, for the
set of all function symbols derived from 7% (X).

A Y-normal form is a X-term that consists of constructors and variables. NFs(X) and NFy denote
the S-sorted sets of X-normal forms and ground X-normal forms, respectively. ¢ € Tg(X), is visible resp.

hidden if s is visible resp. hidden. ¢ is unary if var(t) is a singleton.

Given v : w € P and ¢t € Tx(X)y, r(t) is a B-atom. If r is a p-predicate, then r(¢) is a p-atom.
Otherwise r(t) is a v-atom. r(t) is an equation if r is an equality predicate. An equation between term
tuples ¢ and t' stands for the conjunction of the equations between corresponding components of ¢ resp.
t'. An atom r(¢) is logical, visible, hidden, static or dynamic if r is logical, visible, hidden, static or

dynamic, respectively. [

Equality and behavioral equalities will not be listed explicitly in signatures examples. Behavioral equal-
ities are specified via observers (see Def. 2.4). Each function symbol f : s — s is also regarded as a
constructor constant of the functional sort s — s’. Functional sorts are hidden. s — s’ has the (implicit)
observer apply : (s = ') x s = s'. Non-constant functional-sort constructors such as function composition
are specified in terms of apply:

apply(f o g,x) = apply(f, apply(g, x))
or, in more readable notation,
(fog)(x) = [flg(x)).
Hence, semantically, the behavioral equality for a functional sort coincides with extensional equality.

The purpose of ground normal forms is to represent data. Intuitively, visible normal forms are unique

data representations, hidden ones are not because the identity of a hidden object is determined by some

2We use “=” for distinguishing the symbol for structural equality from semantical identity, which is denoted by “=".

behavioral equality. A hidden normal form is just a name of an object, although the structure of the name

often represents the object’s “history” or “vita”.

Let X = (S, F, P) and &/ = (5’, F', P’) be signatures and X be an S-sorted set of variables. A signature
morphism o : ¥ — ¥/ consists of a function o,,¢5 : S — 5’ and ST -sorted sets of functions Ofuncts = {0w °
F, — (F’);(w)} and preds = {ow 1 Pu — (P’);(w)} such that for all f:w — s € F, o(f) : o(w) — a(s)
and for all v : w € P, o(r) : o(w).

Given a parameterized specification SP with parameter PAR = (X, AX) and a signature morphism

0:X =Y, let domain(c) =g4er {s € X | 0(s) # s} ={s1,...,sn}. The specification SP[c], usually written

as
/ /
SP[s1— 87,...,80 — 8],

is called the actualization of SP along ¢ and obtained from SP by replacing all () occurrences in SP of
s € domain(o) by o(s) and by deleting the axioms of PAR.

An S-sorted function ¢ : X — Tx(X) is called a substitution. The domain of o, dom(c), is the set of
all variables with o # 2. oy denotes the restriction of o that is defined by zoy = zo for all z € Y and
zoy =z for all 2 € X \ Y. If & maps each variable of dom(c) to a term in some given set T' of terms, we
write o : X — T in order to indicate that o satisfies o(dom (X)) C T. The instance {o of a term or atom ¢

by o 1s obtained from ¢ by replacing each variable & by zo.

Definition 2.3 (X-formulas) A formula ¢ with a single free variable is unary. A X-goal is a finite
conjunction of Y-atoms. Given a finite subset Y of X and goals G and H, the formula 3Y (is an existential
goal and the formula VY (G = H) is a universal goal. A goal set is a finite disjunction of existential goals.
A dual goal set is a finite conjunction of universal goals. The empty conjunction is called the empty goal
and denoted by # or TRUE. The empty disjunction is denoted by FALSE.

Let G be a goal, r be a logical predicate and f be a defined function. A formula of the form r(t) < G
resp. f(t) = u < G is a Horn clause for r resp. f. Given a finite disjunction ¢ of existential goals,
r(t) = (G = ¢) is a co-Horn clause for r. Given a finite conjunction ¢ of universal goals, r(t) < ¢ is a
generalized Horn clause for r. The formulas ¢ <= TRUFE and TRUE = ¢ are identified with ¢.

Suppose that X is swinging. Let C be a class of Y-structures. A formula ¢ is (first-order) modal in C if

@ is equivalent® in C to a formula built up by the following rules:

e A unary static atom is modal.
o If ¢ and 7 are modal, then —¢ and ¢ A are modal.
e If ¢ is a unary term, ¢ is modal, y € free(p) \ var(t) and d(¢, y) is a dynamic atom, then Jy(d(¢, y) A)

1s modal.
A formula ¢ is poly-modal if ¢ is equivalent to a formula built up by the following rules:

e A static atom is poly-modal.
e If v and ¢ are poly-modal, then =, ¢ A% and for all z € X, Jzy are poly-modal.
o If §(t,) with # € X \wvar(t) is a dynamic atom and ¢ is poly-modal, then 3z(d(¢,) A¢) is poly-modal.

A formula ¢ is weakly modal with output out(yp) C X if ¢ is equivalent to a formula built up by the

following rules:

38ee Def. 3.1.

A poly-modal formula is weakly modal with output .

A dynamic atom 6(t, z) with # € X \ var(t) is weakly modal with output {«}.

If © and ¢ are weakly modal with disjoint outputs ¥ resp. Z, then ¢ A% is weakly modal with output
YuZ.
o If is weakly modal with output Y, then for all # € X, Jz¢ is weakly modal with output Y\ {z}. O

Modal formulas arise from the translation of modal into predicate logic. Given a transition relation —
and propositions p representing state sets, assertions of the form “the state z satisfies the modal-logic formula

¢” can be compiled into modal formulas in the sense of Def. 2.3 as follows:

compile(z = p) = rp(x) for all propositions p
compile(x = o A1) = compile(z |= @) A compile(z |E ¢)
compile(x = ¢ V) = compile(z |= @) V compile(z |E ¢)
compile(z = () = Jy(z = y A compile(y = ¢))
compile(z = []¢) = Vy(r > y = compile(y E ¢))
compile(z = pp.(p1V -V ,)) = rp(x) where r, is specified by the axioms
rp(z) < compile(x = 1), ..., rp(x) < compile(z = ¢5)
compile(x Evp.(p1 A---Nep)) = rp(x) where r, is specified by the axioms
rp(2) = compile(xz = 1), ..., rp(x) = compile(z = ¢5,)

Other negation-free modal-logic formulas are equivalent to those compiled here (see Ex. 2.7).

Modal formulas are poly-modal. Poly-modal formulas are weakly modal. The output of a weakly modal

formula consists of free variables.

Conjectures may be arbitrary first-order formulas. Axioms will be restricted to Horn and co-Horn clauses.
This complies with usual syntax adopted by functional, relational and even state- or object-oriented pro-
grams. Semantically, the restriction to Horn and co-Horn axioms is the main prerequisite for the existence
of standard models such as Herbrand, initial and final models and thus of “concrete” implementations.
Standard models also enjoy a number of “meta-theorems” which equip program verifiers with indispensable

“background knowledge”.

A swinging signature ¥ is implicitly associated with the set EQyx of congruence axioms for X, given

by the Horn resp. co-Horn clauses:

rxr =

Yy=x <& =y

Sy, oz = f,) &= TI=0 A ANEn = Yn
(X1, . 2n) <= T1I=YA AT =Y ATV, -, Yn)
qz1,...,x0) = (1= A A2 =yYn) = ¢, Un))

for all function symbols f, u-predicates r and v-predicates ¢ of X.

Definition 2.4 A specification SP = (X, AX) consists of a signature ¥ and a set AX of first-order
Y -formulas, called the axioms of SP. SP is swinging if ¥ is swinging and SP has three subspecifications

visSP = (visX, visAX) C hidSP = (hidX, hidAX) CvSP = (vE,vAX) C SP

such that htdAX and v AX implicitly include the Horn resp. co-Horn clauses among the congruence axioms

for X and the following conditions hold true:

(1) | The visible level visSP

consists of visible sorts and visible constructors, a set DI of defined functions, a set P of static
p-predicates, Horn axioms f(t) = u < ¢ for DF and r(t) < ¢ for P such that

(a) rislogical, ¢ is a tuple of normal forms and var(u) C var(t, ¢).

(2) | The hidden level hidSP \ visSP

consists of hidden sorts and hidden constructors, a set DF of defined functions, a set P of static
p-predicates; a set DP of dynamic predicates and Horn axioms f(t) = u < ¢ for DF | r(t) < ¢
for P and (¢, u) <= ¢ for DP such that (a) holds true and

(b) ¢ is weakly modal such that var(t) Nout(y) = 0.

(3) | The v-level vSP\ hidSP

consists of a set P of v-predicates (including the behavioral equalities) and co-Horn axioms
r(t) = (G =) for P such that (a) holds true, G = ¢ is poly-modal and G is a goal over hidSP.

The axioms for behavioral equalities are called behavior axioms and read as follows:

T~ Y > =Y for all visible sorts s € X,

e~y y = flo,2) ~g fly, 2) for all destructors f : sw — s’ € X,
sy = (r(e,z) = 1y, 2) and

r~sy = (r(y,z) = r(z,2)) for all separators r : sw € X,

e~y y = (0(x,z,2) = WOy, z,y)Na' ~g y)) and

r~sy = (0(y,z,y) = 3 (0(x, 2,2) AN&' ~5 y')) for all transition predicates ¢ : sws’ € 3.

(4) | The p-level SP\ vSP

consists of a set P of static p-predicates, a set DP of dynamic predicates and generalized Horn
axioms r(t) <= ¢ for P and d(¢,u) <= ¢ for DP such that (a) and (b) hold true and for all
universal goals VY (G = H) of ¢, G is a goal over vSP.

If SP = visSP, then SP is visible. [

Together with the condition of Def. 2.2 that all hidden constructors have hidden ranges the levels of
a swinging specification entail a hierarchy of their Herbrand models (cf. Lemma 5.9). Excluding hidden
constructors with visible ranges is also motivated intuitively by the viewpoint that objects with hidden
components cannot be visible. Hidden constructors with visible ranges represent certain “contexts” and
thus are better modelled by observers that make contexts visible. Visible normal forms ¢ of a functional
specification are uniquely decomposable: all ground normal forms that are equivalent to a ground instance
of ¢ are themselves ground instances of ¢. Hidden normal forms enjoying the same property with respect to
behavioral equivalence are strongly normal (cf. Def. 6.1). For instance, the stream term z&s (cf. Ex. 2.8)
is strongly normal. A hidden constructor ¢ : w — s with visible range s can be replaced by a constructor
/

¢ w — s such that s’ is hidden and ¢(#) is uniquely decomposable w.r.t. structural s-equivalence iff ¢/(¢)

is uniquely decomposable w.r.t. behavioral s’-equivalence.

Condition 2.4(a) reflects the usual syntax of functional-logic programs. It also admits a simple proof that

SP is complete (cf. Def. 4.1). If “definedness predicates” Def : s are specified by a Horn axiom
Def(e(wy,...,2n)) < Def(x1) A+ A Def ()

for each constructor ¢, then SP is complete iff for all defined functions f, Def(x) = Def (f(x)) is an inductive

theorem of SP (cf. Def. 4.6). Moreover, 2.4(a) is an essential part of most confluence and consistency criteria,

such as [60], 10.46 und 10.48. 2.4(a) also ensures that basic deduction rules such as unfolding are sound (see
Section 4).

The modality assumptions on the axioms of the hidden, p- and v-level of SP are essential for the
behavioral consistency of SP-models (cf. Def. 3.1). They restrict the occurrences of dynamic predicates in
the axioms, but this restriction is much weaker than previous similarly motivated conditions such as the non-
existence of hidden equations in Horn axiom premises (cf., e.g., [18], Cor. 4; [77], Thm. 5.4.5; [17], Ex. 3.24).
Condition 2.4(b) also reveals the technical reason for the distinction between static and dynamic predicates.
While static predicates can often be transformed easily into Boolean functions because all their arguments
have a sort of “input mode”, a dynamic predicate has at least one argument (usually the last), which takes
up output that 1s produced when an axiom for the predicate is “called”. In fact, a static predicate r may
also have output arguments, provided that these are not produced by a dynamic predicate J in the premise

of an axiom for r. For instance, an axiom of the form r(t, u(z)) <= §(v,) satisfies 2.4(b) only if r is dynamic.

Since the behavior axioms are completely determined by the observers, they are omitted in examples.
The separation of the v-level from the p-level prevents a p-predicate and a v-predicate from being specified
in a mutually-recursive way. Such alternating fizpoints were difficult to handle and are actually not needed
in practice, even for specifying modal operators (cf. Ex. 2.7). The hierarchy assumption in 2.4(3): G is a
goal over hidSP, and the corresponding one in 2.4(4): G is a goal over v P, are essential for the monotonicity

of the consequence operators that build up the Herbrand model (cf. Lemma 4.4).

Example 2.5 The ubiquitious stack data type is presented as a visible swinging specification.

ENTRY
sorts entry
preds _Z _:entry X entry
vars x,y:entry
axioms rZEy<—= (r=y)

STACK = ENTRY then

vissorts stack entry
constructs def : entry — entry’
L :— entry

empty -— stack
push : entry x stack — stack

defuncts pop : stack — stack
top : stack — entry

vars x:entry s:stack

Horn axioms top(empty) = L
pop(empty) = empty

top(push(z, s)) = def (»)
pop(push(z,s)) = s

For specifying a partial function f such as top the original range sort of f (here entry) is embedded into
a sum sort (here entry’) that includes “exceptions” (here L) and thus totalizes f. In a later design step,
entry’ may be refined to a hidden sort and structural entry’-equality may be implemented as a behavioral

equality so that the single exeception L can be splitted into several more informative error messages (see

[64]). O

Example 2.6 The first specification (FLAG1) of a type of flags stems from [29]. two examples illustrate

the use of destructors versus separators. While FLAGI1 is purely functional and specifies behavioral equiva-

lence in terms of destructors, FLAG2 adopts the relational view and thus uses a separator for determining

behavioral equivalence.

FLAG1 (cf. [29]) FLAG?2
hidsorts flag hidsorts
constructs new :— flag constructs

up, down, rev : flag — flag
destructs up? : flag — bool separators
vars b:bool x: flag vars

Horn axioms up?(new) = true Horn axioms
up?(up(x)) = true
up?(down(z)) = false

p?(rev(z)) = not(up?(z))

<

flag

new :— flag

up, down, rev : flag — flag
up?, down? : flag

x : flag

up?(new)

up?(up(z))

down?(down(z))

up?(rev(z)) < down?(x)
down?(rev(z)) < up?(z) O

Example 2.7 It is well-known that all modal operators associated with classical modal logics such as

CTL (cf. [27]) or the p-calculus (cf. [73]) are least or greatest fixpoints of state set functions. Co-Horn

axioms are sufficient for specifying greatest fixpoints, (generalized) Horn axioms are a suitable syntax for

least fixpoints. Hence (instances of) modal operators yield typical predicates of the u- or v-level of a swinging

specification involving transition systems:

STATE
vissorts actiony, ..., action,
hidsorts state

static pu—-preds g¢,r: state
transpreds _—; _: state x action; X state

Horn axioms

MODSPEC = STATE then
dynamic preds - —>; - state X state

_—> _: state X state

1<i<n

static pu-preds enabled : state

v-preds

() : state
EF(r) : state
E(q U r): state

disabled : state
[]r: state

AG(r) : state
EsG(r) : state
EG(r) : state
E(q~ r): state
E(q wU r) : state
A(q wU r) : state

the actual state has a direct successor in the graph of —
r holds true in some direct successor

r “exists finally” (also written Or)

on some path (starting out from the actual state),

¢ holds true until r is valid and r becomes valid eventually
the actual state has no direct successor

r holds in all direct successor states

r “always generally” (also written Or)

r “exists generally” on infinite paths

r “exists generally”

on some path, ¢ leads to »

on some path, ¢ holds until » becomes valid

on all paths, ¢ holds until » becomes valid

some_infinite : state some path starting out from the actual state is infinite

static p-preds A F(r): state r “always finally” on infinite paths
AF(r) : state r “always finally”
A(qg ~ r) : state on all paths, ¢ leads to r
A(q U r) : state on all paths, ¢ holds true until r is valid
and 7 becomes valid eventually
all _finite : state all paths starting out from the actual state are finite
vars a:action; s,s' :state 1<i<n

/ a o
= §— 8

s—s & s—3; 8

enabled(s) <= s— s

(Ir(s) = s—5 A r(s)

Horn axioms s —>; S

EF(r)(s) < r(s)

EF(r)(s) < s—s AN EF(r)(s)

EG(r)(s) <« disabled(s) A r(s)

EG(r)(s) < s— s A r(s) A EG(r)(s)
E(g~r1)(s) < q(s) A EF(r)(s)

E(gr~~r)(s) < s—s AN Elg~r)(s)
E(qUr)(s) < r(s)

E(qUr)(s) < q(s) AN s—s N E(qU r)(s)
some_infinite(s) < FEG(enabled)(s)

co-Horn axioms disabled(s) = (s— s = FALSE)

)s) = r(s

AG(r)(s) = (s— s = AG(r)(s")

EsxG(r)(s) = r(s)

EsoG(r)(s) = 3s'(s — s’ A EsG(r)(¢))

* EG(r)(s) = r(s)

*EG(r)(s) = (s— s = 3s'(s — s AEG(r)(¢))

AF(r)(s) = (disabled(s) = r(s))

AF(r)(s) = (s— s = (r(s) Vv AF(r)(s")))

Alg~r)(s) = (4(s) = AF(r)(s))

Alg~r1)(s) = (s — s = Alg~r)(s))

A(lq wU r)(s) = (q(s) V r(s))

Alq wU r)(s) = (s—s = (r(s) V (¢(s) A A(g wU r)(s'))))

E(qwU r)(s) = (q(s) V 7(5))

E(q wU r)(s) = (enabled(s) = (r(s) vV Is'(s — s A E(q wU r)(s'))))

* some_infinite(s) = 3Is'(s —> s’ A some_infinite(s'))
generalized Horn axioms

ALF()s) & o)

AT (r)(s) < VYs'(s — s = A F(r)(¢))

*AF(r)(s) < r(s)

¥AF(r)(s) < s— s AV (s — s = AF(r)(s"))

Alq U r)(s) < r(s)

A(q U r)(s) < q(s) N enabled(s) A Vs'(s — s = A(q U r)(s'))

)
*AlqU r)(s) < A(qwU r)(s) A AF(r)(s)

* E(qwU r)(s) < E(qUr)(s)

* E(g wU r)(s) < EG(q)(s)

all_finite(s) <« AF(disabled)(s)

* all_finite(s) < Vs'(s — s’ = all_finite(s"))

Most of these formulas are derived form temporal propositions insofar as they quantify over finite or infinite
runs (= paths in the graph of —). FE-formulas quantify existentially. A-formulas quantify universally.

Formulas preceded by an asterisk (*) provide alternative axioms for the specified predicates. O

Example 2.8 Let NAT be a specification of natural number arithmetic. For LISTORD see Ex. 2.1. A

swinging specification of infinite sequences of entry-elements reads as follows:

INFSEQ = LISTORD and NAT then
hidsorts stream = stream(entry)
constructs &_:entry x stream — stream
blink :— stream(nat)
nats : nat — stream
odds : stream — stream
z2tp @ stream X stream — stream
map : (entry — entry) x stream — stream
destructs head : stream — entry
tail : stream — stream
defuncts #_: list X stream — stream
evens : stream — stream
firstn : nat x stream — list
nthtail : nat x stream — stream
static p-preds exists : (entry — bool) x stream
v-preds forall : (entry — bool) x stream
fair : (entry — bool) x stream
vars n:nat x,y:entry L:list s,s :stream

f rentry = entry g : entry — bool

Horn axioms head(x&s) =« tail(z&s) =
head(blink) =0 tail(blink) = l&blmk
head(nats(n)) = n tail(nats(n)) = nats(n + 1)
head(zip(s,s')) = head(s) tail(zip(s, ")) = zip(s', tail(s))
head(odds(s)) = head(s) tail(odds(s)) = odds(tail(tail(s))
hc?ad(map(f, s)) = f(s) tail(map(f,s)) = map(f,tail(s))

firstn(+ 1,5 = head(s) :: firstn(n,tail(s))

nthtail

exists

—_ —

n —|— ,8) = nthtail(n,tail(s))
s) < g(head(s)) = true
s) exists(g,tail(s))
s) g(head(s)) = true A forall(g,tail(s))

(9,
exists(g,
co-Horn axioms forall(g,

fair(g,s) = exists(g,s) A fair(g,tail(s))

The following should hold in a standard model of INFSEQ. & appends an entry to a stream. blink
denotes a stream whose elements alternate between zeros and ones. nats(n) generates the stream of all
numbers starting from n. odds(s) returns the stream of all elements of s that have odd-numbered positions
in s. zip merges two streams into a single stream by alternatively appending an element of one stream to an
element of the other stream. # concatenates a list and a stream into a stream. head, tail, firstn, nthtail,
map, exists and forall have the same meaning as stream functions as they have as list functions. fair(g, s)

holds true iff ¢ holds true for infinitely many elements of s. [0

3 Structures and congruences

Definition 3.1 (semantical notions) Let ¥ = (S, F, P) be a signature. A X-structure A consists of an
S-sorted set, the carrier of A, also denoted by A, for all f: w — s € F, a function f4 : A, — A, and for
all : w € P, a relation r4 C A,. 7: w € P is called the complement of r w.r.t. A if 7 = A, \ r4. If
P is empty, A is called a Y-algebra. A is a Herbrand structure if for all s € S, A, = T% ,, and for all
frw—scFandtecTs(X)y, fA0) = f(1).

Given ~%;: ss € P forall s € S, Ais a structure with ~-equality if for all s € S, &= {(a,a) | a € A}

A Y-structure B is monotone w.r.t. A if

e for all ground static p-atoms p, A = p implies B |= p,
e for all ground dynamic atoms é(¢,u), A = §(t,) implies B = (¢, v) for some v € Tk 5 with v4 = u4,
e for all ground v-atoms ¢, B = q implies A = q.

A pv¥- resp. vpX-homomorphism h : A — B is an S-sorted function such that for all f:w — s € F|
hs o fA = fB ohy, for all r € pX resp. r € vX, h(r?) C v2, and for all » € v resp. r € u%, rB C h(r4).
h is a ¥-isomorphism if there is a prX- resp. vuX-homomorphism g : B — A such that g o h = id4 and
hog=1idg. A and B are Y-isomorphic iff there is a X-isomorphism h : A — B.

The interpretation of X-terms in a X-structure A depends on a (first-order) valuation of variables in A,
l.e. an S-sorted function b : X — A. Given a further valuation ¢ : X — A and ¥ C X, we write b =y ¢ if
b(z) = c(x) for all v € X \Y. Given # € X and a € A, b[a/x]: X — A is defined by bla/z](x) = a and
bla/x] =4 b. a/x denotes bla/x] for any b. b extends to a function b* : T5(X) — A defined by b*(z) = b(x)
for all z € X and b*(t) = fA(b*(t1),...,b%(tn)) for all t = f(t1,...,t,) € Tu(X). Given a term ¢ with
var(t) = {x1,...,x,}, we sometimes use the function t4 : A® — A defined by t4(b(z1),...,b(z,)) = b*(2).
A is reachable if for all @ € A there is ¢ € Ty, with t4 = a.%

A valuation b : X — A solves an atom r(t) in A if b*(¢) € r4. This notion extends to first-order formulas
as usual. If b solves ¢ in A, we write A |y ¢. A satisfies or is a model of ¢ or ¢ is valid in A, written
A | o, if all valuations in A solve ¢ in A. A class C of X-structures satisfies ¢ iff all A € C satisfy ¢. Two
Y-formulas ¢ and ¥ are equivalent in a class C of X-structures if C satisfies ¢ < 1. Two X-formulas are

equivalent if they are equivalent in all X-structures.

Let ¥ be swinging. An S-sorted binary relation ~# C A x B is a X-bisimulation if

4Each E-structure has a least reachable Z-substructure (with respect to the inclusion of carriers).

Q
— S —"= O0A:
o—Q ‘ o—o

Figure 1. Compatibility versus zigzag compatibility of ~ with —

eforall f:w—=scF, 1<i<n,acA,beB andt; €Tx,,,1<j#i<n,arbimplies
A, a, .t & BB b, D,
o forallr:s;...sp €statP,1<i<n,a€ A, b€ B, andt; €Ts,,, 1 <j#1<n, arbimplies
(. a, .ty et iff (1B, 1B e B
o foralld:s;...spsedynP,1<i<n,a€A,, a €A, b€ B,V €Bsandt; €lx,,,1<j#i<n,

. a,. A d)YeSA AN amb implies IV € B (P, b, B ¥)edB A d b,

1 tno 1 tn

B b By edP AN anb implies Ta' €At a,.. 1A d)€dt A d b

9 bn, *r¥n

~ is compatible with f : w — s € F if for all a € A, and b € By, a ~ b implies f4(a) ~ f2(b). ~ is
compatible with » : w € P if for all a € A, and b € By, a ~ b implies a € r4 iff b € rP. ~ is zigzag
compatible with § : ws € P if for all (a,ad’) € §4, a a7 b implies (b,4’) € &7 for some ¥’ € B, with a’ ~ b/
and for all (b,") € 62, a as b implies (a, ') € §4 for some a’ € A, with o’ ~ ¥'.

A first-order formula ¢ is bisimulation invariant in a class C of X-structures if for all A, B € C,
bisimulations® C A x B, b: X 5> Aand ¢: X — B, b~ cimplies A |5, ¢ iff B = .

An S-sorted equivalence relation ~# C 4 x 4 is a Y-congruence on A if &~ is compatible with FU P. »

is a weak Y-congruence on A if & is compatible with F'U stat P and zigzag compatible with dynP.

Let & be a (behavioral) X-congruence on A. Then the quotient B = A/~ of A by & is the X-structure
that interprets s € S as the quotient set A,/a and f : w — s € F as the function f? : B, — B defined
by f8([a]) = [f4(a)] where [a] denotes the equivalence class of a consisting of all b € A with a ~ b.°

nat: A — B denotes the natural mapping that sends an element a to its equivalence class [q].

If ~ is a congruence, then B interprets r : w € P as the set of [a] € B, with a € r4. If ~ is a weak

congruence, this definition is restricted to static predicates, while for all dynamic predicates § : ws € P,

([a], [b]) € 68 <=vgey TV ~b:(a,b) €™

Let SP = (X, AX) be a (swinging) specification. A X-structure A is an SP-model if A satisfies AX
and FQx. A is behaviorally SP-consistent if ~4 is a weak Y-congruence and A/~% is an SP-model.’
Mod(SP) is the class of all SP-models. Mod=(SP) is the class of SP-models with =-equality. Mod,.(SP)
is the class of SP-models A such that ~# is an equivalence relation that includes =4. Mod,.(SP) is the

class of SP-models A such that ~4 is a weak Y-congruence. Mody.,(SP) is the class of reachable elements

5If a = (a1,...,an), then [a] stands for ([a1],..., [an])-
8In [22], a function that is compatible with ~4 is called behaviorally coherent.

of Mody.(SP). Mod,, (SP) is the class of SP-models A that interpret all g-predicates as the least relations

and all v-predicates as the greatest relations satisfying AX.

Given a signature morphism o : ¥ — ¥’ and a ¥-structure A, the o-reduct A|, of A is the X-structure
defined by (Als)s = Ag(s) for all s € S and fAle = o(f)4 for all f € FUP. The least reachable ¥-
substructure of A|, is denoted by A,. If ¢ is an inclusion, i.e. ¥ C X', we write Alx instead of A|, and Ay
instead of A, and call Aly, the X-reduct of A. O

Y-congruences are weak Y-congruences because the latter are reflexive. The difference between congruence
and weak congruence becomes clear if one transforms a static predicate r» : w and a dynamic predicate
J : ws into function symbols x, : w — bool and f5 : w — set(s), respectively, and interprets x, as the
characteristic function 2 : Ay, — {0,1}, defined by y2(a) =1 < a € v, and f§ as the set-valued function
&0 Ay — p(Ay), defined by ff(a) = {b € A, | (a,b) € 6*}. In fact, an equivalence relation on A is
compatible with r iff it is compatible with x,, while compatibility with ¢ is equivalent to compatibility with
fs.

Proposition 3.2 Let 0 : ¥ — ¥ be a signature morphism, A be a X'-structure and ¢ be a X-formula.
Al, satisfies ¢ iff A satisfies o(p). Ay satisfies ¢ iff for all 7 : X = Ts, A satisfies o(pr). O

Proposition 3.3 Let SP = (X, AX) be a swinging specification, A € Mod,, (SP), ~ be a weak X-
congruence on A and B =q4.f A/~ € Mod(SP). Then B € Mod,, (SP) (cf. Def 3.1).

Proof. Let F be the set of function symbols of ¥, C' be an SP-model whose F-reduct agrees with B|g
and D be the X-structure whose F-reduct agrees with A|p and which interprets each predicate r : w € X as
the set {a € Ay | [a] € r}. Since C is an SP-model, D is an SP-model. Since A € Mod,, (SP) and ~ is
compatible with v P and zigzag compatible with P, we obtain for all r € P,

B

[aer? = Fd ~a:d er*= Fd ~a:d er’? = 3d :[a]=[d]er

and for all r € v P,

C B

[aer® = acr? = acr? = [derf

Hence B € Mod,, (SP). O

Lemma 3.4

(1) Let A be a reachable X-structure. An S-sorted equivalence relation & C A x A is a bisimulation iff ~

1s a weak congruence.

(2) Suppose that ~* is the greatest relation on A satisfying the set AX. of behavior arioms for X (cf. Def.
2.4(3)). Then each weak congruence on A satisfies AX~ iff it is a subrelation of ~*.

Proof. (1) The “if”-part follows immediately. Suppose that & is a bisimulation. Let f :s1...s, — s be
and b= (b1,...,by) € Bs,. 5, such that a & b. Then there is
1A

’'n

a function symbol, a = (a1,...,an) € A, s
(t1,...,tn) € I% s, s, such that a = (...

n

). Hence
fAa) e fAb) & fA (b, ba 1t & A FAD).

The compatibility of &~ with stat P and the zigzag compatibility of &~ with dyn P can be shown analogously.

(2) Let & be a weak congruence on A. = satisfies the behavior axioms for hidden sorts because they
are part of the definition of a weak congruence. If & is a subrelation of ~4, then a ~ b implies a ~4 b. If

a € A, for some visible sort s, then @ =4 b because A satisfies the behavior axiom « ~ y = 2 = y. Hence

~ satisfies AX.. Conversely, if ~ satisfies AX_, then a is a subrelation of ~4 because ~4 is the greatest

relation on A satisfying AX.. O

Lemma 3.5 (monotonicity and homomorphism) For all sorts s € ¥ let m3: ss be a predicate of X.
Let A and B be X-structures.

(1) Suppose that s is a p-predicate, A is reachable, ~* is reflevive and B is a structure with r3-equality.

B is monotone w.r.t. A iff there is a (unique) prX-homomorphism h : A — B.

(2) Suppose that ~ is a v-predicate, B is reachable, ~P is reflexive and A is a structure with r3-equality.

B is monotone w.r.t. A iff there is a (unique) vuX-homomorphism h : B — A.

(3) Suppose that = is a p-predicate and A is a Herbrand structure. B is monotone w.r.t. A iff there is a
(unique) pr¥-homomorphism h: A — B.

Proof. (1) “=”: Let B be monotone w.r.t. A. Since A is reachable, for all a € A there is t € Tx with
t4 = a. We define h by h(t4) = t8. h is well-defined: Let t4 = u#. Since ~# is reflexive, we obtain
t4 ~t ut ie. A=t ~ u Hence B =t & u because B is monotone w.r.t. A and ~ is a p-predicate.
Therefore, t¥ ~P u? and thus h(t2) = t# = uP = h(u?) because B is a structure with a-equality. Let
f:w—s€F and t* € A,. Then

h(FA(N) = h(F()*) = F0)F = FP7) = fP ().

Let r be a static p-predicate and 4 € r4. Then A |= r(t) and thus B |= r(t) because B is monotone
w.r.t. A, Hence h(t?) =t € rB. We have shown h(r4) C 2. Let § : ws be a dynamic predicate and
(t4,u?) € 64. Then A = §(t,u) and thus B | é(t,v) for some v € Tk ; with v4 = u# because B is monotone
w.r.t. A. Hence h(t4, u?) = h(t4,v4) = (t8,vP) € 6% and thus h(64) C 6. Let r be a v-predicate and
tB € rB. Hence B = r(t) and thus A = r(t) because B is monotone w.r.t. A. We conclude t4 € r4 and
thus t& = h(t4) € h(r4). Therefore, rZ C h(r4).

“<": Let h : A — B be a prX-homomorphism and ¢ € Tx. By induction on the size of ¢ one shows
h(t4) = tP. Let r(t) be a ground p-atom such that A = r(t). Then t4 € 4 and thus t® = h(t4) € h(r?4) C
rB. Therefore, B |= r(t). Let r(t) be a ground v-atom such that B = r(t). Then t® € v# C h(r#4). Hence
tB = h(t?) for some t4 € r4. We conclude A = r(t).

(2) “=”: Let B be monotone w.r.t. A. Since B is reachable, for all b € B there is t € T% with t& = b.
We define h by h(t?) = t4. h is well-defined: Let ¢ = u®. Since ~® is reflexive, we obtain t% &8 u
Bt~ u. Hence A =1t~ u because B is monotone w.r.t. A and ~ is a v-predicate. Therefore, 4 a4 u?
and thus A(tP) = t4 = u? = h(u”) because A is a structure with ~v-equality. Let f : w — s € F and
t% € B,. Then

, l.e.

h(FP (%)) = h(f(1)7) = F()* = FA@*) = FA(R(EP)).

Let r be a v-predicate and t¥ € rP. Then B = r(t) and thus A }= r(t) because B is monotone w.r.t.
A. Hence h(t?) = t4 € r4. We have shown h(r®) C r4. Let r be a static p-predicate and t4 € r4.
Hence A | r(t) and thus B }= r(t) because B is monotone w.r.t. A. We conclude t¥ € ¥ and thus
t4 = h(t?) € h(rP). Therefore, r* C h(rP). Let § : ws be a dynamic predicate and (¢4, u?) € §4. Hence
A §(t,u) and thus B | §(t,v) for some v € T, ; with v#4 = u# because because B is monotone w.r.t. A.
We conclude (t2,v8) € §% and thus (t4, u?) = (t4,v?) = h(t?,vP) € h(6P). Therefore, §4 C h(6P).

“<": Let h : B = A be a vuX-homomorphism and ¢ € Tx. By induction on the size of ¢ one shows
h(tB) =tA. Let r(t) be a ground p-atom such that A |= r(t). Then t4 € r4 C h(r?). Hence t4 = h(t?) for

some t¥ € rB. We conclude B |= r(t). Let r(t) be a ground v-atom such that B |= r(t). Then t? € 2 and
thus t4 = h(t?) € h(r®) C r4. Therefore, A |= r(t).

(3) “=7: Let B be monotone w.r.t. A. We define h by h(t4) =t8. Let f:w — s € F and t4 € A,.
Then

(A1) = hI@) = F0)7 = 17 (%) = 17 (h(1)-
h(r#4) C rB for all » € uP and rZ C h(r#) for all r € v P follow as in the proof of (1).
“«<": As in the proof of (1). O

The interpretation of ~ in an SP-model A need not be a weak congruence. It is easy to see that the
quotient A/~ is well-defined if and only if ~# is a weak congruence. Hence A is behaviorally SP-consistent
only if ~* is a weak congruence. Due to the modality assumptions on the axioms of SP, the converse holds

true as well: if ~# is a weak congruence, then A is behaviorally consistent (Thm. 3.9(b)).

Lemma 3.6 Let SP = (X, AX) be a swinging specification and A € Mody.(SP). Then ~% is compatible
with all visible function symbols and all visible or behavioral-equality predicates of ©. Moreover, ~ is zigzag

compatible with all equality predicates of 3.

Proof. Let AX. be the set of behavior axioms for X (cf. 2.4(4)). Since ~# satisfies AX. and =4 is a

subset of ~4, ~4 and =4 coincide on visible carriers.

A

Since ~4 and =4 coincide on visible carriers and =4 is transitive, ~4 is compatible with all visible

function symbols and predicates of X.

A

Since ~4 is transitive, ~4 is compatible with all behavioral equalities of ¥. Since =4 is a subset of ~4

A A

~4 is transitive and =4 is reflexive, ~4 is zigzag compatible with all equality predicates of ¥. 0O

Proposition 3.7 Let ¥ C X, A be a reachable X' -structure and B be a reachable X.-structure such that
for all ground ¥'-atoms p, AlEp iff Bl=p. Then A= By, O

Let A be an SP-model. Then =4 is a Y-congruence and thus A/=4 is an SP-model with =-equality.
If ~4 is a weak congruence, then A/~# is an SP-model (Thm. 3.9(b)). For obtaining this result we have
restricted the axioms of SP to clauses with modal premises resp. conclusions (cf. 2.4). The difference between

a congruence and a weak congruence only concerns dynamic predicates (see Figure 1).

So far ADT approaches” mostly stick to functions for specifying behavioral properties. Transition re-
lations only occur in the dynamic-data-type approach [5, 21]. Other restrictions concern the axioms. For
instance, dynamic atoms are not admitted as axiom premises because otherwise factorizing w.r.t. behavioral

equivalence may violate the axioms’ validity. Are such constraints really necessary?

In Def. 3.1, we have given the interpretation of dyn P in quotients by weak congruences. The question is
which sets of formulas are closed under the modified quotient construction. Modal logic’s Hennessy-Milner
Theorem (see Section 1) provides the key idea: two states s and ¢ are bisimilar iff for all modal-logic formulas
p(z), o(s) & ¢(t). The following theorem provides corresponding results for our notions of modality (cf.
Def. 2.3).

Theorem 3.8 (invariance properties of modal formulas) Let ¥ be a swinging signature and A be

a X-structure.

(1) Modal formulas are bisimulation invariant in all classes of T-structures.

7ADT = abstract data types

(2) Let m be a weak congruence on A, ¢ be a weakly modal formula with output Y and b,c: X — A. Then
brsc and A |y p imply A f=er @ for some ¢ with b ¢ =y c.

(3) Hennessy-Milner Theorem. Suppose that ~* is a weak congruence. Then for all byc : X — A,
b ~4 ¢ iff for all poly-modal formulas ¢, A |=p ¢ iff A e .

Proof. (1) Let A and B be X-structures, & C A x B be a bisimulation, ¢ = ¢(z) be a modal formula,
a € A and b € B such that a ~ b and wlo.g. Ay, @

Case 1. ¢ is a static atom, say ¢ = r(t1,...,x,...,1,). Then A |=,/, ¢ implies (.. a,.. .) ert
Since 7 is static and a is a bisimulation, a /s b implies (t7,....b,...,t2) €rB ie B Fo/z @

Case 2. ¢ = = for a modal formula +. Then A |,/ ¢. By induction hypothesis, B |&,/, ¢. Hence

Case 3. ¢ = ((x) A ¥(x)) for modal formulas ¢ = +(x) and ¥ = J(x). Then A =4/, ¥ and A =4/, V.
By induction hypothesis, B f=p/, ¥, B =y, ¥. Hence B =5/, .

Case 4. ¢ = Fy(d(t(x),y) A o) for a dynamic atom 6(¢(x),y) and a modal formula ¢ = ¢(y) such that
x4 y. Let t(x) = (t1,...,t:(x),...,t,). Since a7 is a bisimulation, a &~ b implies t#(a) ~ t2(b). Moreover,
A f=q/0 ¢ implies ..t a),.. ., th),a) € 54 and A F=a//y ¥ for some o’ € A. Since ~ is a bisimulation,
t4(a) ~ t2(b) implies (2, ... tB(b),... 1), b") € 68 and thus B E /o) /y] O(t(x), y) for some b’ € B with
a’ & b'. Since ¥(y) is modal, the induction hypothesis implies B |=p/, 1. Hence B =/, .

(2) Let b,c: X — A such that b &~ ¢ and A |5 .

Case 1. ¢ is poly-modal.

Case 1.1. ¢ is a static atom. Then B =, ¢ follows from the compatibility of ~ with function symbols

and static predicates.

Case 1.2. ¢ = =) for a poly-modal formula . Then A [~ . By induction hypothesis implies A [~ .
Hence A =, ¢.

Case 1.3. ¢ = (¢ A 9) for poly-modal formulas ¢ and ¢. Then A |5, ¢ and A =, ¥. By induction
hypothesis, A . ¥, A . 9. Hence A =, .

Case 1.4. ¢ = Jxyp for a poly-modal formula 1. Then A |5 [a/x]y for some a € A. Since a2 is reflexive,
the induction hypothesis implies A |=. [a/2]i. Hence A . .

Case 1.5. ¢ = Jx(d(t, z) Ay) for a dynamic atom d(¢, #) and a poly-modal formula ¢ such that # & var(t).
Since A = , there is @ € A such that (b*(t),a) € 04 and A |=4 [a/x]t. Since ~ is zigzag compatible with
§, b ~ c implies (¢*(t),a’) € d4 and thus A |=. [a'/2]d(t,x) for some @’ ~ a. By induction hypothesis,
Al [d /2], Hence A = .

Case 2. ¢ = §(t,z) is a dynamic atom with = € X \ var(t). Then (b*(t),b(x)) € 6%. Since ~ is zigzag
compatible with d, b &/ ¢ implies (c*(¢), @) € §# for some a ~ b(z). Define ¢/ by ¢/(z) = @ and ¢’ =, c. Since
z & uvar(t), A Ee ¢.

Case 3. ¢ = (¢ A V) for weakly modal formulas ¢ and ¢ with disjoint outputs ¥ resp. Z. By induction
hypothesis, A =4 ¥, A =g 0 for some d,d" with b & d =y ¢ and b &~ d’ =z ¢. Since Y and Z are disjoint,
we may define ¢’ by ¢/ =yuz ¢, ¢/(x) = d(x) for all z € Y and () = d'(z) for all # € 7. Since d =y ¢,
Al=q ¢ implies A l=o . Since d =z ¢, A =g ¥ implies A = 9. Hence A . . Moreover, b s ¢.

Case J. ¢ = Jap for a weakly modal formula ¢ with output Y. Then A | [a/x]y for some a € A. By

induction hypothesis, A =4 ¢ for some d with bla/z] &~ d =y ¢. We define ¢/ by ¢/(x) = ¢(z) and ¢ =, d.
Hence A Ecija(e)/z) ¥ and thus A |z . Moreover, b & ¢/ =y\ () ¢

(3) Let ¢ be poly-modal and b,c : X — A such that b ~* ¢ and A }=, ¢. Then (2) implies A =, ¢.
Suppose that, conversely, for all poly-modal formulas ¢, A }=;, ¢ iff A . . Then, in particular, b ~4 b

implies b ~4 ¢ because A = # ~ x and & ~ x is poly-modal. [

The converse of Thm. 3.8(1): bisimulation invariant formulas are modal, will be proved in Section 7 (Thm.
7.9). So far it provides the only reason for our consideration of bisimulations between different structures.
The proof of Thm. 7.9 involves steps from a given structure to new ones. Hence the result can only be

obtained with respect to a class of structures that is closed under all model constructions used in the proof.

The following result deals only with structures that interpret ~ as a weak X-congruence and is proved
similarly to Thm. 3.8(2):

Theorem 3.9 (modal formulas and behaviorally consistent models) Let SP be a swinging speci-
fication and A be a X-structure such that ~* is a weak X-congruence. Let ¢ be a weakly modal formula with
output Y and B = A/~

(a) Forallc: X — A, B Epnatoc ¢ iff A l=er @ for some ¢ with ¢ ~* ¢/ =y c.
(b) A is behaviorally SP-consistent.

Proof. (a) follows from:

(1) B FEnaocp = A ¢ if pis poly-modal and A f=./ ¢ for some ¢’ with ¢ ~? ¢/ =y ¢ otherwise,
(2) A ':c ¢ = B ':natoc ®-

We show (1) and (2) by induction on the structure of ¢.
(1) Let B Epnatec p. Case 1. ¢ is a poly-modal formula.

Case 1.1. ¢ is a static atom. Then A . ¢ follows from the interpretation of functions symbols and

static predicates in B.

Cases 1.2 and 1.3. ¢ = =y or ¢ = (¢ A V) for poly-modal formulas ¢ and ¥. A =, ¢ can be shown
analogously to Case 1.2 resp. 1.3 of the proof of Thm. 3.8(2).

Case 1.4. ¢ = 329 for a poly-modal formula ¢». Then B |=,q10c[a/] ¥ for some a € A. By induction
hypothesis, A f=c[q/0) ¥. Hence A = ¢.

Case 1.5. ¢ = Jx(d(t, z) Ay) for a dynamic atom d(¢, #) and a poly-modal formula ¢ such that # & var(t).
Then B |=patocfase] (0(t,2) A tp) for some a € A. By the interpretation of dynamic predicates in B,

(c*(t),a’) € 34 and thus A Fela /2] 0(2, x) for some o’ ~4 g. Since B Fnatocla/e] ¥ and 1 is poly-modal, the

A

induction hypothesis implies A f=c[4/»] ¥. Since ~* is a weak congruence and a ~4 @', Thm. 3.8(3) implies

A o) ¥ Hence A = .

Case 2. ¢ = §(t,) is a dynamic atom with € X \ var(t). By the interpretation of dynamic predicates
in B, B Enatoc ¢ implies (¢*(t),a) € 64 for some a ~* c(x). We obtain A | ¢ for ¢/ defined by ¢'(z) = a
and ¢/ =, c¢. Hence ¢/ ~4 ¢.

Case 3. ¢ = (¢ A 0) for weakly modal formulas ¢ and ¢ with disjoint outputs Y resp. Z. A o ¢ for

some ¢’ with ¢ ~4 ¢/ =y x ¢ can be shown analogously to Case 3 of the proof of Thm. 3.8(2).

Case 4. @ = Jx1p for a weakly modal formula 1 with output Y. A . ¢ for some ¢’ with ¢ ~4 ¢/ =y\{z} €

can be shown analogously to Case 4 of the proof of Thm. 3.8(2).
(2) Let A =¢ . Case 1. ¢ is a poly-modal formula.

Case 1.1. ¢ is a static atom. Then B =, 4t0c ¢ follows from the interpretation of functions symbols and

static predicates in B.

Cases 1.2 and 1.3. ¢ = =) or ¢ = (¢ A¥) for poly-modal formulas ¢ and ¥. B =pat0c ¢ can be shown
analogously to Case 1.2 resp. 1.3 of the proof of Thm. 3.8(2).

Case 1.4. ¢ = Jxtp for a poly-modal formula ¢». Then A |= (45 ¢ for some ¢ € A. By induction
hypOtheSiSa B ':natoc[a/x] 1/) Hence B ':natoc w-

Case 1.5. ¢ = Jx(d(t,x) A ¢) for a dynamic atom §(¢,z) and a poly-modal formula ¢ such that = ¢
var(t). Then A a0 (0(t,) A) for some a € A. Since ¢ is modal, the induction hypothesis implies
B Enatocfaje] ¥, while B =patecasa] 9(, x) follows from the interpretation of dynamic predicates in B.
Hence B Epatoc -

Case 2. ¢ = §(t, x) for a dynamic atom §(¢, z) with # € X \ var(¢). By the interpretation of dynamic
predicates in B, A =, ¢ implies B Epat0c ¢

Case 3. ¢ = (¢ A V) for weakly modal formulas ¢ and ¢ with disjoint outputs Y resp. 7. B Enatoc ¢
can be shown analogously to Case 3 of the proof of Thm. 3.8(2).

Case 4. = 3wy for a weakly modal formula ¢ with output Y. By induction hypothesis, B =y atocfa/e] ¥-
Hence B Epatoc -

(b) Let ¢ be an axiom of SP and A = ¢. We show B = ¢.

Case 1. ¢ is a (generalized) Horn axiom, say ¢ = (p <). Let ¢ : X — A such that B =p40c /. Then
¢ belongs to hidSP or the p-level of SP and thus, by Def. 2.4(b), ¢ is weakly modal. Hence (1) implies
A f=or H for some ¢/ ~4 ¢. Since A satisfies ¢, we obtain A = p and thus B |=pat0er p by the interpretation
of predicates in B. Hence ¢/ ~4 ¢ implies B Epatoc p. Therefore, B =, 410 ¢, and we conclude B = .

Case 2. ¢ is a co-Horn axiom, say ¢ = (p = ¢). Let ¢ : X — A such that B FEpgoc p. Since p is a
static atom, A = p and thus A |=. ¢ because A satisfies . Since 9 is poly-modal, (2) implies B FEyatoc ¥
Therefore, B Enatoc - Again we conclude B = . O

Lemma 3.10 Let SP be a wvisible specification and A € Mody.(SP). Then A is behaviorally SP-

consistent.

A A

Proof. Since ~4 includes =4 and A satisfies the first behavior axiom for &, ~4 coincides with =4. Hence

~# is a congruence and thus a weak congruence. By Thm. 3.9(b), A is behaviorally SP-consistent. [J

4 Functionality, fixpoints, standard models

Definition 4.1 (structural SP-equivalence, functionality) Let SP be a swinging specification and

hidSP = (X, AX) (cf. Def. 2.4). The cut calculus for SP consists of the following inference rules for

deriving Horn clauses.®

TRUE
®

axiom rule U where ¢ € AX U EQs

8 Arrows attached to a rule indicate the direction of consequence, here with respect to all Z-structures.

instantiation hal Y where 0 : X = T (X)
po

= P,
modus ponens b—v ¥ U
P
A-introduction u
pAY

Given a formula ¢, we write SP by ¢ if ¢ is derivable with the cut calculus for SP. (Structural)

SP-equivalence is the binary relation on Ty that is defined as follows:
t=gpt’ Eger SPlhoanpt= t.

Given t € Ty, and v € NPy, u is a normal form of ¢ if ¢ and u are SP-equivalent. SP is complete if each
ground Y-term has a normal form. SP is (structurally) consistent if each two SP-equivalent ground
normal forms are equal. SP is relational if it does not contain defined functions. SP is functional if it is

complete and consistent. In this case nf(t) denotes the unique normal form of a ground term (tuple) ¢t. O
Relational specifications are functional.”

Both completeness and consistency are essential for ensuring the soundness of proof rules dealing with
constructors and defined functions. Consistency calls for syntactic criteria some of which are already involved
in the definition of a swinging specification. For sufficient ones, see [60, 63]. Completeness is a much simpler
proof obligation: SP is complete iff for all defined functions f : w — s and t € NFy , f(t) =sp u for some
u € NFPyg. This is either shown “by hand” and induction on ¢ or by constructing a (semi-)automatic proof

of the formula Def (x) = Def(f(z)) (see Section 2).

A term model of hidSP (cf. 2.4) could be defined directly in terms of the cut calculus. Since this
does not work for the v- and p-levels of SP, we prefer an equivalent definition that uses consequence
operators on substructures. Roughly said, a consequence operator @ stepwise adds valid atoms to models
of a subspecification. If ® is monotone, a model of the entire specification is obtained from a fixpoint of
®. The existence of a suitable fixpoint 1s ensured by the fixpoint theorem of Knaster and Tarski. Morever,
if @ is continuous, then Kleene’s fixpoint theorem provides a stepwise construction of the fixpoint. Let us

recapitulate set-theoretical versions of these fixpoint theorems.

Definition and Theorem 4.2 (continuity, fixpoints) (cf., e.g., [49]) Let U be a sorted set and
® : p(U) = p(U) be a monotone function with respect to sorted set inclusion. B C U is a fixpoint of ®
it ®(B) = B. & =4 U;en®¥(0) and @, =def Nien® (V) are the Kleene closures of ®. @ is upward
continuous if for all increasing chains By C By C B2 C ... of subsets of U, ®(U;enB;) is a subset of
Uien®(B;). @ is downward continuous if for all decreasing chains By D By D B2 D ... of subsets of U,
Nien®(B;) is a subset of ®(N;enB;).

Knaster-Tarski Theorem. {fp(®) =4 N{B C U | ®(B) C B} is the least firpoint of ® and a superset
of @, gfp(®) =g4ef U{B C U | B C ®(B)} is the greatest fizpoint of ® and a subset of ®o.

Kleene’s Theorem. If ® is upward continuous, then ®(®*) C & and thus ®*° = [fp(P). If T is
downward continuous, then @, C &(Po) and thus P, = gfp(P). O

Definition 4.3 (consequence operator) Let SP = (X, AX) be a specification, SP’ = (£, AX’) be a
subspecification of SP, A be a ¥/-structure and C be the class of Y-structures whose ¥'-reduct agrees with

A. The (AX \ AX')-consequence operator on A, ® : C — C, is defined as follows. For all y-predicates

?No joke!

reX\ ¥ and B € C,
aer®® g J(rt) =) e AXNAX T X 5 A:a=b"(t)AB s o
For all v-predicates r € ¥ \ ¥’ and B € C,

a€r®B) = V()2 9) EAX\AX'VE: X 5 A:a=b"(t)= By p. O

In terms of Thm. 4.2, B € C is regarded as a (X \ X')-sorted subset of the structure U € C that interprets
r:w € X\ Y as an all-relation, i.e. ¥ =45 A,. On the other hand,) € C interprets r : w € X\ ¥’ as an
empty relation, i.e. 1 =gef 0. ® : C — C is monotone iff for all B,C' € C and r € ¥\ ¥, rP C v implies
r®B) C p2(C),

Lemma 4.4 Let SP = (X, AX) be a swinging specification and ¥ = (S, F, P).

(1) hidAX -consequence operators on (S, F,)-algebras are monotone and upward continuous.
(2) (vAX \ hidAX)-consequence operators on hidX-structures are monotone.

(3) (AX \ vAX)-consequence operators on v¥.-structures are monotone.

Proof. (1) holds true because hidAX consists of Horn clauses and thus for all p <= ¢ € hidAX, ¢ does

not contain neither negation symbols nor implication symbols nor universal quantifiers.

(2) vAX \ hidAX consists of co-Horn clauses such that, by Def. 2.4(3) and (4), for all p = (G = ¢) €
vAX\ hidAX, G is a hidX-goal. Hence G = ¢ is equivalent to a first-order formula 1 such that all negation
symbols of ¢ directly precede hid¥-atoms and ¢ does not contain FALSE. Let A be a hidX-structure and C
be the class of vX¥-structures whose hidX-reduct agrees with A. Since for all B € C and predicates r € hid,
rB = r4 we may assume that hidY also includes the complement 7 of (cf. Def. 3.1). Hence for all B € C

and b: X — B,
BE,G=¢ < B¢ <= B, Y[F(t)/-rt) | re hidx],

i.e. G = ¢ is equivalent in C to a negation- and implication-free formula. Therefore, the (vAX \ hid AX)-

consequence operator on A is monotone.

(3) AX \ vAX consists of generalized Horn clauses such that, by Def. 2.4(5), for all p <= ¢ € AX \vAX
and all universal goals VY (G = h) of ¢, (G is a vE-goal. Hence ¢ is equivalent to a first-order formula
1 where all negation symbols directly precede r-atoms. Let A be a vX-structure and C be the class of
Y-structures whose vY-reduct agrees with A. Since for all B € C and predicates r € v¥, r? = 4, we may

assume that v also includes the complement 7 of r. Hence for all B€C and b: X — B,

BlEyy < Byt < By [F(t)/-r(t) | revy],

i.e. ¢ is equivalent in C to a negation- and implication-free formula. Therefore, the (AX \ v AX)-consequence

operator on A is monotone. [

Definition 4.5 (initial and final structures) Let ¥ be a swinging signature and C be a class of -
structures, I € C is initial in C if for all A € C there is a unique pr¥-homomorphism h : I — A. T € C is
final in C if for all A € C there is a unique vpX-homomorphism i : A — T (cf. Def. 3.1). O

Each two initial (resp. final) X-structures are X-isomorphic.

Definition 4.6 (standard models, behavioral equivalence) Let SP = (X, AX) be a swinging
specification with empty parameter. The Herbrand SP-model, Her(SP), is the Herbrand X-structure
that is defined as follows (cf. Def. 4.3):

e For all predicates r € hidZ, rier(SP) = pifr(®) where @ is the hid AX-consequence operator on 7T%.

e Tor all » € vX\ hidS, re7(5P) = 9f2(¥) where W is the (vAX \ hidAX)-consequence operator on
Her(SP)|nias.

e Torallr € X\ v, pHer(5F) = () where © is the (AX \ v AX)-consequence operator on Her(SP)|,z.

The interpretation of ~ in Her(SP) is called behavioral SP-equivalence and denoted by ~gp. SP
is behaviorally consistent if ~gp is a weak Y-congruence. SP is continuous if the above consequence
operators ¥ and © are downward resp. upward continuous. A first-order formula satisfied by Her(SP) is

called an inductive theorem of SP.

The initial SP-model, Ini(SP), is the quotient of Her(SP) by =¢p. Provided that SP is behaviorally
consistent, the final SP-model, Fin(SP), is the quotient of Her(SP) by ~sp.

initial model

: Gt
/ v—predicates 7 /

v
- SP is coinductive,
+ hidden o functional
- ; . o tructural d ti
p-predicates . . _ ; S and continuous
: : W-predicates abstraction A
(Her(VISSP))+« vvvrrnariiii submodels if
Herbrand @ :
Ll model SPis beh'aviorally
+ visible consistent
U—predicates behavioral v
abstraction

exists zf
(15 N
N

term algebra

final model

Figure 2. Standard models of a swinging specification

Given a parameterized specification SP with parameter PAR = (X, AX) (cf. Section 2), an actualization
SP[o] of SP along ¢ is correct w.r.t. a specification SP’ D SP[o] if Her(SP’) satisfies o(AX). The
Herbrand SP-model is the class of Herbrand models of actualizations of SP. An inductive theorem
of SP is an inductive theorem of all actualizations of SP. SP is functional, behaviorally consistent or

continuous if all actualizations of SP are functional, behaviorally consistent or continuous, respectively. O

Figure 2 illustrates the stepwise construction of the standard models Her(SP), Ini(SP) and Fin(SP).
Image finiteness and coinductivity, besides functionality the main criteria for the existence of Fin(SP), are

defined and discussed in Sections 5 and 6, respectively.

The notion “inductive theorem” stems from the fact that the valuations of variables in a Herbrand model
are ground term substitutions and thus a first-order X-formula ¢ can be proved by structural induction on

the instances of ¢ by ground terms, i.e.
Her(SP)Ey¢ <= VYo:X > Tx: Her(SP) | po.

The definition of an inductive theorem ¢ of a swinging specification SP with parameter PAR entails that

the axioms of PAR are the only assumptions about the parameter a proof of ¢ may refer to.

If SP is functional, then the set NFy of ground normal forms extends to a 3-structure: forall f:w — s €
Y and t € NFs o, FV72(t) =ger nf (f(t)) (cf. 4.1), and for all 7 : w € X, #NF= = ¢ {t € NFy | t € pHer (5P}
The normal form function nf induces a ¥-isomorphism from the initial SP-model to NFy that maps the
=gp-equivalence class of t € Ty to the normal form of ¢t. Hence NFy is an SP-model. This is the model
construction one has in mind when talking about initial semantics. Consequently, if SP is not functional

and thus NFy is not an SP-model, SP has no “proper” initial semantics.

First of all, functionality and, in particular, consistency (cf. 4.1) depend on the constructors of SP,
whereas behavioral consistency is a property of behavioral equivalence, which 1s specified by the behavior
axioms that, in turn, are determined by the observers of SP (cf. 2.4). This reveals a duality between
constructors and observers. On the one hand, SP may lack observers. Then all hidden terms are behaviorally
equivalent, and visible terms are behaviorally equivalent iff they are structurally equivalent. On the other
hand, in contrast to coalgebraic specifications of hidden types (cf. [62]), SP should not lack constructors.
Constructors are the “building blocks” of both visible and hidden data. If SP has no constructors, SP can
be functional only if the Herbrand, initial and final S P-models are empty.

If all predicates of SP are equalities and thus all observers are functions (destructors), then behavioral

S P-equivalence is contertual equivalence, i.e. for all t,¢ € Tk,
t ~spt <= VY visible terms c(z) : Her(SP) | c(t) = c(t'). (6)
The construction of Her(SP) reflects the hierarchical syntax of SP, such as stable models mirror the

hierarchical syntax of stratified logic programs (cf. [2]):

Lemma 4.7 (stepwise constructions of the Herbrand model) Let SP = (X, AX) be a swinging
specification and ®, ¥ and © be the consequence operators of Def. 4.6. Then Her(SP)|pias = Uien® ()
and for all ground hidX-atoms p,

Her(SP)Ep <~ i eN: @i(@) Ep, (1)
Her(SP)Ep < SPlup, (2)

in particular, for all equality predicates = of SP, =" (5P)==¢p (cf 4.1). If ¥ is downward continuous,
then Her(SP)|,x = Nien¥'(Ts) and for all ground v-atoms p,

Her(SP)Ep <= VicN: ¥ (T%) =p. (3)
If © is upward continuous, then Her(SP) = U;en©'(0) and for all ground -atoms p,

Her(SP)Ep <= FeN:0(0) Ep. (4)

Proof. (1), (3) and (4) follow from Lemma 4.4 and Kleene’s fixpoint theorem (cf. Thm. 4.2). Let C
be the class of Herband hidX-structures. The cut calculus is correct w.r.t. Mod(hidSP). Hence for all
A €CN Mod(hidSP) and ground hidX-atoms p,

SP Feye p implies A | p. (5)

Let B be Herband hidY-structure with % = {t € T5.w | SP Feour 7(t)} for all p-predicates » : w € ©. B
satisfies AX7 U EQpiqs. Hence by (5), B is the least element of C N Mod(hidSP) and thus the least fixpoint
of ®. Therefore, B = Her(SP)|piaxs, and we conclude (2). O

For instance, W’(7%) interprets the predicate Ag.fair(g,s) : stream (cf. Ex. 2.8) as the set of all ground

INFSEQ-terms representing streams with at least ¢ elements satisfying g¢.

Herbrand and initial models always exist. Final models, however, presuppose behavioral consistency (cf.

Thm. 5.1).
Theorem 4.8 Let SP = (X, AX) be a swinging specification (cf. Defs. 3.1 and 4.6).

(1) Her(SP) € Mody.(SP)N Mod,,(SP).
(2) For all first-order formulas ¢ and o : X = Tx,

Her(SP) Eo ¢ <= Ini(SP) Enates -

(3) Ini(SP) € Mod=(SP) N Mod,,(SP).
(4) Her(SP) is initial in Mod(SP).
(5) Ini(SP) is initial in Mod=(SP).

Proof. (1) Let AX.. be the set of behavior axioms for X (cf. 2.4(3)). Since both =gp and the equivalence
closure of any relation satisfying AX. satisfies AX. and since ~gp is the greatest solution of AX ., both
=gsp and the equivalence closure of ~gp are subsets of ~gp. Hence ~gp is an equivalence relation including
=gp and thus Her(SP) € Mody.(SP). Her(SP) € Mod,, (SP) follows directly from the interpretation of
predicates in Her(SP).

(2) holds true because =gp is a E-congruence. (3) follows from (2) and Prop. 3.3.

Let A € Mod=(SP) and Her' be the Herbrand Y-structure with »#" = {t € T | t4 € rA} for all
predicates » € ¥. Then for all ground X-atoms, Her’ |= p iff A = p. Hence Her’ satisfies AX because A
satisfles AX. Since Her(SP) € Mod,,(SP), we obtain for all ground p-atoms r(¢),

Ini(SP) E r(t)) Her(SP) =r(t) = terf = tc P o et o AR r(t), (6)

and for all ground v-atoms ¢(u),

Abq) = vl e & ued™ = ued™ = Her(SP)Eqg) £ mi(SP) E q(u). (7)

(4) follows from (6), (7) and Lemma 3.5(3) because = is a p-predicate and Her(SP) is a Herbrand
—Ini

structure. (5) follows from (6), (7) and Lemma 3.5(1) because Ini(SP) is reachable, = is a y-predicate, =

is reflexive and A is a structure with =-equality. O

The choice of Tni(SP) as the standard model of SP has been motivated thoroughly in the literature (cf.,
e.g., [b1, 24, 56]). Initial models reduce the reasoning about data types to inductive theorem proving. Initial
semantics neatly complies with functional sorts, polymorphism and parameter specifications (cf. Section 1).
If a functional sort s — s’ and the associated application operator apply : (s — s') x s — s’ are declared as
hidden and a destructor, respectively, the (s = s")-component of behavioral SP-equivalence agrees with the

extensional equivalence of terms denoting functions:

[~spsss g = YteTs, apply(f,t) ~sps apply(y,t).

The fact that Her(SP) interprets p- and v-predicates as least resp. greatest relations on Ty that satisfy
AX 1s crucial for the soundness of the following proof rules. Let AX, be the set of axioms for a logical

predicate r.

r(z) = ¢

Jg:q(x) = A /\LPEAXr elg/r]
v = r(e)

Jg: v = q(x) A /\LpEAXr elg/r]

fixpoint induction on r g ifreuppP

coinduction on r

g ifrevp

The case r =~ provides a rule for proving behavioral equivalences:

=>1t~u

coinduction on ~
v =qlt,u) N Ageax. pla/~]

i

Note that AX. is the set of behavior axioms of SP (cf. Def. 2.4(3)).

Fixpoint induction is due to Park (cf. [65]). Both rules can be generalized easily from a single predicate r
to several predicates r1,...,7, such that it admits proving n conjectures 91 <= ri(x),..., ¢, < r(x) resp.

Y1 = r(x), ..., ¥ = rp(x) simultaneously.

Fixpoint induction deals with conjectures ¢ < r(z) stating that ¢ holds true for data related to each
other by r. r is often the graph of a defined function (see below). Coinduction deals with inverse conjectures
¢ = r(x) stating that r holds true for a set of data specified by . In both cases, the conjecture must
be given as an implication ¥ <= ¢. Fixpoint induction is applicable if the premise ¢ can be specified as a
p-predicate. Coinduction is applicable if the conclusion ¢ can be specified as a v-predicate. Applying the

rule eliminates this predicate from the conjecture so that the rules in some way reduce a proof obligation.

Fixpoint induction and coinduction are equivalence transformations. The downward implication |} holds
true because Her(SP) satisfies AX and thus we may define ¢ as r. The upward implication {} is valid
because all solutions of AX, in r are supersets resp. subsets of the least resp. greatest solution of AX, that
provides the interpretation of r in the Herbrand model. In other words, if Her(SP) satisfies ¢[q/r] for all
¢ € AX,, then q(x) < r(x) resp. ¢(x) = r(x) are also satisfied. Hence the antecedent of fixpoint induction
resp. coinduction follows from the succedent ¢ <= ¢(x) resp. ¢ = ¢(z).

g is an existentially quantified predicate variable whose value ranges between ¢ and r. Choosing ¢
as a proper subset (in the case of induction) resp. superset (in the case of coinduction) of ¢ means to
generalize resp. co-generalize ¢. This complies with the intuition that a smaller relation expresses a

stronger condition.

If all predicates of SP are static, then the restriction of conduction on ~ to unconditional behavioral
equivalences essentially agrees with the proof technique of hidden coinduction introduced in [22, 33].
In this case the behavior axioms of SP are congruence axioms except for the first one that expresses the

coincidence of ~ and = an visible terms. Moreover, the succedent of conduction on ~ reduces to:

3g:q(t,w) AN ela/~)
pEAX .
This 1s also the proof obligation of hidden coinduction: choose a binary relation ¢ that contains the pair
(t,u) and satisfies the behavior axioms of SP with ~ replaced by ¢. If all predicates of SP are static, each
of these axioms describes either a congruence property of ¢ or the condition that for all visible terms ¢,’,
q(t, ') holds true only if ¢ and ¢’ are structurally equivalent (cf. Def. 2.4(3)).

While the above rules are correct w.r.t. Her(SP) because the Herbrand model interprets predicates as
least/greatest relations satisfying their axioms, the following rules are sound because Her(SP) is a fixpoint
of the consequence operators constructed from SP. Unfolding an atom r(¢) means to apply all axioms for

7 to r(t) and thus to split the conjecture surrounding r(¢) into as many subgoals as there are axioms for r.

Since Her(SP) is a fixpoint of the consequence operators ®, ¥ and © (cf. Def. 4.6), complete unfolding rules

are equivalence transformations:

r(1) 0

\/?:1 z; - (t =1 A QDZ')

{rt1) < o1,...,r(ta) € ont = AX, and Z; = var(r(t;) < ¢i)

p-atom unfolding if repP,

r(t
N V2 (=t = i)

~—

v-atom unfolding

g ifrevp,
{rt1) = o1,...,r(ta) = on}t = AX, and Z; = var(r(t;) = ¢i)

Theorem provers usually combine unfolding with term splitting and clash (see below), applied to the
equations ¢ = ¢;. For all 1 < ¢ < n such that term splitting and clash lead to FALSE, the summand
t = t; A\ ;) resp. factor t = 1; = ;) can be omitted when the unfolding rule’s succedent is constructed

without violating the rule’s correctness.

In contrast to fixpoint induction and coinduction the application of an unfolding rule to an atom ()
need not remove r from the rule’s antecedent. Whenever some axioms for r are recursive, i.e. contain 7 in

the premise resp. conclusion, these occurrences will appear in the rule’s succedent.

Given a predicate r of SP, the fixpoint properties of Her(SP) often lead to (co-)Horn axioms for the
complement 7 of r w.r.t. Her(SP) if one simply negates the premises resp. conclusions of the axioms for
r. For instance, if AX, = {r(t1) < ¢1,...,7(tn) < @n}, then the fixpoint property implies that Her(SP)
satisfies

r(z) < \/ AZ; . (z =t; ANg;) and thus —r(z) & /\VZZ' e £ Vo).

i=1 i=1

If this conjunction is equivalent to a goal set \/_, 3X;¢; consisting of atoms and negative literals —¢(¢) such

that ¢ = r or SP contains the complement § of ¢, then the Horn clauses

(@) = ¢nfgt)/~q@)], -, T(x) <= dalq(t)/me(t)]

axiomatize T as the complement of r—provided that the extended specification terminates ([60], Thm. 10.39;

[63], Satz 6.1.9).

If r is a predicate of the visible or hidden level of SP, then 7 can be specified as a v-predicate, either in

terms of r:
Flz) = (r(z) = FALSE),
or by grouping the axioms for r as follows:
r(t), oo, r(te), rluw) < (erAqv)), -, r(un) < (1 Ag(va)),
and “dualizing” them:
7(t1) = FALSE, ..., T(tg) = FALSE, F(u1) = (1 = q(v1)), ..., T(un) = (¢n = 7(vn))
([63], Satz 8.3.4). The negation of a v-predicate r specified by arbitrary co-Horn axioms such as:

T(t) = (G = (E'Xl(Gl /\Tl(tl))\/"'\/HXH(GH/\TH(tn)))),

leads to generalized Horn axioms for 7:

F(t) < (G ANVX(Gr=7t)) A - AYX(Gh = Tr(tn))).

Axioms for complements is all one needs for refuting conjectures in the Herbrand model. The main

inference rule used in a refutation proof is the unfolding of complement atoms 7(t).

Given a functional specification SP, ground goals over hidSP can be proved in a rewriting-oriented way,
by applying Horn axioms as logic programs and reducing goals to TRUE. Moreover, instead of applying

congruence axioms goal reductions rewrite terms analogously to the way they resolve logical atoms.

A fresh variable of a Horn clause ¢ = (r(t) <= H) (resp. ¢ = (t = u <= H)) is a variable that occurs in
w or H, but not in t. fresh(y) denotes the set of fresh variables of ¢. Note that Condition 2.4(a) implies

fresh(yp) C H if ¢ is a Horn axiom of a swinging specification.

Definition 4.9 Let SP be a swinging specification and hidSP = (X, AX). The reduction calculus
for SP consists of the following rules for reducing goals. Let G be a X-goal and ¢ : X — Tx(X).

rewriting % t fe=@F=u< H)e AX and fresh(p)o C NFs(X)

resolution % t ifr#=¢= () < H) e AX and fresh(y)oc C NFg(X)
o

reflection % 0

A sequence G, ..., Gy of goals such that for all 1 < ¢ < n, G;41 is obtained from G; by applying one of the
above rules, is called an SP-reduction of G| into G, and we write Gy Fgp G,,. O

Definition and Theorem 4.10 (Church-Rosser Theorem) [60] Let SP be a swinging specification
and hidSP = (X, AX). For all ground ¥-goals G, G Fsp 0 implies SP .y G. A complete specification SP
15 functional iff SP s confluent, i.e. for all ground goals G,

SP by G implies Grgp . O (1)

Theorem 4.10 also implies that a functional specification can be transformed into an equivalent relational

one by turning each defined function into its graph or input-output relation:

Definition 4.11 (flat formula) Let ¥ be a swinging signature and ¥/ be ¥ without defined functions.
A first-order X-formula ¢ is flat if all logical atoms of ¢ are ¥'-atoms and for all equations ¢t = u of ¢, u is a
normal form and either ¢ is a normal form or there are a defined function f and a normal form ¢’ such that

t = f(t'). The following function mkflat transforms a first-order formula ¢ into an equivalent flat formula
flat(p) = mkflat(p, 0):

o mkflat(p,V) =aes p for all flat atoms p,

o mkflat(r(c(f(2))), V) =aep Iz mkflat(r(c(z)) Ae = f(t), VU{z}) for all non-flat atoms r(e(f(t)))

where 7 is a predicate, f is a defined function, ¢(x) is a normal form und # € X \ V|

o mkflat(—¢, V) =g —mkflat(p, V),

o mkflat(p @ o, V) =g mkflat(p, V) & mkflat(y, V) forall & € {A,V, =1,

o mkflat(VY o, V) =gep VY mkflat(p, VUY),

o mkflat(AY ¢, V) =g4ep Y mkflat(p, VUY).

For a set F of formulas, flat(F) =qcr {flat(p) | ¢ € F}. Moreover, rel(X) is obtained from ¥ by replacing
each defined function f : w — s € X by the graph r; : ws of f. rel(F) is obtained from F by replacing
each equation f(t) = u of F' with defined function f by the atom r(¢,v). O

For all modal, poly-modal and weakly modal formulas ¢, flat(y) is modal, poly-modal or weakly modal,
respectively (cf. 2.3).

Definition 4.12 Let SP = (X, AX) be a swinging specification. The swinging specifications flat(SP) =
(2, flat(AX)) and rel(SP) = (rel(X), rel(flat(AX))) are called the flat and relational versions of SP,
respectively. 0O

The only function symbols of rel(X) are the constructors of X. A visible predicate of rel(X) is a visible
predicate of ¥ or the graph of a visible defined function of ¥. A transition predicate of rel(X) is a transition
predicate of ¥ or the graph of a destructor of ¥. A dynamic predicate of rel(X) is a transition predicate of
Y or the graph of a defined function of X.

Theorem 4.13 (equivalence of a functional specification and its relational version) Let SP
be a functional and continuous specification. Then rel(SP) is functional and continuous and for all ground

Y-atoms p,

Her(SP)Ep <= Her(rel(SP)) | rel(flat(p)). (1)

Proof. Let SP = (X, AX) and rel(SP) = (X', AX’). Since relational specifications are functional,
rel(SP) is functional. Since the consequence operators ¥ and © of Def. 4.6 are downward resp. upward
continuous, the corresponding consequence operators ¥ and ©' on corresponding reducts of Her(rel(SP))
are also downward resp. upward continuous. Hence by Thm. 4.10 and Lemma 4.7(3) and (4), (1) holds true
if for all defined functions f, predicates r that are specified on the visible or hidden level, v-predicates g¢,

predicates p that are specified on the p-level, i € N and ¢, u € NFy,

fO)=uksp b = rp(t,u) Fraesp) 0, (2)
t=ukspl <= t=ub,qsp) b, (3)
rt)Fsp 0 <= r(t) Fracsp) 0, (4)

Le VT g (®) T (5)
tep®® = tep®)® (6)

One may first show (2)-(4) by induction on the length of SP- resp. rel(SP)-reductions. Then (5) and (6)

follow by induction on i. [

Corollary 4.14 Let SP be a functional and continuous specification. For all first-order formulas formulas

¥,

Her(SP) E ¢ <= Her(rel(SP)) = rel(flat(y)). O

Corollary 4.15 Let SP be a functional and continuous specification. Given a defined function f € X,
~sp 1s compatible with [iff ~.ci(sp) 15 2192a9 compatible with the graph ry of f.

Proof. Let f : w — s and t,t' € Tx, such that t ~gp ' and ~rel(sp) 18 zigzag compatible with ry.
By Thm. 4.13, Ini(SP) & f(nf(t)) = nf(f(t)) implies Ini(rel(SP)) = r¢(nf(t), nf(f(t))). Since =sp is a

subset of ~ SP and ~ SP is transitive, t ~gp t' implies nf(t) ~sp nf(t') and thus nf(t) ~.e(sp) nf(t').
Since ~,.¢i(sp) is zigzag compatible with 7y, there is u € NFy such that nf(f(t)) ~sp u and Ini(rel(SP))
re(nf(t'), u). Hence by Thm. 4.13, Ini(SP) = f(nf(t')) = u and thus f(t') =sp u. Since =gp is a subset of
~ SP and ~ SP is transitive, we conclude f(¢) ~sp f(t'). Hence ~gp is compatible with f. The converse

can be shown in a similar way. [

One of the most useful consequences of Thm. 4.13 is the soundness of fixpoint induction and unfolding for
proving inductive theorems about defined functions: if SP is functional, then by Thm. 4.13(1), the following
functional counterparts of fixpoint induction on p-predicates and p-atom unfolding, respectively, are correct.
Let f be a defined function and AX; be the set of axioms for f (cf. Def. 4.11).

f@)=y=1
Jq:q(z,y) =0 A Apeprariax, elalt,w)/(f(t) = u)]

gp(f(t)) ﬁ
Vie 32 (t =6 Ap(ug) Ay)

where {f(t1) = u1 < ¥1,..., f(tnh) = un = ¥} = AX;
and Z; = var(f(t;) = u; < ¢;)

fixpoint induction on f

i

term unfolding

A further consequence of functionality is the soundness of rules for removing constructors:

e(t, .. tn) = clur, ..., up) 0
th=ui A---ANt, = u,

e(t) = d(u) 0
FALSE

term splitting where ¢ is a constructor

clash

where ¢ and d are different constructors

If SP is functional, these equivalences imply that the standard inequality axioms for SP specify the
complement of = (cf. Def. 3.1):

c(xy, ..y xn) Ze(tr, . 4n) <= & E Ui for all constructors ¢ :s1...5, & sand 1 <i<n,
c(z) £ d(y) for all different constructors ¢ and d.

Repeated applications of term splitting and clash remove an equation ¢t = ¢ iff ¢ and ¢ are ground normal

forms. For eliminating equations with variables one also needs term replacement:
L=t Ap(t)
()

(L=t np(t) = ()
o) = ol

term replacement

U

fr

5 The final model and hierarchy conditions

Final semantics was introduced for modelling permutative types such as finite sets, finite bags (multisets)
and arrays with a finite domain (cf., e.g., [28, 75, 46]). These types are constructor-based, but need equations
between normal forms for axiomatizing structural equality. Hence specifications of permutative types are
complete, but not consistent (cf. 4.1). From a model-theoretic point of view, initial semantics is sufficient
for handling permutative types. Normal form equations are Horn axioms, hence there is an initial model.

From a proof-theoretic viewpoint, however, this model is inadequate. Resolution- or rewriting-oriented proof

methods treat normal form equations separately from other axioms (cf., e.g., [66, 72, 45]). Here it is not
the normal forms, but their equivalence classes modulo the equivalence relation =g induced by the set E of
normal form equations that represent data. Resolution and rewriting modulo =g work well if £ is restricted
to particular equations such as those expressing the associativity, commutativity or idempotence of a binary

function. Otherwise suitable proof rules are complicated and difficult to handle.

In the swinging specification of a permutative type, normal form equations ¢ = #/ come as valid behavioral
equivalences ¢t ~ t'. Results on coalgebras, coinduction and greatest fixpoints obtained in category theory
and modal logic revealed that permutative types are particular hidden types and thus can be handled with
the same approaches that tackle state-oriented object types and infinite types such as streams and processes
(cf., e.g., [8, 29, 68, 70, 32, 44]). Vice versa, these types extend the range of applications for final-semantics
approaches. As we have seen in Ex. 2.8, even streams can be presented as a functional specification (cf. 4.1).
At first sight, this seems to be inadequate because functionality includes completeness, while uncountably
many streams cannot be represented by countably many normal forms. But it need not bother us since
uncountable sets can never be implemented entirely. The fact that the final model is embedded in the
intended domain is completely sufficient for any formal reasoning about the type. The existence of an
embedding is usually guaranteed if the specification, say SP, is behaviorally consistent (cf. [62], Section 6).
Hence the final model of a behaviorally consistent extension of SP by more hidden constructors will also
be embedded in the intended domain. For instance, if SP = INFSEQ (cf. Ex. 2.8), then Fin(SP)stream is
embedded in [N — Ini(SP)entry], and, if SP = STREAM (cf. Ex. 6.6), then Fin(SP)sream 1s embedded
in [N — Ini(SP)entry] U Ini(SP)}

entry -

Theorem 5.1 Let SP = (X, AX) be a behaviorally consistent specification (cf. Defs. 3.1 and 4.6).
(1) Her(SP) € Modyer (SP) and thus by Thm. 3.9(b), Fin(SP) € Mod(SP).
(2) For all poly-modal formulas ¢ and o : X — Tx,

Her(SP) = ¢ <= Fin(SP) FEnatoo -

(3) Fin(SP) € Modpr(SP) N\ Mod,, (SP) (cf. Def. 4.6).
(4) If SP is visible, then Fin(SP) coincides with Ini(SP).
(5) Fin(SP) is final in Modpe, (SP).

Proof. (1) holds true by assumption and since Her(SP) is reachable. (2) follows from Thm. 3.9(a).

(3) Since Her(SP) is behaviorally consistent, Fin(SP) is an SP-model. ~"" is equality and hence a
weak congruence. Since Fin(SP) is reachable, we conclude Fin(SP) € Modpe,(SP) from the interpretation
of dynamic predicates in Fin(SP). Since Fin(SP) € Mod(SP), Prop. 3.3 implies Fin(SP) € Mod,, (SP).

(4) holds true because ~gp agrees with =gp on visible terms.

(5) Let A € Mody.,(SP) and Her' be the Herbrand S-structure defined by rH¢™" = {t € T | t4 € rh}
for all predicates » € X. Then for all ground X-atoms, Her’ = p iff A = p. Hence Her’ satisfies AX because
A satisfies AX. By Thm. 4.8(1), Her(SP) € Mod,,(SP). Hence for all ground v-atoms ¢(u),

AEqgu) = vt cq¢? & ue 7 = we e = Her(SP) E q(u) (:2>) Fin(SP) E q(u), (6)
and for all ground static y-atoms r(¢) and ground dynamic atoms (¢, u),

Fin(SP) Er(t) @ Her(SP) =r(t) = terf™ = tc PP o et = AE r(t), (7)

Fin(SP) Eé(t,u) = Fv:Her(SP)EIt,v)Av~spu = (t,v)€ ST ANy ~gp u (8)

= (t,v) c OB Ay ~gpu & vty edt Av~gpu = AESEv) AV =yllin

Since ~4 is reflexive, (5) follows from (6), (7) and Lemma 3.5(2) because ~ is a v-predicate, A is reachable

and Fin(SP) is a structure with ~-equality. O

Behavioral consistency ensures the existence of the final model. This is a model-theoretic side-effect of
behavioral consistency, but not its most significant consequence. More important in practice is the fact
that behavioral consistency ensures that—due to our Hennessy-Milner Theorem 3.8(3)—behavioral term
replacement is sound for poly-modal formulas as term replacement is sound for arbitrary first-order formulas

(see Section 4):
t~t! A p(t)
e(t')

(L~ 1 Aplt) = ()
o) = o(t)

behavioral term replacement U if ¢ 1s poly-modal

1 1if ¢ and ¢ are poly-modal

Example 5.2 Suppose that for some hidden sort s there are neither separators r : sw nor transition
predicates ¢ : sws’ and all destructors f : sw — s’ are methods, i.e. s’ is a hidden sort. Then ~gp, cover
all pairs of ground s-terms and thus Fin(SP); is a singleton! For instance, consider the following swinging

specification of integer numbers:

INT

hidsorts it

constructs 0,1:—int
-+ _:nd x it — int
_—_nt x it — int

destructs suce, pred : int — int

separators 150 @ int

vars x,y:int

Horn axioms suce(0) =1 pred(0)=0—1 is0(0)
suce(l) =141 pred(1) =0
suce(x +y) = suce(x) +y pred(z + y) = pred(z) +y
suce(x —y) = suce(x) —y pred(z —y) = pred(z) —y

The final INT-model Fin(INT) is isomorphic to Z. The “normal form equations” (z + y) — y ~ « and
(x —y)+y ~ x are inductive theorems of INT. If the separator is0 were omitted, behavioral INT-equivalence

would identify all ground INT-terms, i.e. Fin(INT) were a singleton. 0O

Definition 5.3 (relative completeness and consistency) Let SP and SP’ be swinging specifications
and o : ¥ — ¥’ be a signature morphism. SP’ is complete w.r.t. (SP,c) if for all sorts s € ¥ and
' € Ty oy there is t € Ty such that ¢ =sp o(t). SP’ is monotone w.r.t. (SP, o) if for all ground

p-atoms p,
Her(SP)Ep = Her(SP'), Ep, (1)
and for all ground v-atoms p,
Her(SP), Ep = Her(SP) Ep. (2)

SP’ is (relatively) consistent w.r.t. (SP, o) if, conversely, (1) holds true for all ground v-atoms p and

(2) holds true for all ground p-atoms p. If ¢ is an inclusion, i.e. ¥ C 3/, we write SP instead of (SP,o). O

Proposition 5.4 If SP’ is monotone w.r.t. (SP, o), then for all t,t' € Tx, t =gp t' implies o(t) =sp/
o(t’) and t Lgp t' implies o(t) £gpr o(t'). If SP' is complete, monotone and consistent w.r.t. (SP, o), then
for all first-order X-formulas ¢, Her(SP')s = ¢ iff Her(SP) E ¢. O

Definition 5.5 (inductive equivalence) Let SP and SP’ be swinging specifications with the same
signature ¥. SP and SP’ are inductively equivalent if SP’ is monotone and consistent w.r.t. SP, or
equivalently: for all ground X-atoms p, Her(SP) = p iff Her(SP') Ep. O

Proposition 5.6 Let SP and SP’ be inductively equivalent specifications with signature X.

(1) For all first-order S-formulas @, Her(SP) | ¢ iff Her(SP') = .
(2) SP is functional iff SP’ is functional.
(3) SP is behaviorally consistent iff SP’ is behaviorally consistent.

Proof. (1) follows from Prop. 5.4. By assumption, (behavioral) SP-equivalence coincides with (behav-
ioral) SP’-equivalence. This implies (2) and (3). (3) also relies upon the inductive equivalence of SP and
SP’ with respect to other predicates of ¥.. [

Lemma 5.7 Let SP = (X, AX) and SP' = (¥, AX') be swinging specifications, ¥ = (S, F,P), ¥/ =
ST F' P, o X = X be a signature morphism and C be a set of generalized Horn clauses or co-Horn
y 4 s g P g

clauses over X'.

(1) If Her(SP')o is an SP-model, then SP’' is monotone w.r.t. (SP, o). In particular, SP'UC = (X', AX U

C') is monotone w.r.t. SP'.
(2) Her(SP') = C ff SP'UC s consistent w.r.t. SP'.
(3) Let ¥ =X'. SP and SP’ are inductively equivalent iff Her(SP) | AX' and Her(SP') E AX.

Proof. (1) By assumption, Her(SP'), satisfies FQs U AX. Since Her(SP) is the least solution of the
Horn axioms among EQs U AX, for all » € uP, r7¢7(5P) ig a subset of pHer(SPYe - Since Her(SP) is the

Her(SP') Her(SP)

greatest solution of the co-Horn axioms among FQyx UAX, forallr € vP r e 18 a subset of r .

(2) “=7": Let uC and vC be the set of Horn resp. co-Horn clauses of SP’UC'. Since Her(SP'UC) is the
least solution of EQsy UpuC, Her(SP') E EQs UpuC implies that for all r € pP’, pHer(SP'UC) ig a subset of
pHer(SP) - Gince Her(SP'UC) is the greatest solution of vC'; Her(SP’) = vC implies that for all » € v P/,
pHer(SP') ig a subset of rAer(SP'UC) Hence SP' UC' is consistent w.r.t. SP’.

“<”. Let p &« H be a Horn clause of C' and ¢ : X — T such that Her(SP') E Ho. By (1)
and assumption, Her(SP' U C) = Ho and thus Her(SP' U C) | po. Again by (1) and assumption,
Her(SP') | po.

Let p = (H = ¢) be a co-Horn clause of C' and ¢ : X — T%s such that Her(SP’) = po A Ho. By (1)
and assumption, Her(SP'UC) | poc A Ho and thus Her(SP'UC) | po. Again by (1) and assumption,
Her(SP') | po.

(3) “<=”: Let p be a p-atom such that Her(SP') = p. (1) implies Her(SP U AX') = Her(SP' UAX) E
p. Since Her(SP) satisfies AX’, (2) implies Her(SP) = p. Conversely, let Her(SP) = p. (1) implies
Her(SP'UAX) = Her(SPU AX') = p. Since Her(SP') satisfies AX, (2) implies Her(SP') = p.

Let p be a v-atom such that Her(SP’) = p. Since Her(SP') satisfies AX, (2) implies Her(SPUAX') =
Her(SP' U AX) = p. By (1), Her(SP) = p. Conversely, let Her(SP) |= p. Since Her(SP) satisfies AX’,
(2) implies Her(SP'U AX) = Her(SPUAX') Ep. By (1), Her(SP') = p.

“=": Follows from Prop. 5.6(1) if one sets first ¢ = AX’ and then ¢ = AX. O

Corollary 5.8 (negation and consistency) In addition to the assumptions of Lemma 5.7 suppose that
for each predicate r € X, the complement T of r w.r.t. Her(SP) is in X, o(F) is the complement of o(r)
w.r.t. Her(SP'") and r € uP implies 7 € pP or for allt € Ty,

Her(SP'), Er(t) = Her(SP)Er(t). (1)

SP' is consistent w.r.t. (SP,c) if Her(SP')s is an SP-model.

Proof. Let r(t) be a ¥-atom such that r is a py-predicate and Her(SP) {£ r(t). Then Her(SP) = 7(t).
Let 7 be a p-predicate. Since Her(SP'), satisfies EQs U AX and Her(SP) is the least solution of the Horn
axioms among FQx U AX, we obtain Her(SP'), = 7(¢) and thus

Her(SP') | o(F(t) = o(F)(c(t) = a(r)(o(1)).

We conclude Her(SP') = o(r)(o(t)) = o(r(t)). Hence Her(SP'), [r(t). Conversely, we have shown (1).
If 7 is a v-predicate, then (1) holds true by assumption.

Let r(t) be a X-atom such that r is a v-predicate and Her(SP’'), & r(t), i.e. Her(SP') = o(r(t)) =
a(r)(c(t)). Then

Her(SP') = o(r)(o(t)) = a(P)(a(t)) = o(F(1))

and thus Her(SP’), = 7(t). If ¥ is a p-predicate, then, by the first part of the proof, (1) holds true. Hence
Her(SP) = 7(t) and thus Her(SP) l= r(t). Let T be a v-predicate. Since Her(SP'), satisfies EQs U AX
and Her(SP) is the greatest solution of the co-Horn axioms among EQs U AX, Her(SP'), = F(t) implies
Her(SP) E7(t) and thus Her(SP) = r(t). O

Lemma 5.9 A functional specification SP is complete, monotone and consistent w.r.t. visSP, hidSP

and vSP.
Proof. Let SP = (X, AX). By Thms. 4.8 and 5.1, Her(SP), Ini(SP) and Fin(SP) are reachable SP-

models. Since SP is complete and for all sorts s € visSP, s-sorted normal forms are vis¥-terms, SP is
complete w.r.t. visSP, htdSP and vSP.

Since all predicates of visX are py-predicates, Lemma 5.7(1) implies that hidSP is monotone w.r.t. visSP.
Since SP is functional and all hidden constructors have hidden range sorts, [60], Thm. 10.48(3) implies that
hidSP is consistent w.r.t. visSP. vSP is monotone and consistent w.r.t. hidSP because vAX \ hidAX
consists of axioms for v \ hidE. SP is monotone and consistent w.r.t. vSP because AX \ vAX consists of
axioms for ¥ \ vX. Hence SP is monotone and consistent w.r.t. visSP, hidSP and vSP. [

Consistency criteria based on confluence (cf. Thm. 4.10) are provided by, e.g., [60], Thm. 10.48 (see also
[63]). Lemma 5.9 suggests a stepwise construction of Her(hidSP) via a consequence operator on Her(visSP)
(cf. Lemma 4.7):

Lemma 5.10 (stepwise construction of Her(hidSP) on Her(visSP)) Let SP = (X, AX) be a
funetional specification, ¥ = (S, F, P) and A be the Herbrand (visSUF)-structure that is defined as follows:

o For all predicates v : w € visE and t € Ty ,,, tE€ pA > q4ep Her(visSP) = r(nf(t)).

Let T be the hid AX -consequence operator on A. Then Her(SP)|niax = Uienl*(0) and thus for all hid%-

atoms p,

Her(SP) l=p <= JicN:TY) = p.

Proof. By Lemma 4.4(1), Ifp(T) = U;enl(0). As a fixpoint of T, Ifp(T) satisfies hid AX \ visAX. Since
Her(SP)|pias is the least fixpoint satisfying hid AX, for all hidX-atoms p,

Her(SP)Ep = Ufp(D) Ep <= JeN:T(0) Ep.
By Lemma 5.9, Her(SP) is consistent w.r.t. Her(visSP). Hence for all visible hidX-atoms r(t) and ¢ € N,
Her(SP) = r(t) <= Her(SP) = r(nf(t)) <= Her(visSP) =r(nf(t)) <= tert=+T"0 (1)
Therefore, it remains to show that for all ¢ € N and hidden hidX-atoms r(t),
ter"® = Her(SP) = r(t). (2)

Since ? = §, (2) holds true for ¢ = 0. TLet ¢ > 0 and ¢ € 7I'(®) By the definition of I', there are
(r(u) < H) € hidAX \ visAX and o : X — T such that t = ue and [""1()) = He. By induction
hypothesis, (2) holds true for i — 1. Hence by (1), T*"Y(§)) &= Ho implies Her(SP) = Ho and thus
Her(SP) | r(uc) = r(t) because Her(SP) satisfies r(u) < H. O

Let SP = (3, AX) be a continuous specification and ¥, © as in Def. 4.6. By Lemma 4.7(3) and (4),

for all ground v-atoms p, Her(SP)|lp <= VieN: Wi (T%) k= p,
for all ground Y-atoms p, Her(SP)Ep <= 3JicN:0 D) = p.

How can the downward resp. upward continuity of ¥ resp. © be violated? Remember that ¥ is induced
by co-Horn axioms, while © is induced by generalized Horn axioms. Suppose that r(z) = Jyq(z,y) is the
only axiom for some predicate r € vX\ hid¥. ¥ is downward continuous if for all decreasing chains {B;};en
N¥(B:) ig a subset of r¥(M:F:) But this

means that Vidy : ¢Bi(x,y) implies IyVi : ¢Bi(x,y), which, obviously, need not hold true. Dually, suppose

of vE-structures whose hidX-reduct agrees with Her(SP)|pias, 7

that r(z) < Yyq(x,y) is the only axiom for some predicate r € ¥\ vX. O is upward continuous if for all

©(U;B;)

increasing chains {B; };en of X-structures whose v¥-reduct agrees with Her(SP)|, s, r is a subset of

pYi®(B:) But this means that Yy3i : ¢%(x,y) implies 3iVy : ¢% (2, y), which need not hold true either.

Hence existential quantifiers in the conclusions of co-Horn axioms and universal quantifiers in the premises
of generalized Horn axioms may violate the continuity of a swinging specification. Modal logic suggests a
sufficient condition on quantified subformulas to ensure continuity. If such a formula is modal in the sense

of Def. 2.3, it only occurs in one of the following forms:

Fy(d(t(z),y) Nel(y)) or Vy(d(t(z),y) = ¢(y))

where J is a dynamic predicate. Modal logic would call § finitely branching or image finite if for all ground
terms u there are only finitely many ground terms v such that d(u, v) holds true. The generalization of image

finiteness to arbitrary existential or universal goals in the sense of Def. 2.3 leads to the following definition:

Definition 5.11 (image finiteness) Let SP = (3, AX) be a swinging specification. Given a X-goal G,
S(G) =g4et {7:var(G) - NFx | Her(SP) = Gt}

is the set of normal form solutions of (. Given Y C X, (7 is Y-image finite if for all ¢ : X — NFy,
S(Gox\y) is finite.

An existential vY-goal Y ¢ is image finite if ¢ is a hidX-goal or ¢ contains a nonempty Y-image finite
hid¥-goal. A universal ¥-goal VY (G = H) is image finite if G and H are vX-goals or (G is a Y-image
finite v¥-goal.

A (dual) goal set is image finite if it consists of image finite existential (resp. universal) goals (cf. Def.
2.3). SP is image finite if for all co-Horn axioms p = (G = ¢) of SP, ¢ is an image finite goal set and for
all generalized Horn axioms p <= ¢ of SP, ¢ 1s an image finite dual goal set. 0O

MODSPEC (cf. Ex. 2.7) is image finite if the dynamic predicate —: state x state is finitely branching:
for all t € Ts there are at most finitely many ¢’ € T such that Her(MODSPEC) satisfies t — ¢'.

Example 5.12 INFSEQ (cf. Ex. 2.8) is image finite. However, the conclusion of the following axiom for

fatr is not image finite:
fair(g,s) = In,s : (nthtail(n,s) = s’ A g(head(s')) = true A fair(tail(s'))).

In terms of Def. 5.11, G = (nthtail(n,s) = s’ A g(head(s’)) = true) and H = fair(tail(s’)). The existential
goal In,s’ : (G A H) is not image finite because there are streams ¢ such that G[t/s] has infinitely many
normal form solutions. However, let G' = (G A forall(not o g, firstn(n,s))). Then In, s’ : (G' A H) is image

finite because for all streams ¢, G'[t/s] has at most one normal form solution. O

Before presenting the general proof that image finiteness implies continuity let us illustrate the essential
points at the v-predicate p = some_infinite and the p-predicate ¢ = all_finite of Ex. 2.7. We recall the

axioms for p and g¢:

p(s) = 3s'(s = s Ap(s))
q(s) < V(s> =q(¢))

The corresponding consequence operators, say ¥ and ©, are defined as follows: For all subsets S of % szate,

\II(S) —def {5 S TE,state | 35/(5 - s A € S)},
G(S) —def {5 S TE,state | VS/(S — s = s € S)}

Let — be image finite. We show that ¥ is downward continuous. This holds true iff for all decreasing chains
{Si}ien C T state,

Vids' 1 (s > s'As€S) — FsVi:(s > A €S (1)
Indeed, (1) is valid:

I {i| s =sit=w = Vidj >i:s;, =5

— 18 ima%e finite
Ji

Vidst 1 (s = s; Ash €.5;)

S5;.CS

Ji =P

= 3Js'Vi: (s> s NS €S;).
We show that © is upward continuous. This holds true iff for all increasing chains {S; }ien C T state;
Vs'di:(s > s =5 €S) — Vs (s> =59 (2)

Since — is image finite and {5;} is increasing, there is m € N such that for all s, if s — s’ € 5; for some 1,
then s’ € S,,. Hence (2) is obtained as follows:
Vs'dit(s s =5 €S) "5 Vi i(sos =5 €S, = IV :i(s—os =5 €S

Lemma 5.13 Given a complete specification SP and the notations of Def. 5.11, let C be the class of
vY-structures whose hidX-reduct agrees with A = Her(SP)|pigs, Bo D B1 D B2 D - € C and ¢ be (1) an
image finite existential goal or (2) an image finite goal set over vX. Then for allb: X — A,

VieN: B; ':b © wmplies Nijen B; ':b ©.

Proof. (1) Let ¢ = IY (G A H) be an existential goal and b : X — A such that for all i € N, B; | ¢.
If G and H are hidX-goals, then A =g ¢ and thus N;enB; b ¢ follows immediately. Let G be a Y-image
finite hidX-goal. Then for all ¢ : X — NFy with dom(c) = X\ Y, §(Go) is finite. Since SP is complete,
for all i € N there is 7' : X — NFy such that B; =, (G A H)7%, dom(r') = Y and b(z) =gp 7(z) for all
z € Y. Since G is a hid¥-goal, we obtain A | Gor! for some ¢ : X — NFy with dom(c) = X \'Y and
b(z) =sp o(x) for all # € X \'Y. Since S(Go) is finite, there is 7 : X — NFy such that dom(r) =Y and
7 = 7! for infinitely many 7. Hence for all i € N there is j; > i such that 77¢ = 7.1 Since for all i € N,
Bj, B (G A H)77i, we conclude that for all i € N, B;, | (G A H)7 and thus B; &y (G A H)7 because
le C B;. Hence NjenB; ':b ©.

(2) Let ¢ = (1 V-V) be an image finite goal set and b : X — A such that for all { € N, B; |=p 4.
We show NenB; b ¢ by induction on n. If n = 1, then the conjecture follows from (1). Otherwise let
¥ = (p2 V- V). Ifforall i € N, B; Ep v, then by induction hypothesis, N;enB; = ¢ and thus
NiexBi b ¢. Otherwise B; [y ¢ for some ¢ € N. Let k = min{i | B; [£p ¢}. Since {B;} is decreasing,
we have B; | o and thus B; |= ¢y for all i > k. Hence by (1), Ni>xB; b ¢1. Since for all 0 < i < k,
B; k= ¢ and thus B; = ¢, we conclude NenB; = Bo N ---N Be_1 N (Mi>eBi) =y . O

Lemma 5.14 Given a complete specification SP and the notations of Def. 5.11, let C be the class of
Y-structures whose vE-reduct agrees with A = Her(SP)|ys, Bo C By C By C --- € C and ¢ be (1) an image
finite universal goal or (2) an image finite dual goal set over X. For all b: X — A,

UienBi b ¢ implies i € N: By =y .

Proof. (1) Let ¢ = VY (G = H) be an image finite universal goal and b : X — A such that U;enB; b .
If G and H are vX-goals, then A |y ¢ and thus 37 € N : B; | ¢ follows immediately. Let G be a Y-image
finite v¥-goal. Since SP is complete, there 1s ¢ : X — NFy with b =gp 0. Hence S(GUX\y) 1s finite. Since
GisavX-goal, forallie Nand b: X — A, B; =, G iff A =y G. Hence B; |y ¢ is equivalent to:

Ve=yb: AE.G = B; . H, (3)

while the assumption U;enB; b ¢ is equivalent to:
Ve=yb: AE.G = JieN: B, = H. (4)

Since SP is complete, (3) and (4) are equivalent to:
Vr=yo : AEGr = B, =EHr, (5)

and to:

Vr=yo : AEGr = 3ieN: B, EHr, (6)
respectively. It remains to conclude from (6) that (5) holds true for some i. We reformulate (6) as follows:
VTeS(Gox\y)JieN: B EHox\yT. (7)

Since S(Gox\y) is finite and {B;} is increasing, (7) implies that there is ¢ with B; | Hox\y 7 for all
7 € 8(Gox\y). But this is equivalent to (5).

10This—ecrucial—proof step follows the proof of [40], Thm. 2.1, which states a corresponding result in modal logic.

(2) Let ¢ = (1 A---App) be an image finite dual goal set and b : X — A such that U;enB; b . Then
for all 1 < j < n, UjenB; f=p ¢;. Hence by (1), for all 1 < j < n there is m; € N such that By, b ¢;.
Since {B;} is increasing, we conclude By, Ep ¢ for m = max{m; | 1 <j<n}. O

Theorem 5.15 (image finiteness implies continuity) A complete and image finite specification SP

18 continuous.

Proof. Let C be the class of vX-structures whose hidX-reduct agrees with A = Her(SP)|pqs and
By D By DBy D---€C. The (vAX \ hidAX)-consequence operator ¥ on A is downward continuous iff for
all predicates r € vX \ hidX,

Aierr®(Bi) ¢ p¥(ienBi)
which is equivalent to:
VieN:aer?@) implies ae p¥NienBi), (1)

By the definition of ¥ (cf. Def. 4.3), (1) holds true if for all (»(¢) = ¢) € vAX and b : X — A such that
a = b*(t),
Vi eN: B; ':b @ implies Njen B; ':b ©. (2)

We show (2). Let (r(t) = ¢) € vAX and b : X — A such that a = b*(¢). By Def. 2.4(3) and (4), there are
a hid¥-goal G = (r1(t1) A -+ Ari(tr)) and a goal set ¢ such that ¢ = (G = ¢). Since for all 1 < ¢ < &,
r; € hidX, we may assume that hidY includes the complement 7 of r; : w (cf. Def. 3.1) and thus for all
BeC, 7P = 5 w \r8. Let 8 = (Fi(t1) V- - VT5(tx) V¥). Since for all B € C, B =0 iff B = v, (2) holds
true iff

VieN: B; ':b 6 implies Nien B; ':b 6. (3)

Since 1 is image finite, # is also image finite. Hence (3) follows from Lemma 5.13.

Let C be the class of T-structures whose vX-reduct agrees with A = Her(SP)|,x and By C By C By C
-+ € C. The (AX \vAX)-consequence operator © on A is upward continuous iff for all predicates r € T\ vX,

a e r®ienB) implies 3ieN:ae P, (4)
By the definition of @ (cf. Def. 4.3), (4) holds true if there are (r(t) < ¢) € AX and b : X — A such that
a="b*(t) and
UienBi b ¢ implies i € N: B; |4 . (5)
Since ¢ is image finite, (5) follows from Lemma 5.14. O

Functionality and continuity are the key properties of a swinging specification that allow us to reason

about its Herbrand model via consequence operators:

Lemma 5.16 (stepwise constructions of the Herbrand model) Let SP = (¥, AX) be a func-
tional and continuous specification and ®, W, 0, 1" be the consequence operators of Def. 4.6 and Lemma 5.10,

respectively.
(1) Her(SP)|nias = Uien®'(0) and for all hidX-atoms p,

Her(SP)Ep <= JeN:®(W)Ep < SPlap < ptspl.

(2) Her(SP)|pias = Uien[*(0) and for all hid%-atoms p,

Her(SP)Ep <= FieN:T'(0) =p.
(3) Her(SP)|ys = Nien¥* (1) and for all v-atoms p,

Her(SP)Ep <= YieN: ¥ (T%) Ep.
(4) Her(SP) = Uien®' () and for all S-atoms p,

Her(SP)Ep <= FieN:0) = p.

Proof. (1) follows from Lemma 4.7(1) and (2) and Thm. 4.10. (2) is Lemma 5.10. (3) and (4) are

immediate consequences of Lemma 4.7(3) and (4). O

6 Coinductive axioms

By Lemma 3.10, a visible specification SP is behaviorally consistent. If SP has nonempty hidden, p- or
v-levels, additional conditions are needed to ensure that SP is behaviorally consistent. We first group the
symbols and atoms specified above the visible level of SP (cf. Def. 2.4). A symbol is non-observing if it is

not an observer.

Given a hidden term ¢, an atom d(¢,a,u) is observing if § is a transition predicate or d(¢,a,u) =
(f(t,a) = u) and f is a destructor or §(¢,a,u) = r(¢,a) and r is a separator. An atom J(¢,u) is non-
observing if ¢ is a non-observing dynamic predicate or §(¢, v) = (f(t) = «) and f is a non-observing defined
function or d(¢,u) = r(t) and r is a non-observing static predicate. A goal is non-observing if it consists

of non-observing atoms.
Given a term tuple ¢, visvar(t) and hidvar(t) denote the sets of visible resp. hidden variables of ¢.

Definition 6.1 (coinductivity) Let SP = (X, AX) be a swinging specification. A X-normal form ¢ is
strongly normal if for all ¢ : X — NFy and u € NFy, toc ~gp u implies t7 = u and o ~gp 7 for some
7:X — NFs. A co-Horn clause r(t) = ¢ is coinductive if ¢ is strongly normal.

A Horn clause p <= ¢ is coinductive if either p = §(¢, u) is non-observing and ¢ is strongly normal or

p = d(t,a,u) is observing,

Y = G/\(Sl(tl,al,ul)/\Gl/\~~~/\(5n(tn,an,un)AGn
and the following conditions hold true: TLet Vo = war(t,a,G) and for all 1 < i < n, V; = Vi1 U
var(a;, u;, Gy).

(1) ¢ is strongly normal or ¢t = ¢(t') for a constructor ¢ and a strong normal form ¢, @ is strongly normal,

(3 is weakly modal and non-observing, var(u) C V,, and out(G) Nwvar(¢,a) = 0.

(2) Forall 1 <i<mn, §(t,a;,u;) is observing, (¢;, a;) is normal, u; is strongly normal, G; is weakly modal
and non-observing, var(t;) C V;_1, (var(u;) U out(G;)) N (Vi—y Uvar(a;,w;)) = B and hidvar(a;) C

var(a).
SP is coinductive if

(3) for all axioms ¢ of SP \ visSP, ¢ is coinductive or an axiom for a non-observing symbol f such that

~sp is (zigzag) compatible with f,

(4) for all axioms p < ¢ for observers and all non-observing symbols f occurring in ¢, the axioms for f

are coinductive and do not contain observers.'! 0O

Note the different roles the variables of ¢, a resp. u play in an observing atom (¢, a, u): those of ¢ are
consumed, those of u are produced, var(a) may contain both “input” and “output” variables. Intuitively,
conditions 6.1(1) and (2) entail a data flow through a conductive axiom p <= ¢ that starts out from ¢ and the
“input part” of a, proceeds to the “output part” of a, ¢; and the “input part” of a;, ¢ > 0, then propagates
from u; and the “output part” of a; to ¢; and the “input part” of a;, j > ¢, and finally returns to the “output

part” of a and wu.

At least the observers must have coinductive axioms if the whole specification shall be coinductive. The
conditions on observer axioms are less restrictive than those on axioms for non-observing symbols. This may
lead one to declare more symbols as observers. However, more observers increase the number of behavior
axioms and thus the number of “cases” generated by unfolding a behavioral equivalence t ~ ¢’ or by applying

conduction to a clause of the form ¢ =t ~ ¢/ (cf. Section 4).

Functional visible specifications are coinductive because then all ground normal forms are strongly normal
and thus all axioms are coinductive. Other coinductive specifications cover usual formats of transition system
specifications [37, 20], SOS (= structural operational semantics) rules [67], codatatypes [39] as well as A/T-
complete equations'? [33] or observer complete function definitions [16]. A/I-completeness and observer
completeness are simple subcases of coinductivity. They deal with purely functional specifications whose

behavioral equality is determined by destructors only and whose axioms are mostly unconditional equations.

An observer complete definition in the sense of [16] admits axioms such as d(e(z)) = u where d is a
“context” term consisting of several destructors. u may also have subterms of the form e(¢(v)) such that e
is a smaller context that d. Our notion of coinductivity restricts d to a single destructor and e to a variable.
Apart form the fact that most examples obey the “restriction” there is a simple way of extending an observer
complete specification to a coinductive one that is consistent w.r.t. the former: for each destructor f and
each axiom f(d(c(#))) = u where d is a non-variable context, introduce a new constructor, say dc, for the
composition d o ¢, replace f(d(¢(x))) = u by f(de(z)) = u, add d(c(x)) = de(z) to the set of axioms and
iterate this procedure until all axioms are coinductive. It terminates because d is a smaller context that
fod. As an example consider the following observer complete definition of blink : stream — stream (cf.

Ex. 2.8):
head(blink) =0 head(tail(blink)) =1 tail(tail(blink)) = tail(blink).

While blink denotes the stream of alternating zeros and ones, starting with a zero, tail(blink)) stands for
the stream of alternating zeros and ones, starting with a one. Hence tail(blink) actually denotes a further

constructor, blink’ : stream — stream:
head(blink) =0 head(blink’) =1 tail(blink') = blink tail(blink) = blink'.
Example 6.2 INFSEQ (cf. Ex. 2.8) is coinductive. Even the following specification of stream compre-
hension analogously to list comprehension (cf. Ex. 2.1) is coinductive:

head(filter(g,s)) =« <« head(s) =«
head(filter(g,s)) = head(filter(g,tail(s))) < head(s) ==

1 This excludes mutually-recursive axiomatizations of observers and non-observers.
12A and I are sets of destructors and constructors, respectively. A/I-completeness is a special case of the congruence criterion
of [69], Thm. 16.

However, only coinductivity and functionality imply behavioral consistency (see Thm. 6.5 below), but (1)
and (2) are not complete and thus not functional for streams s none of whose elements satisfies g. Correct

axioms for filter can only be part of a specification of finite and infinite streams such as STREAM (Ex.

6.6). O

One may flatten (2) such that the right-hand side of the conclusion consists of non-observing symbols

and the resulting axiom is still coinductive and equivalent to the original one:

head(filter(g,s)) =y < head(s) =z A g(x) = false Atail(s) = s' A head(filter(g,s')) =y. (3)

Each coinductive axiom can be transformed analogously:

Lemma 6.3 Given a coinductive specification SP, for each ariom ¢ = (6(t,a,u) < @) with observing
conclusion there is a coinductive axiom ' = (§(t,a,u') < ¢') such that v’ is normal and SP and (SP '\
{¢Y}) U{y'} are inductively equivalent.

Proof. We show the conjecture by induction on the number k& of occurrences of defined functions in u.

Since 1 is coinductive,
Y = G/\(Sl(tl,al,ul)/\Gl/\~~~/\(5n(tn,an,un)AGn

such that Def. 6.1(1) and (2) hold true. If & = 0, the proof is complete with ¢/ = . Let k& > 0. Then there
is a minimal subterm f(¢) of u such that f is a defined function and ¢ is normal. Let € X \ var(¢). If f is
a destructor, then 6.1(1) and (2) hold true for n + 1 instead of n, d1(¢1, a1, u1) = (f(t) =), and G41 = 0.
If f is non-observing, then 6.1(1) and (2) hold true for G\ A f(t) = @ instead of G,,. Hence in the both cases,

v o= St a,ulz/f)]) € eAf) =2

and thus SP' = (SP\ {¢}) U{¢"} are coinductive. Obviously, SP and SP’ are inductively equivalent. By
induction hypothesis, there is a coinductive axiom ¢’ = (§(¢, a,u') <= ¢') such that «’ is normal and SP’
and (SP'\ {¢"})U{¢'} are inductively equivalent. Since SP'\ {¢"} = SP\{¢}, SP and (SP\{¢})u{y'}

are inductively equivalent. [

Coinductive definition schemas should not be confused with coinductive proof rules such as fixpoint or
hidden coinduction (see Section 4). To emphasize the difference some authors call the former corecursion
schemas (cf., e.g., [11]). Strong normal forms give rise to rules of term splitting and clash “modulo behavioral

equivalence” (see Section 4):

e(ty, ... tn) ~clu, ... up) 0
t1~u1/\~~~/\tn~un

e(t) ~ d(u) 0
FALSE

behavioral term splitting if ¢(x) is strongly normal

behavioral clash if ¢(x) and d(y) are different strong normal forms

Definition and Lemma 6.4 Given a swinging specification SP = (X, AX), the constructor closure

& of ~gp s the binary relation on Ty, that s defined inductively as follows:

e ~s5p Cm

o for all constructors ¢ : w — s and t,t' € T, ,, t ot/ implies c(t) m c(t').

Let t be a strong normal form, o : X — NFy and u € NFy, such that to &~ u. Then tt = u and o & T for
some T : X = NFy.

Proof by induction on the size of t. Let toc ~ u. If to¢ ~gsp u, then tr = u and ¢ ~ 7 for some
7 : X — NFs because t is strongly normal. Otherwise to = ¢(v), v & ¢’ and ¢(u’) = u for some constructor
cand v,u’ € NFy. If t is a variable, then define 7: X — NIy by t7 = u and 7 =x\ {4} 0. Otherwise { = ¢(t')
and v = t'o for some ¢’ € NFs(X). Hence t'o ~ v’ and thus by induction hypothesis, t'7 = v and ¢ &~ 7 for

some 7 : X — NPFy. Hence in both cases, tr =w and o~ 7. [

Theorem 6.5 (criteria for behavioral consistency) A coinductive, functional and continuous spec-

tfication SP 1s behaviorally consistent.

Proof. Let SP = (X, AX). By Lemma 3.6, ~gp is compatible with all non-equality symbols of visSP
(cf. 2.4) and all behavioral equalities and zigzag compatible with all equality predicates. Def. 6.1(3) and (4)
imply that the hidden level of SP splits into three successive sublevels:

e The 1st hidden level consists of all non-observing symbols of the hidden level of SP and their axioms

such that these do not contain observers.
e The 2nd hidden level consists of all observers of SP and their axioms.

e The 3rd hidden level consists of all remaining symbols of the hidden level of SP and their axioms.
Let & be the constructor closure of ~gp. & is compatible with the constructors of X. Since =gp satisfies
the behavior axioms of SP, =g¢p 1s a subset of ~sp and thus of A.

At first, we show that as satisfies the behavior axioms for visible sorts. Let s be a visible sort and ¢ s, t'.
We prove Her(SP) =t =t by induction on the size of ¢,#'. If ¢t ~; ', then ¢t =gp t'. Otherwise t = c¢(u),
ur u and t' = e(u') for a constructor ¢ and term tuples u, w’. By induction hypothesis, u =sp u'. Hence

t=gp t.

Since ~gp is the greatest relation satisfying the behavior axioms, we conclude that the restriction of ~
to visible sorts is a subrelation of ~gp and thus equal to the corresponding restrictions of ~gp and =gp.

Hence as is compatible with all non-equality symbols of visSP.
Let SP; = (X1, AX1) be visSP together with the 1st hidden level of SP. Suppose that
/s is (zigzag) compatible with all symbols specified on the 1st hidden level. (1)

Since & is compatible with all non-equality symbols of visSP, (1) implies that = is (zigzag) compatible with
Y. Next we show (1).

Let rSP; = (rX1,7AX7) be the relational version of SP; (cf. Def. 4.12). Since SP is coinductive, rSP; is
also coinductive. Since SP is functional, Cor. 4.15 implies that (1) is equivalent to (2): for all non-observing
ground rXi-atoms d(¢, u) there is v’ € NFy U {e} such that

Her(rSPy) Ed§(t,u) A tat’ implies Her(rSP)EI, v') AN urnd. (2)

By Lemma 5.16(1), (2) follows from a corresponding property of an approximation of Her(rSPy): for all
non-observing ground rXj-atoms (¢, u) specified on the 1st hidden level and ¢ € N there is v’ € NFg U {¢}
such that

() =d(t,u) A tat implies ®(0) =t u) A ur (3)
where ® is the (rAX; \ visAX)-consequence operator on Her(rSPi)|yiss and visSP = (visX, visAX).

We prove (3) by induction on 4. Since for all p-predicates r € X, ¥ = @, (3) holds true for i = 0. Let
i > 0. By induction hypothesis, (3) is valid for ¢ — 1 and thus

A is a behavioral ¥;-congruence on ®'~1(f). (4)

Let ®(§)) |= 6(t,u) and t ~ t'. By the definition of ® and since »SP; is coinductive, there are an axiom
d(to, ug) < ¢ on the 1st hidden level and ¢ : X — NFs such that ¢; is strongly normal, (tg, ug)o = (¢, u)
and ®'~1(f) = po. Since tg is strongly normal and tgo0 = ¢ ~ ¢/, Lemma 6.4 implies tg7 = ¢/ and ¢ &~ 7 for
some 7 : X — NFy. By Def. 2.4(b), ¢ is weakly modal with output ¥ such that var(ts) NY = §. Since
o~ 7, (4) and Thm. 3.8(2) imply ®'~1(#)) = o7 for some 7/ & 7 with 7/ =y 7. Hence ®!(}) = (¢, uo)™’

and u = ugo & ugT A ugT'. Since var(tg)NY =, to7' = tor = t'. Hence & (()) = (', ') for v’ = upr’ ~ u.
This completes the proof of (1). Next we show that ~gp is compatible with all constructors of 3.
Suppose that s satisfies all behavior axioms for ¥ (cf. Def. 2.4(3)). Then & agrees with ~gp because

behavioral SP-equivalence is the greatest relation satisfying the behavior axioms and because ~gp is included

in ~2. Consequently, ~gp is (zigzag) compatible with all constructors of 3.

Since we have already shown above that as satisfies the behavior axioms for visible sorts, it remains to
show that = satisfies the behavior axioms for the hidden sorts of . This can be reduced to the following
condition (5) because & o =gp o & is a subset of A for all observing ground atoms (¢, a,u) there is
u' € Ty U {e} such that

Her(SP) Ed(t,a,u) A tat’ implies Her(SP)EJI, a,u') N urnu'. (5)

Since SP is functional and § is compatible with S P-equivalence, we may assume that ¢,#, a,u, u’ are normal
forms. Hence by Lemma 5.16(1), (5) is equivalent to (6): for all ground normal forms ¢, a, v and observing
atoms 6(t, a, u) there is v’ € NFy U {¢} such that

§(t,a,u)Fsp @ A tat’ implies d(t a,u')bFsp O A urmd. (6)

Hence it remains to show (6).

By (1), Thm. 3.8(2) and since SP is functional, for all weakly modal ¥;-goals G and o, 7: X — NFy,

crxT A Gobsp® implies G’ Fgp @ for some 7 : X — NFs with o~ 7/ =out(G) T (7)

Let 6(¢,a,u) Fsp ® and ¢ ~ #'. We show the conclusion of (6) by induction on the length of a shortest

reduction R of §(¢, a, u) into the empty goal. Since SP is coinductive, there are a goal
Y = Go/\él(tl,al,ul)/\Gl/\~~~/\(5n(tn,an,un)/\Gn

and an axiom §(¢g, ag, ttg) <= ¢ on the 2nd hidden level such that Def. 6.1(1) and (2) hold true for ¢y, ag, ug, Go
instead of ¢, a, u, G. Moreover, there is o : X — NFx such that (g, ag, up)o = (¢,a,u), Goo Fgp @ and for
all 1 < i < n there is an SP-reduction of d;(¢;, a;, u;)o into § that is shorter than R. By the definition of s,

we have one of two cases:

(A) t ~gp t,

(B) t =d(v), v~ v and d(v') =t for some constructor d and ground terms v and v'.

Case A. §(t,a,u) Fsp O implies Her(SP) |= d(¢,a,u). Suppose that §(¢,a,u) = (f(t,a) = u) for some
destructor f :w — s. Hence f(t,a) ~gp f(t',a) because ~gp satisfies the behavior axioms. We conclude
Her(SP) E (f(t'ya) = ') = 6 a,u) for o = f(t',a) ~sp f(t,a) = w. If § is a separator, then
Her(SP) E §(t', a, u) because ~gp satisfies the behavior axioms. Hence Her(SP) = 6(t', a,u') for v’ = u. If
J is a transition predicate, then Her(SP) = 6(t', a,u') for some v’ ~gp u because ~gp satisfies the behavior

axioms.

Hence in all three subcases, Her(SP) = §(t',a,u') for some v’ ~5p u. Since ~gp is a subset of ~s, we

conclude v’ ~ u.

Case B. By Def. 6.1(1), there are two subcases, namely Bl: ¢ is strongly normal, or B2: ¢y = ¢(tf) for
a constructor ¢ and a strong normal form tj. In Case B1, (tg,a0)0 = (¢,a) &~ (t', a) and Lemma 6.4 implies
(to,ap)T™ = (t',a) and o &~ 7 for some 7 : X — NFyg. In Case B2, ¢(tjo) = tgo =t = d(v) and thus ¢ = d
and tyo = v. Hence (1, a9)o = (v,a) & (v',a) and Lemma 6.4 implies (¢, ag)T = (v, a) and o &~ 7 for some
7:X — NFy.

We construct a substitution 7 : X — NFy, with
(a) tor =to1’

and prove by induction on z that for all 0 < ¢ < n,

Define z7’ = 7 for all # € var(ty, ap). Then (a) holds true. Since agT = @ = ago, (b) holds true for ¢ = 0.
By (7), 0 & 7 and Goo Fsp 0 imply Gor” Fsp 0 for some 7 : X — NFy with o ~ 7" =5u1(q,) 7. Define
w7’ = z7” for all € var(Gy) \ var(ty, ag). Since out(Go) Nvar(te, ag) = B, we have x7"’ = z7 = z7/ for all
z € var(Go)Nwvar(te, ag). Hence Go7”’ Fgp B implies (d) for ¢ = 0. Moreover, for all z € var(Go)\var(to, ap),
zo & xt” = x1'. Hence Vi = var(te, ag, Go), (a) and (b) for ¢ = 0 imply (e) for ¢ = 0.

Let ¢ > 0. Suppose that (b)-(e) hold true for ¢ — 1. Since hidvar(a;) C var(ag) and ago = apr’, we have
zo = x7’ for all € hidvar(a;). Define 1’ = zo for all © € visvar(a;) \ Vi—1. Hence (e) for i — 1 implies
zo & 21’ and thus zo =gp 27’ for all © € visvar(a;). We conclude zo = 7’ for all # € visvar(a;) because

zo and z7’ are normal and SP is consistent. Hence for all # € var(a;), o = x7', and thus (b) holds true.

Since var(t;) C Vi1 and ¢; is normal, (e) for ¢ — 1 implies t;0 & t;7/. Since 6;(¢;, a;, u;)o has a reduction
into {} that is shorter than R, the induction hypothesis (6) implies d;(¢; 7/, a;0, v') Fsp © and u;o & v for some
u’ € NFx. Since u; is strongly normal, v’ is normal and w;o &~ v/, Lemma 6.4 implies u;9 = v’ and o &~ ¥ for
some ¥ : X — NFy. Define x7/ = zv for all ¢ € var(u;)\(Vi—1Uvar(a;)). Since (Vi—1Uvar(a;))Nvar(u;) = 0,
u;0 = v’ implies w;7/ = v’. Hence by (b), 6;(¢;7/, a;0,v’) Fsp 0 implies (c).

Define n : X — NFys by an = o7’ for all x € V;_1 Uwvar(a;, ;) and #n = zo otherwise. By (e) for i — 1,
zo ~ wr’ = xn for all # € V;_1. By (b), x0 = a1’ = 2y for all € var(a;). Since xo ~ 2 = z1’ = 2y for
all z € var(u;) \ (Vi1 Uvar(a;)), we conclude o a2 1. Hence by (7), Gy Fsp 0 implies G;7” Fgp 0 for some
™ X = NFy with o & 7" =,u4(q,) n. Define 7’ = x7” for all x € var(G;) \ (Vi—1 Uvar(a;,u;)). Since
out(G;) N (Vi1 Uwar(a;, u;)) = B, we have o7’ = xn = a7’ for all z € var(G;) N (Vi—y Uvar(a;, w;)). Hence
G;7" Fsp O implies (d). Moreover, for all € var(G;) \ (Vi—1 Uwvar(a;,w;)), zo ~ 7’ = 7/, and for all
z € var(u;) \ (Vic1 Uvar(a;)), zo =~ 2 = 7', Hence V; = Vi1 Uvar(a;, u;, G;), () for i — 1 and (b) imply

(e)-

(c) for all 0 < i < n and (d) for all 1 < ¢ < n imply o7’ Fsp 0. Hence §(¢g, ag, ug)7 Fsp §. In Case Bl
(see above), (a) and (b) for ¢ = 0 imply (to, a0)™ = (to7, apo) = (t',a). In Case B2 (see above), (a) and (b)
for i = 0 imply (to, ao)™ = (toT, apc) = (c(t(7), apo) = (c(v'),a) = (d(v'),a) = (¥, a).

Since var(ug) C Vy, (e) for i = n implies zo & 7’ for all © € var(ug). By Lemma 6.3 and Prop. 5.6(3),

we may assume that ug is normal. Hence by (1), ugo & ugr’. Therefore, the conclusion of (6) holds true for

u = ugt’.

This finishes Case B of the proof of (6) from which we have already concluded that ~gp is compatible
with the constructors of X.. Since ~gp is (zigzag) compatible with ¥; and all behavioral equalities and since

Her(SP) satisfies the behavior axioms for X, it remains to show the following properties:

(8) For all destructors f:sw — s’ t €Ty, and a ~sp ¢’ € Tz, f(t,a) ~sp f(t,a').
(9) For all separators r : sw and t € Ty, ,, Her(SP) E r(t,a) A a ~sp a' implies Her(SP) = r(t, d').
(10) For all transition predicates ¢ : sws’ and t € T¥; 4,
Her(SP) E§(t,a,u) A a~gp a' implies Her(SP) Ed(t,a’,u') A u~gp u' for some u'.
(11) ~gp is (zigzag) compatible with all symbols specified on the 3rd hidden or a higher level of SP.

Let »SP = (rX,rAX) be the relational version of SP, SP; = (X2, AX3) be the subspecification of »rSP
consisting of vis(rSP) and the 1st and 2nd hidden level of SP, hid(rSP) = (X3, AX3) and v(rSP) =
(X4, AX4) (cf. Defs. 2.4 and 4.12). Since Her(SP) satisfies the behavior axioms for X, (8)-(10) imply that
~sp is (zigzag) compatible with X5.

Since SP is coinductive, rSP is also coinductive. Since SP is functional, Cor. 4.15 implies that (8)-(11)
can be combined to the following two implications: for all observing ground rX-atoms (¢, a, u) there is
u’ € NPy U {e} such that

Her(rSP) Ed(t,a,u) A a~spa implies Her(rSP)E§(t,d uv') A u~spt, (12)
and for all non-observing ground rX-atoms §(¢, u) there is v’ € NFx U {e} such that
Her(rSP) Ed(t,u) A t ~spt’ implies Her(rSP)EH u') N u~sp . (13)
By Lemma 5.16(1), (3) and (4), (12) and (13) follow from corresponding properties of approximations of
Her(rSP): for all observing ground rX-atoms d(¢, a, u) and ¢ € N there is v’ € NFy U {¢} such that
A'(B) =E6(t,a,u) A a~spa implies A'(() Ed(t) A u~spu (14)

where A is the AXs-consequence operator on NFy, for all non-observing ground rX-atoms (¢, u) and ¢ € N
there is 4’ € NFs U{e} such that

() =d(t,u) A t~gpt implies FjeN:®(B) =5t v) A u~spu (15)

where @ is the (AX3 \ AX3)-consequence operator on Her(rSP)l|s,, for all v-predicates r : w € X, ¢, €
NFyg . and 7 €N,

U (NFsg) Er(t) A t~spt implies W' (NFy) = r(t) (16)

where W is the (AX4 \ AX3)-consequence operator on Her(rSP)|g,, and for all non-observing ground rX-
atoms (¢, u) with § € X\ Xy, t,t' € NFy ,, and i € N there is u/ € NFy, U {¢} such that

O (@) Ed(t,u) A t~spt" implies FjEN:0/) =5t u) A u~spu (17)
where © is the (rAX \ AX,)-consequence operator on Her(rSP)|s,.

We prove (14)-(17) by induction on i. Since for all y-predicates r € #X, ? = § and for all v-predicates
r:w€ry, P = NFy ,, (14)-(17) hold true for i = 0. Let i > 0.

Proof of (14). Let AY(0) = 6(t,a,u) and a ~gp a’. By the definition of A and since rSP is coinductive,
there are an axiom 4 (tg, ag, ug) < ¢ on the 2nd hidden level as in Def. 6.1 and ¢ : X — NFx such that
(to,ao, ug)o = (t,a,u) and A""1() = po. Since ag is strongly normal, ago = a ~gp a' implies agr = o’
and ¢ ~gp 7 for some 7 : X — NFy. By Def. 2.4(b), ¢ is weakly modal with output Y such that
var(ty,ag)NY = . Since ¢ ~gp 7, the induction hypothesis (14) for i — 1 and Thm. 3.8(2) imply A"=1(0) =
o7 for some 7/ ~gp T with 7/ =y 7. Hence A¥(() = §(to, ap, ug)™ and u = upo ~gp ugT ~sp ugr'. Since
var(ty,ag) NY =0, (to, ao)™ = (to,a0)T = (to7,a’). Hence AY(B) = §(tor, a’,u’) for v/ = upr’ ~gp u. Since
~sp=ns satisfies the behavior axioms of X (see above), toT ~gp too =t implies A'(})) = §(¢, a’, u") for some

" ’
U ~spu ~gp Uu.

Proof of (15). Let ®(§) |= 6(¢t,u) and t ~gp . By the definition of ® and since rSP is coinductive,
there are an axiom 4 (tg, ug) <= ¢ on the 3rd hidden level and ¢ : X — NFy such that (tp,ug)o = (¢, u),
®'~1(f) = po and by 6.1(3), to is strongly normal or ~gp is zigzag compatible with §. In the second case,
there is u’ ~gp u such that Her(SP) = 6(t',u') and thus ®(f) = §(t', ') because &(¢',u’) is a Xz-atom. In
the first case (¢g is strongly normal), tgo =t ~gp t' implies tgr =t/ and o ~gp 7 for some 7: X — NFy.
By Def. 2.4(b), ¢ is weakly modal with output ¥ such that var(to) NY = . Since ¢ ~gp 7 and @ is
monotone, the induction hypothesis (15) for i — 1 and Thm. 3.8(2) imply ®/(#) = @7’ for some j € N and
7' ~gp T with 7 =y 7. Hence ®/+1(0) }= d(to, uo)™ and u = ugo ~sp upT ~g5p upT'. Since var(ty)NY = 0,
tom' = tor = t'. Hence ®/+L(() = 6(#', ') for v/ = upr’ ~gp u.

Proof of (16). Let W'(NFs) k= r(t) and t ~gp t'. By the definition of ¥,
for all (r(tg) = ¢) € AX and ¢ : X — Tk, t = tgo implies U~ (NFy) = po. (18)
Suppose that
for all (r(to) = ¢) € AX and 7: X — Tk, t' = tor implies ¥~ (NFy) = 7. (19)

By the definition of ¥, W/(NFy) = r(¢') and thus the proof is complete. It remains to show (19). Let
7(tg) = ¢ be a co-Horn clause of AX and 7: X — T% such that ¢ = ¢y7. By 6.1(3), o is strongly normal
or ~gp is compatible with r. In the second case, Her(SP) f= r(t') and thus W'(NFs) k= r(t') because r(t')
is a Y4-atom. By the definition of ¥, W' (NFy) | r(tor) and (r(tg) = ¢) € AX imply ¥'~H(NFy) | oT.
In the first case (tg is strongly normal), there is ¢ : X — NPy such that to0 =t and 7 ~gp 0. By (18),
Vi~L(NFy) | po. By Def. 2.4(4), ¢ is poly-modal. Since t ~gp ', the induction hypothesis (16) for i — 1
and Thm. 3.8(3) imply W'~} (NFy) | o1

Proof of (17). Let ©'(f) = 6(t,u) and t ~gp . By the definition of © and since rSP is coinductive,
there are an axiom §(¢g, ug) < ¢ on the p-level of AX and ¢ : X — NFy such that (tg,up)o = (¢, u),
©'=1(B) = po and by 6.1(3), t is strongly normal or ~gp is zigzag compatible with . In the second case,
there is v/ ~gp u such that Her(SP) = §(#',u’) and thus ©%() |= §(¢',«'). In the first case (¢, is strongly
normal), too = t ~gp t' implies tp7 = t/ and ¢ ~gp 7 for some 7 : X — NFyg. By Def. 2.4(b), ¢ is
weakly modal with output ¥ such that var(to) NY = §J. Since ¢ ~sp 7 and © is monotone, the induction
hypothesis (17) for i — 1 and Thm. 3.8(2) imply ©/ () & @7’ for some j € N and 7/ ~gp T with 7/ =y T.
Hence ©71(}) = 6(to, uo)™ and u = ugo ~gp ugT ~gp ugt'. Since var(tg) Y =0, to7/ =tor = t'. Hence
OItH(0) = d(t,u') for v/ = uor ~gp u. 0

Example 6.6 In the following stream specification, the destructors head and tail of INFSEQ (cf. Ex.
2.8) are replaced by a transition predicate —: stream x entry x stream. This allows us to include finite

sequences into the stream domain.

STREAM = LISTORD and NAT then

hidsorts stream = stream(entry)
constructs empty :— stream
&_:entry x stream — stream
blink :— stream(nat)
nats : nat — stream(nat)
odds, evens : stream — stream
z2tp @ stream X stream — stream
map : (entry — entry) x stream — stream

filter : (entry — bool) x stream — stream

separators disabled : stream
transpreds - — _:stream X eniry X stream
static p-preds enabled, finite : stream

exists : (entry — bool) x stream
v-preds fair : (entry — bool) x stream
i finite : stream
forall : (entry — bool) x stream
vars n:nat x,y:entry L:list s,s t,1 :stream
f rentry = entry g : entry — bool
Horn axioms w&s =5 s
blink — 1&blink
nats(n) — nats(n + 1)
odds(s) -+ odds(t) < s — s A’ st
evens(s) — evens(t) < s Ly A st
zip(s,s') —= zip(s', 1) <= s =t
zip(s,s') — zip(s,1) < disabled(s) As' =51
map(f, s) —gmapf, = st
filter(g,s) = filter(g,t) < s — 1 A g(x) = true
filter(g, s) Ly = st Ag(x) = false A filter(g,t) A
enabled(s) < s =1

disabled(empty)

disabled(odds(s)) < disabled(s)

disabled(evens(s)) <« disabled(s)

disabled(evens(s)) <« s AN disabled(t)

disabled(zip(s,s’)) < disabled(s) A disabled(s’)
)

disabled(map(f,s)) < disabled(s)
disabled(filter(g,s)) < disabled(s)
disabled(filter(g,s)) < s -t Ag(x) = false A disabled(filter(g,t))

finite(s) <« dzsabled()

finite(s) < s -3t A finite(t)
exists(g,s) < s —tAg(x) = true
exists(g,s) < s —tAexists(g,t)

co-Horn axioms infinite(s) = Tz, t: (s >t Ainfinite(t))
forall(g,s) = (s ==t = (g(x) = true A forall(g,1)))
fair(g,s) = ewxists(yg,s)
fair(g,s) = (s ==t = fair(g,1))

//_/_/

In the final STREAM-model, s — t holds true if is the first entry and ¢ is the rest of 5. disabled
and enabled separate empty from nonempty streams. finite and infinite distinguish finite from infinite
streams. The other function symbols and predicates are interpreted as the synomymous symbols of INFSEQ
(cf. Ex. 2.8). The Horn axioms were inspired by transition system specifications given in [70, 44]. CCS-like

processes can be specified coinductively in a quite similar way (see [62]). O

7 A modal invariance theorem

This section is devoted to the proof of Thm. 7.9. As its forerunner, [14], Thm. 4.18, it depends on a
compactness theorem, which, in turn, is based on Fos’ Theorem that tells us which model classes are closed
under ultraproducts (cf., e.g., [12, 10, 26]). Given a swinging specification SP, we will see that Mod(SP),
Mod=(SP), Modpe(SP) and Mody.(SP) are all of this kind (cf. Def. 3.1).

Let I be set. F' C () is a filter over 7 if

(1) 0¢Fr,
(2) A€ FAAC BCIimplies B € F, or, equivalently, AN B € F implies A, B € F|
(3) A, Be€FimpliessANBEF.

F C p(I) has the finite intersection property (fip) iff the intersection of each finite subset of F' is
nonempty. By (3), all filters have the fip. Conversely, if F' has the fip, then

{ACI|BNn---0NB, CA, BN---0B, € F}

is a filter. Hence a subset of () can be extended to a filter iff it has the fip. For instance, the set
{IN\ {i} | ¢ € N} has the fip and is thus contained in a filter.

A filter F' that is maximal w.r.t. the subset relation on @(7) is called an ultrafilter. A filter is an
ultrafilter iff for all AC I, A€ ForI\A€F.

Lemma 7.1 (Ultrafilter Theorem) Each filter F' over I can be extended to an ultrafilter.

Proof. Let F be the set of all filters containing F. F is partially ordered by set inclusion. It is easy
to show that the union of each totally ordered subset of F is again in F. Hence by Zorn’s Lemma, F has

maximal element. [0

Since M = {N\ {i} | i € N} has the fip, Lemma 7.1 implies that M is contained in an ultrafilter, which
we denote by F,.

A class C of Y-structures is elementary if there is a closed first-order X-formula ¢ such that A € C iff
A satisfies .

Let SP = (X, AX) be a swinging specification. Mod(SP), Mody.(SP) and Mody.(SP) are elementary.

Definition 7.2 (ultraproducts) Let I be an ultrafilter over I, {A;};c; be a family of T-structures and
A= Hie[A;. For all k € I, let pr, ©: A — A; be the projection sending (a;);er to ax. pri extends to a
function on p(AY) by pri(B) =aer {(pre(ai),...,pre(an)) | (a1,...,a,) € B}. The ultraproduct A/F of
A;, 1 € I, modulo F' is the Y-structure defined as follows:

e For all sorts s € 3, (4/F)s; = As.

e For all function symbols f :s1...5y 2> s€ X, a=(a1,...,an) € (A/F)s,. s, and i € I,
pri(FAE (a)) = A (pri(ar), .. ., pri(an)).

e Tor all predicates 7 : sy ...5, €5, (a1,...,a,) €A T {i € T | (pri(ar),...,pri(an)) €4} € F.
Ifforalli,j €I, A; = A;, then A/F is called an ultrapower of A;.

Given S-sorted binary relations /s; C A; X A;, ¢ € I, the ultraproduct extension of ~;, ¢ € /, modulo
F is the S-sorted relation & C A/F x A/F that is defined as follows: for all a,b € A/F,

amb <ag {i€l|pri(a)~ipri(b)} €F. O

By (2) and (3), ~ is a X-congruence if for all i € I, & is a ¥-congruence.

Def. 7.2 differs from the classical notion of an ultraproduct insofar as the carrier of A/F is not a quotient
of Hie[A;, but the product itself. In fact, the usual ultraproduct is the quotient of A/F by the ultraproduct
extension of the equality relations on A;, ¢ € I. These ultraproducts preserve classes of Y-structures with
=-equality, such as Mod=(SP). We obtain the same closure property if we first construct an ultraproduct
A/F in the sense of Def. 7.2 and then factorize A/F by the ultraproduct extension & of the equality relations

on the components of A. Since
amb <= {iel|prifa)=pri(b)} € F < {iel|pri(a) =2 pri(b)} e F <= a=AF,
the quotient of A/F by & is indeed a X-structure with =-equality.

We adapt llos” Theorem to many-sorted signatures and the ultraproduct definition 7.2:

Theorem 7.3 (Los’ Theorem) Let F be an ultrafilter, {A;}icr be a family of X-structures and A =
[Licr Ai- Let ¢ be a first-order X-formula and b be a valuation in A/F.

AJF e iff {i€1| A Eprob 9} €F.

Proof by induction on the structure of a minimal formula v that is equivalent to ¢ and built up of atoms,

negation, conjunction and universal quantification. Let J ={i € I | A; FEpr,ob ¥}

Case 1. 1 is an atom, say ¢ = r(t1,...,t,). Then

AlF o ¢ = (b7(t1), ..., 07 (tn)) ertf — el | (prid(t1)), ..., pri(b*(tn))) ETA’} er
> {iel|((priob)*(t1),...,(priob)*(ty)) €Ert} € F < J € F.

Case 2. v = —}. Then

ind.hyp. . .
AJF vt <= AJF 0 " el | AiEpmon 9} €F < IN{iel| A Epon ¥} EF
— i€l |Ai Ve F<— JeF

Case 8. v = 9 NJ. Then

AJF ¢ <= AJFEINAJF 0 ™ e T | A by 9} € FALI €T | A Epriob 6} € F
= (€T | A Epriob VIN{i €1 | Ar Eproon 0} € F <= J € F.

Case 4. 1 = Yz : ¥ for some x € X. Then J = {i € I | Va; € A; : Ai FEpriob)faije] V) =11 €1 | Va €
AJF : A; Epriobjaje] V). Hence for all a € A/F, J is a subset of J(a) =g4er {7 € I | Ai Fpriot[a/z] V}-
Suppose that

JEF <= VYaecA/F:J(a)€F. (4)

Then

AJF = Ya€ A/F: AJF Eyuym 0 " Yae A/F Ja)eF & JeF

Hence it remains to show (4). The “=”-part follows from J C J(a). Suppose that J & F. Then I\ J € F.
For all i € I\ J there is a; € A; such that A; E=(prob)[a;/e] V. Let @ € A/F such that for all i € I\ J,
pri(a) = a;. Then pr; o bla/x] = (pr; o b)[a;/«] and thus

INT C i€l | Ai Eprionaz 70} = {i € 1T Ai Fpriotasa) 70} = T\ J(a).
Hence by (2), I\ J(a) € F and thus J(a) € F. This completes the proof of the “<"-part of (4). O
An immediate consequence is the following:
Corollary 7.4 All elementary classes of Y-structures are closed under ultraproducts. [

Corollary 7.5 (Compactness Theorem) Let T' be a sel of first-order X-formulas and C be a class

Y.-structures that is closed under ultraproducts.

(1) If for all finite subsets T’ of T there are A € C and b : X — A such that A |z, TV, then there are B € C
and ¢ : X — B such that B =, T.

(2) Let ¢ be a first-order X-formula. If C |E AT = ¢, then there is a finite subset I of T such that
CEAD = o

Proof. (1) Let Tt be the set finite conjunctions of elements of I'. By assumption, for all ¢ € 't there
are A, € C and b, : X — A, such that A, =, . Let A = HweFJr A, and for all finite conjunctions ¢ of
elements of T', let D, = {y € ' | Ay =, ¢}. Since for all ¢1,...,0, €T, Dy, NN Dy = Dyincng,
8 ={D, | ¢ € TT} has the fip and thus can be extended to an ultrafilter F. We define ¢ : X — A/F by
pry oc =b, for all p € I't. By Thm. 7.3,

A/FEey = {Wel Ay Fprpocpt =0 el | Ay o, 0t =Dy € F.
But D, € F follows from the construction of F'. Hence (1) holds true for B = A/F.

(2) Suppose that for all finite subsets I of ' there are A € C and b : X — A such that 4 5 AT = ¢
and thus A =y ATV A —p. Then for all finite subsets I7 of T'U {—p} there are A € C and b : X — A with
A Ep AT’. Hence by (1), there are B € C and ¢ : X — B such that B =, T'U{—¢} and thus B 5. AT = ¢.
We conclude C = AT = . O

A Y-structure A is w-saturated if for each countable set I' of first-order X-formulas the following holds
true: if for all finite subsets T of T there is b : X — A such that A =, IV, then there is ¢ : X — A such that
Ak T.

Given Y-structures A and B, an injective S-sorted function h : A — B is an elementary embedding
of A in B if for all first-order X-formulas ¢ and valuations b in A, A |5y, ¢ iff B |Epes . We say that A is

elementarily embedded in B.
Theorem 7.6 Fach X-structure A is elementarily embedded in an w-saturated ultrapower of A.

Proof.*? Since the set {IN\ {¢} | ¢ € N} has the fip, it can be extended to an ultrafilter . The function
h: A — AN defined by h(a) = (a,a,a,...) embeds A in AN/F. his an elementary embedding because by
Thm. 7.3, for all first-order formulas ¢ and 6 : X — A,

0gF, IeF
€<:>

AVJF e = {ie€N| Aot €F < {ieN|AE,pleF A .

13The proof proceeds along the lines of the proofs of [12], Lemma 2.3, and [26], Thm. 8.5.

We claim that AY/F is w-saturated. Let T = {pg,¢1,¥2,...} be a countable set of first-order formulas.
Suppose that for all finite subsets IV of I' there is b : X — AY/F such that AN/F |, I'V. Then, in particular,
for all k € N there is by : X — AN/F such that AY/F =, 0o A~ A g

Let k € N. By Thm. 7.3, {{ €N | A Epriob, w0 A Ar} € F. Since § & F, there is f(k) € N such that
A ':prf(k)Obk wo A+ Awg. Wedefine c: X — AV/F by prioc= pry(y o b; for all ¢ € N. Since k was chosen

arbitrarily, we obtain
Vi> kA Eproc ok (5)
Moreover, by Thm. 7.3,
AVFE.or <= Dp=q {i €N | Alproc i} €F. (6)

Since for all i e N, N\ {i} € F, By =g {1 €N | i > k} = ﬂfz_ol(N\ {i}) € F'. By (6), E is a subset of Dy,.
Hence By € F implies Dy € F and thus by (7), AY/F . . We conclude that AN/F is w-saturated. [

From now on we follow the proof of Benthem’s Invariance Theorem ([14], Thm. 4.18) in order to obtain

our modal invariance theorem.

Given a Y-structure A and a € A, a modal formula ¢(2) with A }=,/, ¢(x) is called a modal theorem
of a (cf. Def. 2.3). mod(a) denotes the set of all modal theorems of a. Given X-structures A and B, a € A
and b € B, a and b are modally equivalent if mod(a) = mod(b).

Lemma 7.7 a and b are modally equivalent iff mod(a) C mod(b) or mod(b) C mod(a).

Proof. W .lo.g.let mod(a) C mod(b). Assume that there is ¢(x) € mod(b) \mod(a). Then A |=,/, —p(x).
Hence —¢p(z) is a modal theorem of a. Since mod(a) C mod(b), we conclude that —¢(z) is a modal theorem

of b, which contradicts the assumption that ¢(z) is also a modal theorem of b. Hence mod(a) = mod(b). O

Lemma 7.8 Let A and B be w-saturated X-structures. Then /s C A x B defined by: a = b iff mod(a) =
mod(b) is a bisimulation (cf. Def. 2.3).

Proof. Let s1,...,5, €5, 1<i<mn,a€ A, bec By, andt; € Tx; forall 1 < j# i < nsuch that
a m b, i.e. for all modal formulas p(x), A =q/e @(x) iff B =y o).

Let f:s1...8, = s be a function symbol. Then for all modal formulas ¢(z),

A':fA(tA a t4) /@ go(x) < A':a/x go(f(tl,...,x,...,tn))

1@ty

— B ':b/x @(f(tl,...,x,...,tn)) — B ':fB(t{B,...,a,...,tf)/x So(x)
Hence fA(t2, ... a,.. tY~ fE@E, ... b,.. . tD).

Let 7 : s1...s, be a static predicate. Since p(x) = r(t1,...,2,...,1,) is a modal formula, A =/, ¢(x)
iff B Epje p(x). Hence (... a,... t3) e rA iff (t2,...)b,... t8) e rP.

Let § : 51 ...5,5 be a dynamic predicate, a’ € A; and ¥ € B,. We must show

(4. a2 a') €64 implies 3V EB: (P b, 4B W)Y EdP A d mV, (1)

trtno 1V

(tjlg,...,b,.. 18 b/)EéB implies EIa’EA:(t’f,...,a,.. A a/)EéA/\a/Nb/. (2)

9 bn, *r¥n

We show (1). (2) can be proved analogously. Let (¢{,... a,...,t4 a') € 4. By Def. 2.3, for all modal

*rtn

theorems ¢(y) of @', Iy(d(x, y) Ap(y)) is a modal theorem of a. Since a ~ b, A =4/, IY(d(x, y) Ap(y)) implies
B Evje 3x(6(x,y) A (y)). Hence for all p(y) € mod(a’) there is b, € B such that B =,y ¢(y). Since B

is w-saturated, there is b’ € B such that for all ¢ € mod(a’), B =41y ¢(y). Hence all modal theorems of a’

are modal theorems of §’ and thus by Lemma 7.7, @’ and ¥ are modally equivalent. O

Theorem 7.9 (Modal Invariance Theorem) Lel ¢ be a unary first-order formula that is bisimulation

invariant in an elementary class C of B-structures (with or without =-equality). Then ¢ is modal in C.

Proof. Let ¢ = ¢(z) and T' be the set of modal formulas ¢ = ¢(2) such that C satisfies ¢ = . Suppose
that C satisfies AT = ¢. Then by Cor. 7.5(2), there is a finite subset {¢1, ..., ¢, } of T such that C satisfies
(1 A---ANipn) = . By the definition of T, we conclude that ¢ and 1 A- - A, are equivalent in C. Hence
it remains to show C = AT = .

Let A € C and a € A such that A |=,/, I'. Suppose that

for all finite subsets ® of mod(a) there are B € C and b € B such that B =/, ¢ A\ . (1)

By Cor. 7.5(1), (1) implies B =5/, mod(a)U{¢} for some B € C and b € B. Hence mod(a) = mod(b). By
Thm. 7.6, A and B are second-order embedded in w-saturated extensions AT resp. BT. Since C is second-
order definable, A, B € C implies A*, Bt € C. Moreover, A |=4/, mod(a) implies AT |=;(4)/» mod(a) and
B |y mod(a) U {p} implies BT f=j4)/, mod (a) U{p} where g and h are the embeddings of A and B in
AT resp. Bt. Hence mod(g(a)) = mod(a) = mod(b) = mod(h(b)), i.e. h(b) and g(a) are modally equivalent
and thus by Lemma 7.8, (h(b), g(a)) belongs to a bisimulation. Since ¢ is bisimulation invariant in C and

At Bt €C, BT =pp)e ¢ implies AT |=gqy/0 ¢ and thus A =g/, ¢

It remains to show (1). Assume that there is a finite subset ® of mod(a) such that for all B € C and
be B, By, o ANAN®. Then B =y ¢ = - A®. Hence ~A® € I' and thus A ./, -\ ® because
A a0 I But @ C mod(a) implies A =4/, A\ ® and thus A =,/, = A ®, which contradicts A |=,/, = A ®.
O

Corollary 7.10 Let ¢ be a unary first-order formula that is bisimulation invariant in Mod(SP), Mod=(SP),
Modpe(SP) or Mody.(SP). Then ¢ is modal in Mod(SP), Mod=(SP), Mody.(SP) or Modp.(SP), respec-
tively. O

8 Conclusion

We have introduced swinging types as a specification formalism that covers functional, relational and state-
oriented “transitional” techniques. The approach developed here differs considerably from the preliminary
versions given in [58, 61]. Swinging types combine the dominant algebraic touch of other data type pre-
sentations with concepts, results and methods obtained in relational semantics, modal logic, higher-order
functional programming and Horn clause rewriting. The integration of functions and relations becomes
particularly evident in the possibility to use defined functions or static or dynamic predicates as observers

that determine the behavior axioms and thus the interpretation of behavioral equality.

Since the number of observers raises the number of behavior axioms and thus the number of cases produced
by unfolding behavioral equivalences, only a few functions or predicates should be declared as observers. For
most behavioral equalities, one or two observers turn out to be sufficient (cf. [62]). Behavioral consistency
and behavioral term replacement require that ~ i1s a weak congruence. For this purpose we have established
coinductivity as a—mainly syntactic—property of a swinging specification that ensures weak congruence and
covers most other congruence criteria to be found in the literature on hidden/observational or process types.

From a practical point of view, more general weak-congruence criteria than coinductivity are not needed.

However, special cases should be distinguished from each other and establish a classification of “coinductive
program schemas” as part of a design methodology for swinging types. Different schemas may correspond

to different application areas and lead to tailor-made verification and transformation rules.

Coinductivity 18 accompanied by the other indispensable requirement, namely functionality, which means
intuitively that all data presented by the type have unique normal form representations (w.r.t. structural
equivalence). By Thm. 4.10, criteria for functionality reduce to criteria for confluence (see, e.g., [60], Sect.
10.5). Functionality is indispensible for verifying defined functions of a swinging type: applications of
fixpoint induction on defined functions, term unfolding, term splitting and clash may not be correct if the

specification is not functional (see Section 4).

The third main condition besides functionality and coinductivity is image finiteness, which ensures that
the consequence operators that build up the Herbrand model are continuous and thus admit inductive

arguments on predicates such as, for instance, in the proof of Theorem 6.5.

The syntactic structure of swinging specifications is motivated by the intended applications as well as the
goal to obtain simple Herbrand models that both reflect the specifier’s intuitive models and can be reasoned
about formally with the help of powerful proof rules. These provide the basis for test and proof procedures
that are still to be worked out and implemented. Their development should be guided by case studies along
the lines of [62] and integrated into the development of design methods based on swinging types. Case
studies are also needed for investigating the range of traditional methods and applications that could be

covered by this approach.

The paper also defines and discusses hierarchical relationships between several swinging types such as
(relative) completeness, monotonicity, consistency and inductive equivalence (see Section 5). Lemma 5.7
and Cor. 5.8 show when and how they can be reduced to inductive theorems of the involved types. Con-
sistency criteria based on confluence (cf. Thm. 4.10) can be found in, e.g., [60], Section 5. In particular,
a functional specification is complete, monotone and consistent with respect to its three sublevels (Lemma
5.9). Structured types involving several swinging specifications, in particular specifications with import and
refinements, are the topic of [64]. They admit, for instance, the specification of defined functions in terms

of v-predicates or to implement visible by hidden sorts and structural by behavioral equalities.

An open question are the practical consequences of Theorems 3.8(1) and 7.9 stating that a first-order
formula over a swinging signature ¥ is modal iff it 1s bisimulation invariant in a given elementary class of

Y -structures.

References

[1] Abstract State Machines (aka Gurevich Machines or Evolving Algebras),
http://www.eecs.umich.edu/gasm

[2] K.R. Apt, H.A. Blair, A. Walker, Towards a Theory of Declarative Knowledge, in: J. Minker, ed.,
Deductive Databases and Logic Programming, Morgan Kaufmann (1988) 89-148

[3] M.A. Arbib, E.G. Manes, Parametrized Data Types Do Not Need Highly Constrained Parameters,
Information and Control 52 (1982) 139-158

[4] E. Astesiano, M. Broy, G. Reggio, Algebraic Specification of Concurrent Systems, in [6]

[6] E. Astesiano, A. Giovini, G. Reggio, Observational Structures and their Logic, Theoretical Computer
Science 96 (1992) 249-283

[6] E. Astesiano, H.-J. Kreowski, B. Krieg-Briickner, eds., Algebraic Foundations of Systems Specification,
IFIP State-of-the-Art Report, Springer 1999

[7] E. Astesiano, G. Reggio, Algebraic Specification of Concurrency, Proc. WADT’91, Springer LNCS 655
(1993) 1-39

[8] E. Astesiano, M. Wirsing, Bisimulation in Algebraic Specifications, in: H. Ait-Kaci, M. Nivat, eds.,
Resolution of Equations in Algebraic Structures 1, Academic Press (1989) 1-31

[9] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge University Press 1990
[10] D.W. Barnes, J.M. Mack, Algebraic Introduction to Mathematical Logic, Springer 1975

[11] J. Barwise, L. Moss, Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena, CSLI
Publications, Stanford 1996

[12] J.L. Bell, A.B. Slomson, Models and Ultraproducts: An Introduction, North-Holland 1969

[13] J. van Benthem, J. Bergstra, Logic of Transiltion Systems, J. Logic, Language, and Information 3
(1995) 247-283

[14] J. van Benthem, Ezploring Logical Dynamics, CSLI Publications, Stanford 1996

[15] M. Bidoit, R. Hennicker, Proving the Correctness of Behavioural Implementations, Proc. AMAST ’95,
Springer LNCS 936 (1995) 152-168

[16] M. Bidoit, R. Hennicker, Observer Complete Definitions are Behaviourally Coherent, Report, Univer-
sity of Munich (1999)

[17] M. Bidoit, R. Hennicker, M. Wirsing, Behavioural and Abstractor Specifications, Science of Computer
Programming 25 (1995) 149-186

[18] M. Broy, M. Wirsing, Partial Abstract Types, Acta Informatica 18 (1982) 47-64

[19] The CoFT Task Group on Language Design, CASL: The Common Algebraic Specification Language,
1998, http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary

[20] A. Corradini, R. Heckel, U. Montanari, From SOS Specifications to Structured Coalgebras: How to
Make a Bisimulation a Congruence, Proc. CMCS 99, Elsevier ENTCS 19 (1999)

[21] G. Costa, G. Reggio, Specification of Abstract Dynamic Data Types: A Temporal Logic Approach,
Theoretical Computer Science 173 (1997) 513-554

[22] R. Diaconescu, K. Futatsugi, CafeOBJ Report, AMAST Series in Computing 6, World Scientific 1998

[23] H. Ehrig, H-J. Kreowski, B. Mahr, P. Padawitz, Algebraic Implementation of Abstract Data Types,
Theoretical Computer Science 20 (1982) 209-263

[24] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer 1985

[25] H. Ehrig, F. Orejas, Dynamic Abstract Data Types: An Informal Proposal, EATCS Bulletin 53 (June
1994) 162-169

[26] P.C. Eklof, Ultraproducts for Algebraists, in: J. Barwise, ed., Handbook of Mathematical Logic, North-
Holland (1977) 105-137

[27] E.A. Emerson, Temporal and Modal Logic, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Elsevier (1990) 995-1072

[28] V. Giarratana, F. Gimona, U. Montanari, Observability Concepts in Abstract Data Type Specifications,
Proc. MFCS ’76, Springer LNCS 45 (1976) 576-587

[29] J.A. Goguen, R. Diaconescu, Towards an Algebraic Semantics for the Object Paradigm, Proc. 9th ADT
Workshop, Springer LNCS 785 (1994) 1-29

[30] J.A. Goguen, R. Diaconescu, An Ozford Survey of Order Sorted Algebra, Mathematical Structures in
Computer Science 4 (1994) 363-392

[31] J.A. Goguen, J. Meseguer, Unifying Functional, Object-Oriented and Relational Programming with Log-
tcal Semantics, in: B. Shriver, P. Wegner, eds., Research Directions in Object-Oriented Programming,

MIT Press (1987) 417-477
[32] J.A. Goguen, G. Malcolm, A Hidden Agenda, UCSD Technical Report CS97-538, San Diego 1997

[33] J.A. Goguen, G. Malcolm, Hidden Coinduction: Behavioral Correctness Proofs for Objects, to appear
in MSCS

[34] J.A. Goguen, Stretching First Order Equational Logic: Proofs with Partiality, Subtypes and Relracts,
UCSD Report, San Diego 1997, www-cse.ucsd.edu/users/goguen/ps/ftp97.ps.gz

[35] J.A. Goguen, J.W. Thatcher, E.G. Wagner, An Initial Algebra Approach to the Specification, Correct-
ness and Implementation of Abstract Data Types, in: R. Yeh, ed., Current Trends in Programming
Methodology 4, Prentice-Hall (1978) 80-149

[36] A.D. Gordon, A Tutorial on Co-induction and Functional Programming, Proc. Functional Program-

ming Glasgow 1994, Springer (1995) 78-95

[37] J.F. Groote, F. Vaandrager, Structured Operational Semantics and Bisimulation as a Congruence,
Information and Computation 100 (1992) 202-260

[38] J. Guttag, E. Horowitz, D.R. Musser Abstract Data Types and Software Validation, Report IST/RR-
76-48, University of Southern California 1976

[39] T. Hagino, Codatatypes in ML, J. Symbolic Computation (1989) 629-650

[40] M. Hennessy, R. Milner, Algebraic Laws for Nondeterminism and Concurrency, J. of the ACM 32
(1985) 137-161

[41] R. Hennicker, M. Bidoit, Observational Logic, Proc. AMAST ’98, Springer LNCS 1548 (1998) 263-277
[42] C.A.R. Hoare, Proof of Correctness of Data Representations, Acta Informatica 1 (1972) 271-281

[43] B. Jacobs, Behaviour-Refinement of Coalgebraic Specifications with Coinductive Correciness Proofs,
Proc. TAPSOFT ’97, Springer LNCS 1214 (1997) 787-802

[44] B. Jacobs, J. Rutten, A Tutorial on (Co)Algebras and (Co)lnduction, EATCS Bulletin 62 (June 1997)
222-259

[45] J.-P. Jouannaud, H. Kirchner, Completion of a Set of Rules Modulo a Set of Equations, STAM .
Computing 15 (1986) 1155-1194

[46] S. Kamin, Final Data Type Specifications: A New Data Type Specification Method, ACM TOPLAS 5
(1983) 97-123

[47] U. Kiihler, C.-P. Wirth, Conditional Equational Specifications of Data Types with Partial Operations
for Inductive Theorem Proving, Proc. RTA *97, Springer LNCS 1232 (1997) 38-52

[48] K.G. Larsen, Proof Systems for Hennessy-Milner Logic with Recursion, Proc. CAAP 88 Springer
LNCS 299 (1988) 215-230

[49] J.-L. Lassez, V.L. Nguyen, E.A. Sonenberg, Fired Point Theorems and Semantics: A Folk Tale, Infor-
mation Processing Letters 14 (1982) 112-116

[60] G. Malcolm, J.A. Goguen, Proving Correctness of Refinement and Implementation, Technical Mono-
graph PRG-114, Oxford University Computing Lab 1994

[61] J. Meseguer, J.A. Goguen, Initiality, Induction and Computability, in: M. Nivat, J. Reynolds, eds.,
Algebraic Methods in Semantics, Cambridge University Press (1985) 459-541

[62] J. Meseguer, Membership Algebra as a Logical Framework for Equational Specification, Proc. WADT
’97, Springer LNCS 1376 (1998) 18-61

[63] B. Mdller, A. Tarlecki, M. Wirsing, Algebraic Specifications of Reachable Higher-Order Algebras, Proc.
5th ADT Workshop, Springer LNCS 332 (1988) 154-169

[54] E. Moggi, Notions of Computation and Monads, Information and Computation 93 (1991) 55-92

[65] H.-J. Ohlbach, Semantic-Based Translation Methods for Modal Logics, J. Logic and Computation 1
(1991) 691-746

[66] P. Padawitz, Computing in Horn Clause Theories, Springer 1988
[67] P. Padawitz, Deduction and Declarative Programming, Cambridge University Press 1992

[68] P. Padawitz, Swinging Data Types: Syntax, Semantics, and Theory, Proc. WADT ’95, Springer LNCS
1130 (1996) 409-435

[59] P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Symbolic Computation 21 (1996)
41-99

[60] P. Padawitz, Proof in Flat Specifications, in [6]

[61] P. Padawitz, Towards the One-Tiered Design of Data Types and Transition Systems, Proc. WADT ’97,
Springer LNCS 1376 (1998) 365-380

[62] P. Padawitz, Sample Swinging Types, Report, University of Dortmund 1998,
http://1s5.cs.uni-dortmund.de/~peter/BehExa.ps.gz

[63] P. Padawitz, Theorie der Programmierung, Course Notes, University of Dortmund 1998,
http://1s5.cs.uni-dortmund.de/~peter/TdP96.ps.gz

[64] P. Padawitz, Modular Swinging Types, Report, University of Dortmund 1999,
http://1s5.cs.uni-dortmund.de/~peter/MST .ps.gz

[65] D. Park, Fizpoint Induction and Proofs of Program Properties, in: B. Meltzer, D. Michie, eds., Machine
Intelligence 5, Elsevier (1969) 59-78

[66] G.D. Plotkin, Building-in Equational Theories, in: B. Meltzer, D. Michie, eds., Machine Intelligence
7, Elsevier (1972) 73-90

[67] G.D. Plotkin, An Operational Semantics for CSP, in: D. Bj¢rner, ed., Proc. IFIP TC-2 Working Conf.
Formal Description of Programming Concepts II, North-Holland (1983) 199-225

[68] H. Reichel, An Approach to Object Semantics based on Terminal Coalgebras, Math. Structures in Comp.
Sci. 5 (1995) 129-152

[69] G. Rosu, J. Goguen, Hidden Congruent Deduction, Proc. First-Order Theorem proving - FTP‘98,
Vienna (1998) 213-223

[70] J.J.M.M. Rutten, Universal Coalgebra: A Theory of Systems, Report CS-R9652, CWI, SMC Amster-
dam 1996

[71] D. Sannella, A. Tarlecki, Toward Formal Development of Programs from Algebraic Specifications: Im-
plementations Revisited, Acta Informatica 25 (1988) 233-281

[72] M. Stickel, Automated Deduction by Theory Resolution, J. Automated Reasoning 1 (1985) 333-356

[73] C. Stirling, Modal and Temporal Logics, in: S. Abramsky et al.; eds., Handbook of Logic in Computer
Science, Clarendon Press (1992) 477-563

[74] C. Stirling, The Joys of Bisimulation, Proc. MFCS 98, Springer LNCS 1450 (1998) 142-151

[75] M. Wand, Final Algebra Semantics and Data Type Extensions, J. Computer and System Sciences 19
(1979) 27-44

[76] M. Wand, Specifications, Models, and Implementations of Data Abstractions, Theoretical Computer
Science 20 (1982) 3-32

[77] M. Wirsing, Algebraic Specification, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Elsevier (1990) 675-788

