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2 1 Introduction1 IntroductionIn contrast to modal logic and most approaches for specifying dynamic systems (see, e.g., [1, 25]) we propose aone-tiered framework that admits the speci�cation of \static" data types and \dynamic" transition systemswithin a uniform logic. In modal logic, state transitions are interpreted on a higher level that does notinterfere with the structure of individual states. Swinging types regard states as hidden objects, transitionlabels as visible data and transition relations as dynamic predicates. The behavioral identity of a hiddenobject depends on functional or relational observers, in other approaches also called selectors, accessors,attributes, inquiry operations, methods, mutators, destructors, etc. In functional approaches, behavioralequality usually comes as a sort of contextual equivalence, in modal logic as bisimilarity. In both casesbehavioral equality is dual to structural equality insofar as the former is the least and the latter the greatestrelations satisfying certain compatibility axioms. Swinging types admit all ways of specifying a behavioralequality, be they functional, relational or \transitional", i.e., determined by dynamic predicates. The lattercase motivates the introduction of weak congruences that are compatible with static predicates, but onlyzigzag compatible with dynamic ones.A swinging speci�cation starts out from constructors for building up both visible and hidden data do-mains. Visible domains precede the hidden ones. A visible domain is characterized by the coincidenceof its structural with its behavioral equality. Constructors of visible data are not allowed to have hiddenarguments. This ensures that the theory of a hidden type is consistent w.r.t. its visible subtype. A swing-ing speci�cation need not have hidden sorts, but if there are hidden sorts, there must also be visible ones.Otherwise hidden objects cannot be distinguished from each other. Formally, each hidden domain must beequipped with at least one functional observer that maps to a visible sort or one relational observer, regardedas a function that maps to the visible domain of truth values. Otherwise the hidden domain collapses becauseits behavioral equality identi�es all its elements.Besides constructors, a swinging speci�cation de�nes functions and �-predicates in terms of Horn axiomsthat represent functional-logic programs or transition system speci�cations. �-predicates are interpreted asthe least solutions of their axioms. �-predicates are often existential properties such as liveness or reach-ability. Roughly said, all inductively de�nable properties are �-predicates. Hence structural equalities are�-predicates. �-predicates dealing with \in�nite" objects are often \limits" of conditions on the objects'�nite approximations. �-predicates are usually complements of �-predicates. They represent universal prop-erties, and, if they cannot be turned into equivalent �-predicates, they often express aspects of behavior\in the in�nity", such as safety and invariance conditions on state sequences. Formally, �-predicates arespeci�ed in terms of co-Horn clauses and interpreted as the greatest solutions of their axioms. Behavioralequalities are �-predicates. Above the �-predicates, a swinging type may have further �-predicates whoseaxioms are generalized Horn clauses. As co-Horn clauses may involve existential quanti�ers in the conclu-sion, generalized Horn clauses may involve universal quanti�ers in the premise. Since these quanti�ers mayviolate the continuity of the consequence operators induced by the axioms, we provide a continuity criterionthat generalizes the notion of image �niteness from transition systems to arbitrary goals.The notions \�-predicate" and \�-predicate" stem from modal logic's �-calculus (cf., e.g., [48, 73]) andrelational �xpoint semantics (cf., e.g., [36]). The least and greatest �xpoints of state set operators usedto de�ne alternation-free �-formulas can be translated directly into swinging speci�cations of �- resp. �-predicates (see Section 2).Besides modal logic, swinging types integrate concepts, methods and results from many other formalapproaches to system speci�cation and veri�cation. First of all, there is �nal-semantics approach to data



1 Introduction 3types that was introduced for modelling permutative types such as �nite sets, multisets and arrays with a�nite domain (cf., e.g., [28, 75, 46]). [29, 32] extended it to the hidden-type approach that also covers object-oriented|though purely functional|speci�cations. From dynamic data types we adopt the speci�cation oflabelled transition systems (LTS) as ternary predicates (cf. [8, 7, 4]). Strati�ed logic programs with stable orperfect models provide ideas for constructing swinging types hierarchically (cf. [2]).Coinductive function de�nitions in category theory [68, 44] and formats of transition system speci�cations[37] led us to the criterion of coinductivity for the behavioral consistency of a swinging type (see Section 6).Given a suitable functor F , category theorists call a function to be de�ned by coinduction if the de�nitionis derived from the unique morphism that maps an F -coalgebra to the �nal F -coalgebra. This dualizes thecategory-theoretic notion of a de�nition by induction that is derived from the unique morphism that mapsthe initial F -algebra to an F -algebra. Initial F -algebras and �nal F -coalgebras are isomorphisms that arecomposed of the constructors and destructors of the type described by F . The connections between swingingtypes and the category-theoretic approach to data types is treated in detail in [62]. Besides the notion ofcoinductivity the category-theoretic approach yields the insight that not only visible, but also hidden typeshave constructors. On the other hand, it is purely functional and thus does not contribute to the axiomaticspeci�cation of predicates, in particular dynamic ones. Here modal logic and process algebra provide moreinspirations.The rewriting-oriented criteria developed in [57, 59, 60] are fully applicable to swinging types. This pro-vides the basis for ensuring that a swinging type is functional, i.e. each of its ground terms is structurallyequivalent to a unique normal form (= term consisting of constructors). This seems to exclude the speci�ca-tion of partial functions. However, partiality can always be simulated by introducing sum sorts that comprise\de�ned" and \unde�ned" values such as exceptions, error messages, etc. (see, e.g., [34] and the exceptionmonad of [54] as used in [62]). Moreover, strong equality turns out to be a behavioral equality inducedby a destructor that identi�es exceptions, and even arbitrary partial-recursive functions can be speci�ed byaxioms of a swinging type (cf. [62], Section 7). Each functional speci�cation can be transformed into anequivalent relational one whose only functions are constructors, while de�ned functions are transformed intocorresponding input-output relations. This fact is crucial for the correctness of applying one of the mainproof rules for swinging types, namely �xpoint induction, not only to (�-)predicates, but also to de�nedfunctions. A functional speci�cation can also be extended systematically by axioms for the complements ofits structural equalities, in other words, axioms for inequalities. This entails the correctness of practicallyindispensable proof rules such as term splitting and clash. The complements of non-equality predicates areaccomplished by simply negating axioms (see Section 4).The axioms for behavioral equalities are determined by those de�ned functions, static or dynamic pred-icates that are declared as destructors, separators and transition predicates, respectively, altogether calledobservers. Observational speci�cations in the sense of [17, 41, 16] and behavioral or hidden ones in the senseof [32, 69] deal exclusively with destructors (called attributes/methods in [32]). �-calculi, process logics anddynamic data types are based on labelled transition systems (LTS), i.e. transition predicates. On the onehand, only [8] and [21] regard an LTS as a predicate of a many-sorted speci�cation. On the other hand,the dynamic-type approach lacks speci�cation and proof methods that are as powerful as those invented inprocess algebra [9] and modal logics for proving properties of LTS (\model checking"). But the dynamic-typeapproach keeps to �rst-order logic, while the modal-logic and process-algebra reasoning about processes andLTS leaves the structure of individual states out of its discourse.Similarly to functional-logic programs and transition system speci�cations, the axioms of a swingingtype represent more or less inductive de�nitions of (de�ned) functions or (�-)predicates on constructors.



4 1 IntroductionThis is necessary for ensuring that the speci�cation is functional. Coinductive axioms, on the other hand,guarantee that the speci�cation is behaviorally consistent (see below). For instance, both the visible typeof (�nite) lists and the hidden type of (in�nite) streams have a constructor append-to-the-left, denoted by:: : entry � list! list and & : entry � stream ! stream, respectively. In both cases, there are de�nedfunctions head and tail, speci�ed by the same axioms:head(x :: L) � x tail(x :: L) � Lhead(x&s) � x tail(x&s) � sObviously, these equations are part of inductive de�nitions of head and tail and thus part of a functionallist resp. stream speci�cation. Coinductivity, however, is a requirement to axioms for hidden symbols onlyand thus may or not hold only for the last two equations. Indeed, they are coinductive because we havedeclared head and tail as observers. In this simple case it is quite easy to conclude that behavioral streamequality, say �, is compatible with all involved functions, i.e. head, tail and &. Declaring head and tail asobservers means to axiomatize � as follows:s � s0 ) head(s) � head(s0) ^ tail(s) � tail(s0): (1)(1) is the compatibility of � with head and tail. But � is also compatible with & because � denotes thegreatest solution of (1) and thus s � s0 holds true if and only if the conclusion of (1) holds true. The argumentwould fail if head and tail were not declared as observers. Indeed, the coinductivity requirement to axioms for\non-observing" symbols are more restrictive (see Section 6). For instance, suppose that the list speci�cationis extended by a hidden sort bag for �nite multisets, the de�ned function card : bag� entry ! nat returningthe number of occurrences of an element in a bag is declared as an observer and the embeddingmkbag : list !bag of lists into bags is the only bag constructor. Then there is a de�ned function chooselist : list ! bagspeci�ed inductively by the axiom chooselist(bag(L)) � L: (2)Declaring chooselist as an observer would lead to the axiomb � b0 ) chooselist(b) � chooselist(b0)for behavioral bag equality, which does not comply with our intuition about this equality. Hence chooselistcannot be an observer and thus|as the reader of Section 6 will con�rm|(2) is not coinductive. Indeed, ifbehavioral bag equality were compatible with chooselist, it would coincide with list equality!An \LTS-inspired" stream speci�cation replaces the functional observers head and tail by a transitionpredicate �! : stream � entry � stream, the axioms for head and tail by x&s x�! s and (1) by:s � s0 ) (s x�! t ) 9t0 : (s0 x�! t0 ^ t � t0));s � s0 ) (s0 x�! t0 ) 9t : (s x�! t ^ t � t0)):The syntax of a swinging type leads directly to its Herbrand model, Her(SP ), which is a pure termmodel and thus interprets both structural equalities and behavioral ones as term relations, called structuraland behavioral SP -equivalence, respectively, denoted by �SP resp. �SP . The initial SP -model, Ini(SP ),is the quotient of Her(SP ) by structural SP -equivalence, the �nal SP -model, Fin(SP ), is the quotient ofHer(SP ) by behavioral SP -equivalence. The latter deviates from other �nal-semantics approaches wherethe �nal model comes as a quotient of the initial one. In fact, �SP is included in �SP and thus some



1 Introduction 5quotient of Ini(SP ) is isomorphic to Fin(SP ). However, the theory of the �nal model is easier to handle ifone constructs it as a quotient of the Herbrand model.The standard axioms for structural equalities render �SP a congruence relation. The algebraist likescongruences because they admit the construction of quotient models. The theorem prover is less keen on newmodels, but on the correctness of term replacement w.r.t. an equivalence relation, and this is guaranteed forall �rst-order formulas only if the relation is a congruence, in other words, �rst-order formulas are congruenceinvariant: t �SP t0 ) for all �rst-order formulas ' : Her(SP ) j= '(t), '(t0): (3)Behavioral SP -equivalence is not a congruence, but a weak congruence. Weak congruences are compatiblewith functions and static predicates, but only zigzag compatible with dynamic predicates. Roughly said, theyare bisimulations, generalized to arbitrary dynamic predicates. Modal logic provided us the idea of possibleclasses of �rst-order formulas whose elements are weak-congruence invariant:t �SP t0 ) for all poly-modal formulas ' : Her(SP ) j= '(t), '(t0): (4)We introduce three classes of modal �rst-order formulas. Those called modal formulas are the results ofdirect translations of modal-logic sentences into predicate logic. Such translations|whose images are alsocalled modal or guarded fragments of �rst-order logic|have been studied by, e.g., Ohlbach [55], Bergstraand van Benthem [13, 14]. The main idea is to \internalize" the \frame" or LTS, which determines theinterpretation of modal-logic sentences, as a binary, or if the LTS is labelled, ternary predicate (see Section2). Modal formulas have a single (\state") variable and can be shown to be bisimulation invariant (seebelow). The greater class of poly-modal formulas admits several variables, but restricts (analogouslyto modal formulas) the \target term" of each dynamic-predicate occurrence to an existentially quanti�edvariable. A weakly modal formula may also have free variables as target terms, which comprise the outputof the formula (see Section 2). Weakly modal formulas with empty output are poly-modal. For guaranteeingthat the �nal model of a swinging speci�cation satis�es its axioms, the premises of the Horn axioms mustbe weakly modal, while the conclusions of the co-Horn axioms must be poly-modal (see Section 3).There are di�erences between van Benthem's modal fragment and poly-modal formulas that forbid thedirect application of his results to swinging types. [14] translates propositional modal logic and thus formulasof the modal fragment are built over a one-sorted signature with only unary (static) and binary (dynamic)predicates, while we start out from a many-sorted signature with predicates of various arities. Nevertheless,even poly-modal formulas enjoy a Hennessy-Milner theorem1, i.e. (4) together with the converse:t �SP t0 ( for all poly-modal formulas ' : Her(SP ) j= '(t), '(t0): (5)This is trivially valid because �SP is reexive and t � x is a poly-modal formula.However, van Benthem ([14], Thm. 4.18) characterizes his modal fragment as the class of (bisimulation)invariant �rst-order formulas. In Section 7, we generalize this modal invariance theorem to many-sorted logicand our class of modal (not of poly-modal) formulas. Moreover, it is not the weak congruences that replacethe bisimulations in van Benthem's theorem, but something in between: on the one hand, weak congruences,but only w.r.t. unary (static) and binary (dynamic) predicates, on the other hand, pairs (a; b) 2 A�B whereA and B are di�erent models. Hence our Hennessy-Milner theorem deals with terms replacements withina single model A, while our modal invariance theorem deals with model replacements and thus adopts thetwo-tiered modal-logic view that di�erent states pertain to di�erent models (see above).1For the original modal-logic version, see [40], Thm. 2.2, or [73], Thms. 5.3.2 and 5.3.3.



6 2 The syntax of swinging typesIn the dynamic-data-type approach of [5], the Hennessy-Milner Theorem has been generalized to a classof observational formulas with patterns of experiments. They somewhat resemble poly-modal formulas, butare built upon a �xed, rather unstructured interpretation of their visible components.A structure A interpreting the signature of a swinging speci�cation SP is behaviorally SP -consistent ifA interprets behavioral equality as a weak congruence and if the quotient of A by that weak congruencesatis�es the axioms of SP . SP itself is behaviorally consistent if the Herbrand model of SP interpretsbehavioral equality as a weak congruence. The interpretation is denoted by �SP , the quotient is called the�nal SP -model (see above). The modality assumptions on the axioms of SP (see above) imply that eachmodel of SP with a weakly congruent interpretation of behavioral equality is behaviorally SP -consistent(Thm. 3.9(b)). Hence the �nal model is really a model if �SP is a weak congruence. This justi�es the notionof behavioral consistency and shows the signi�cance of syntactic criteria for this property.Swinging types \swing" between many poles: between visible and hidden domains, between severalstates (= individual hidden objects), between functions declared as constructors and those used as de�nedfunctions, between structural and behavioral equalities, between functional-logic programs for functions andstatic predicates and \transitional programs" for dynamic predicates, between �- and �-predicates. Usually,not all these concepts are needed simultaneously. There are swinging types where structural equalities playthe dominant rôle, while other types are speci�ed adequately only in terms of observers and behavioralequalities. The integrative approach just makes it easier to state and understand both similarities andconceptual di�erences between speci�cation formalisms, which so far have been presented separately fromeach other. Readers who are familiar with other speci�cation approaches are invited to reformulate resultsof this paper in terms of those approaches. This is also a goal of the integration: to make use of theoremsabout rule correctness, consistency, etc. in various formal settings.Section 2 provides the syntax of swinging speci�cations, recapitulates basic notions of many-sorted logicand introduces modal, co-Horn and generalized Horn formulas. Section 3 deals with the semantics of swingingspeci�cations, in particular, bisimulations, weak congruences and monotone structures. General connectionsbetween modality and weak congruences are established by Theorems 3.8 and 3.9. Section 4 focuses onfunctionality, reviews relational-�xpoint theorems, de�nes the standard models of a swinging speci�cationand presents basic proof rules that draw on the syntax of swinging types, the Herbrand model's interpretationof predicates as least or greatest solutions of axioms and, as far as de�ned functions are concerned, onfunctionality. Section 5 deals with particular properties of the �nal model and with relationships betweenseveral speci�cations, such as relative completeness, monotonicity, consistency and inductive equivalence.Moreover, image �niteness is established as a criterion for the continuity of the consequence operators thatbuild up the Herbrand model. Section 6 is devoted the behavioral-consistency criterion of coinductivity. Themodal invariance theorem is presented and proved in Section 7.2 The syntax of swinging typesWe assume familiarity with the basic notions of many-sorted logic with equality (cf., e.g., [35, 24, 77]). Ashas been shown by, e.g., [31, 53, 56, 57, 60], this logic admits presenting and verifying not only primitive datatypes with �rst-order functions, but also generic types with almost all features of current functional-logicspeci�cation or programming languages.For all expressions e, var(e) and free(e) denote the sets of all resp. free variables of e. e is ground ifvar(e) is empty. e(t) denotes an expression that includes the (tuple of) subexpression(s) t. e[t/u] stands



2 The syntax of swinging types 7for e with t substituted for u.Given a set S of sorts, w = s1 : : : sn 2 Sn and an S-sorted set A, Aw stands for the product As1�� � ��Asn .Given two S-sorted sets A and B, an S-sorted binary relation � � A � B is a family of relationsf�s� As�Bsgs2S . � extends to a family of relations f�w � Aw �Bwgw2S+ on products and to a relation� � [I ! A]� [I ! B] on functions as follows:(a1; : : : ; an) � (b1; : : : ; bn) ()def 81 � i � n : ai � bi resp. f � g ()def 8i 2 I : f(i) � g(i):Example 2.1 We start with an introductory example of a swinging speci�cation. Precise de�nitions aregiven afterwards.ORDERsorts entrypreds 6� : entry � entry (predicates)� : entry � entry> : entry � entryvars x; y : entry (variables)axioms x � y _ x 6� y x 6� y , :(x � y)x � y _ x > y x > y , :(x � y)LISTORD = ORDER thenvissorts bool list = list(entry) (visible sorts)hidsorts entry ! entry entry ! bool (hidden sorts)constructs true; false :! bool (constructors)nil :! list:: : entry � list! list�y:not(eq( ; y)) : entry ! (entry ! bool)destructs apply : ((entry ! entry) � entry)! entry (destructors)apply : ((entry ! bool)� entry) ! booldefuncts not : bool ! bool (de�ned functions)eq : entry � entry ! bool[ ] : entry ! list@ : list � list ! listmap : (entry ! entry) � list! listfilter : (entry ! bool) � list! listremove : entry � list! liststatic �-preds 6� : bool � bool� : bool � bool> : bool � bool2 : entry � list=2 : entry � listsorted : listexists; forall : (entry ! bool)� listvars x; y : entry b : bool L; L0 : list f : entry ! entry g : entry ! boolHorn axioms not(true) � false eq(x; y) � true ( x � ynot(false) � true eq(x; y) � false ( x 6� y



8 2 The syntax of swinging types[x] � x :: nilnil@L � L(x :: L)@L0 � x :: (L@L0)map(f; nil) � nil(A) map(f; x :: L) � f(x) ::map(f; L)filter(g; nil) � nilfilter(g; x :: L) � x :: filter(g; L) ( g(x) � truefilter(g; x :: L) � filter(g; L) ( g(x) � false(B) remove(x; L) � filter(�y:not(eq(x; y)); L)true 6� falsefalse � true true > falseb � bx 2 x :: L x =2 nilx 2 y :: L ( x 2 L x =2 y :: L ( x 6� y ^ x =2 Lsorted(nil)sorted(x :: nil)sorted(x :: y :: L) ( x � y ^ sorted(y :: L)exists(g; x :: L) ( g(x) � trueexists(g; x :: L) ( exists(g; L)forall(g; nil)forall(g; x :: L) ( g(x) � true ^ forall(g; L)(C) apply(�y:not(eq(x; y)); y) � not(eq(x; y)) ❏A parameterized speci�cation SP such as LISTORD contains parameter speci�cations (here:ORDER) that consist of empty sorts, de�ned functions, predicates and arbitrary �rst-order axioms. Asort s of SP is empty if SP does not contain constructors of type w! s. Empty sorts correspond to the typevariables of polymorphic type expressions. Consequently, structured sort symbols such as list(entry) denotepolymorphic types. The equation list = list(entry) declares list as a short notation for list(entry). We useCASL notations for structuring speci�cations (cf. [19]): then denotes the extension operator that combinesa speci�cation SP with additional signature symbols and axioms, and builds the union of speci�cations andidenti�es synonymous (and equally-typed) symbols of the argument speci�cations.Given terms t; u and x 2 var(t), the �-abstraction �x:t is an implicit constructor and the expressiont(u) is a short notation for the term apply(t; u) where apply is a (usually implicit) de�ned function. Forinstance, Axiom A implicitly involves the de�ned function apply : ((entry ! bool) � entry) ! bool andAxiom B uses the constructor �y:not(eq( ; y)) : entry ! (entry ! bool). Functional sorts, �-constructors,apply-functions and axioms like C are usually not listed explicitly.Swinging signatures mainly distinguish between visible and hidden sorts, constructors and de�ned func-tions, �- and �-predicates and static and dynamic predicates. These sets of symbols cover structural aswell as behavioral equalities and the observers that determine the latter. The distinctions were motivatedintuitively in Section 1. Further more technical reasons can only be given after the signatures are equippedwith axioms (see Def. 2.4).De�nition 2.2 (signatures, terms, atoms) A signature � = (S; F; P ) consists of a set S of sortsand S+-sorted sets F of function symbols and P of predicates such that P splits into sets �P of �-predicates and �P of �-predicates. s; s0, etc. stand for single sorts, w for sort sequences. A functionsymbol f 2 F�;ws is written as f : w! s and a predicate r 2 P�;w as r : w.



2 The syntax of swinging types 9For all s 2 S, �P implicitly includes the (structural) equality (predicate) �s: ss.2 � is swinging ifthe following conditions hold true:� S splits into a set visS of visible sorts and a set hidS of hidden sorts.� F splits into a set of constructors and a set DF of de�ned functions.� For all s 2 hidS, DF includes a set of destructors f : sw ! s0.� For all s 2 hidS, �P includes a set of separators r : sw and a set of transition predicates � : sws0.� For all s 2 S, �P implicitly contains the behavioral equality (predicate) �s: ss.A function symbol f : w! s is visible if ws 2 visS+ . f is hidden if f is not visible. For all constructorsc : w ! s, s 2 visS implies w 2 visS� . A predicate r : w is logical if r is not an equality predicate. r isvisible if w 2 visS+ . r is hidden if r is not visible. Structural equalities are �-predicates. Destructors,separators and transition predicates are called observers.� Visible equality predicates, separators and �-predicates belong to the set statP of static predicates.� Transition and hidden equality predicates belong to the set dynP of dynamic predicates, which arealways �-predicates.Each predicate is static or dynamic. Only visible equality predicates are static and dynamic.Let X be a set of S-sorted variables. T�(X) and T� denote the S-sorted sets of �-terms and ground�-terms, respectively, which are de�ned as usual. Each �-term de�nes a new function symbol: if t 2 T�(X)s,var(t) = fx1; : : : ; xng and for all 1 � i � n, si is the sort of xi, then t : s1 : : : sn ! s. We write F �� for theset of all function symbols derived from T�(X).A �-normal form is a �-term that consists of constructors and variables. NF�(X) and NF� denotethe S-sorted sets of �-normal forms and ground �-normal forms, respectively. t 2 T�(X)s is visible resp.hidden if s is visible resp. hidden. t is unary if var(t) is a singleton.Given r : w 2 P and t 2 T�(X)w , r(t) is a �-atom. If r is a �-predicate, then r(t) is a �-atom.Otherwise r(t) is a �-atom. r(t) is an equation if r is an equality predicate. An equation between termtuples t and t0 stands for the conjunction of the equations between corresponding components of t resp.t0. An atom r(t) is logical, visible, hidden, static or dynamic if r is logical, visible, hidden, static ordynamic, respectively. ❏Equality and behavioral equalities will not be listed explicitly in signatures examples. Behavioral equal-ities are speci�ed via observers (see Def. 2.4). Each function symbol f : s ! s0 is also regarded as aconstructor constant of the functional sort s ! s0. Functional sorts are hidden. s ! s0 has the (implicit)observer apply : (s ! s0)� s ! s0. Non-constant functional-sort constructors such as function compositionare speci�ed in terms of apply: apply(f � g; x) � apply(f; apply(g; x))or, in more readable notation, (f � g)(x) � f(g(x)):Hence, semantically, the behavioral equality for a functional sort coincides with extensional equality.The purpose of ground normal forms is to represent data. Intuitively, visible normal forms are uniquedata representations, hidden ones are not because the identity of a hidden object is determined by some2We use \�" for distinguishing the symbol for structural equality from semantical identity, which is denoted by \=".



10 2 The syntax of swinging typesbehavioral equality. A hidden normal form is just a name of an object, although the structure of the nameoften represents the object's \history" or \vita".Let � = (S; F; P ) and �0 = (S0; F 0; P 0) be signatures and X be an S-sorted set of variables. A signaturemorphism � : �! �0 consists of a function �sorts : S ! S0 and S+-sorted sets of functions �functs = f�w :Fw ! (F 0)��(w)g and �preds = f�w : Pw ! (P 0)��(w)g such that for all f : w ! s 2 F , �(f) : �(w) ! �(s)and for all r : w 2 P , �(r) : �(w).Given a parameterized speci�cation SP with parameter PAR = (�; AX) and a signature morphism� : �! �0, let domain(�) =def fs 2 � j �(s) 6= sg = fs1; : : : ; sng. The speci�cation SP [�], usually writtenas SP [s1 7! s01; : : : ; sn 7! s0n];is called the actualization of SP along � and obtained from SP by replacing all (!) occurrences in SP ofs 2 domain(�) by �(s) and by deleting the axioms of PAR.An S-sorted function � : X ! T�(X) is called a substitution. The domain of �, dom(�), is the set ofall variables x with x� 6= x. �Y denotes the restriction of � that is de�ned by x�Y = x� for all x 2 Y andx�Y = x for all x 2 X n Y . If � maps each variable of dom(�) to a term in some given set T of terms, wewrite � : X ! T in order to indicate that � satis�es �(dom(X)) � T . The instance t� of a term or atom tby � is obtained from t by replacing each variable x by x�.De�nition 2.3 (�-formulas) A formula ' with a single free variable is unary. A �-goal is a �niteconjunction of �-atoms. Given a �nite subset Y ofX and goals G and H, the formula 9Y G is an existentialgoal and the formula 8Y (G) H) is a universal goal. A goal set is a �nite disjunction of existential goals.A dual goal set is a �nite conjunction of universal goals. The empty conjunction is called the empty goaland denoted by ; or TRUE . The empty disjunction is denoted by FALSE .Let G be a goal, r be a logical predicate and f be a de�ned function. A formula of the form r(t) ( Gresp. f(t) � u ( G is a Horn clause for r resp. f . Given a �nite disjunction ' of existential goals,r(t) ) (G ) ') is a co-Horn clause for r. Given a �nite conjunction ' of universal goals, r(t) ( ' is ageneralized Horn clause for r. The formulas '( TRUE and TRUE ) ' are identi�ed with '.Suppose that � is swinging. Let C be a class of �-structures. A formula ' is (�rst-order) modal in C if' is equivalent3 in C to a formula built up by the following rules:� A unary static atom is modal.� If ' and  are modal, then :' and ' ^ are modal.� If t is a unary term, ' is modal, y 2 free(') n var(t) and �(t; y) is a dynamic atom, then 9y(�(t; y)^')is modal.A formula ' is poly-modal if ' is equivalent to a formula built up by the following rules:� A static atom is poly-modal.� If ' and  are poly-modal, then :', ' ^  and for all x 2 X, 9x' are poly-modal.� If �(t; x) with x 2 X nvar(t) is a dynamic atom and ' is poly-modal, then 9x(�(t; x)^') is poly-modal.A formula ' is weakly modal with output out(') � X if ' is equivalent to a formula built up by thefollowing rules:3See Def. 3.1.



2 The syntax of swinging types 11� A poly-modal formula is weakly modal with output ;.� A dynamic atom �(t; x) with x 2 X n var(t) is weakly modal with output fxg.� If ' and  are weakly modal with disjoint outputs Y resp. Z, then '^ is weakly modal with outputY [ Z.� If ' is weakly modal with output Y , then for all x 2 X, 9x' is weakly modal with output Y n fxg. ❏Modal formulas arise from the translation of modal into predicate logic. Given a transition relation !and propositions p representing state sets, assertions of the form \the state x satis�es the modal-logic formula'" can be compiled into modal formulas in the sense of Def. 2.3 as follows:compile(x j= p) = rp(x) for all propositions pcompile(x j= ' ^  ) = compile(x j= ') ^ compile(x j=  )compile(x j= ' _  ) = compile(x j= ') _ compile(x j=  )compile(x j= h:i') = 9y(x ! y ^ compile(y j= '))compile(x j= [:]') = 8y(x ! y ) compile(y j= '))compile(x j= �p:('1 _ � � � _ 'n)) = rp(x) where rp is speci�ed by the axiomsrp(x)( compile(x j= '1); : : : ; rp(x)( compile(x j= 'n)compile(x j= �p:('1 ^ � � � ^ 'n)) = rp(x) where rp is speci�ed by the axiomsrp(x)) compile(x j= '1); : : : ; rp(x)) compile(x j= 'n)Other negation-free modal-logic formulas are equivalent to those compiled here (see Ex. 2.7).Modal formulas are poly-modal. Poly-modal formulas are weakly modal. The output of a weakly modalformula consists of free variables.Conjectures may be arbitrary �rst-order formulas. Axioms will be restricted to Horn and co-Horn clauses.This complies with usual syntax adopted by functional, relational and even state- or object-oriented pro-grams. Semantically, the restriction to Horn and co-Horn axioms is the main prerequisite for the existenceof standard models such as Herbrand, initial and �nal models and thus of \concrete" implementations.Standard models also enjoy a number of \meta-theorems", which equip program veri�ers with indispensable\background knowledge".A swinging signature � is implicitly associated with the set EQ� of congruence axioms for �, givenby the Horn resp. co-Horn clauses:x � xy � x ( x � yf(x1; : : : ; xn) � f(y1; : : : ; yn) ( x1 � y1 ^ � � � ^ xn � ynr(x1; : : : ; xn) ( x1 � y1 ^ � � � ^ xn � yn ^ r(y1; : : : ; yn)q(x1; : : : ; xn) ) ((x1 � y1 ^ � � � ^ xn � yn) ) q(y1; : : : ; yn))for all function symbols f , �-predicates r and �-predicates q of �.De�nition 2.4 A speci�cation SP = (�; AX) consists of a signature � and a set AX of �rst-order�-formulas, called the axioms of SP . SP is swinging if � is swinging and SP has three subspeci�cationsvisSP = (vis�; visAX) � hidSP = (hid�; hidAX) � �SP = (��; �AX) � SPsuch that hidAX and �AX implicitly include the Horn resp. co-Horn clauses among the congruence axiomsfor � and the following conditions hold true:



12 2 The syntax of swinging types(1) The visible level visSPconsists of visible sorts and visible constructors, a set DF of de�ned functions, a set P of static�-predicates, Horn axioms f(t) � u( ' for DF and r(t)( ' for P such that(a) r is logical, t is a tuple of normal forms and var(u) � var(t; ').(2) The hidden level hidSP n visSPconsists of hidden sorts and hidden constructors, a set DF of de�ned functions, a set P of static�-predicates, a set DP of dynamic predicates and Horn axioms f(t) � u( ' for DF , r(t)( 'for P and �(t; u)( ' for DP such that (a) holds true and(b) ' is weakly modal such that var(t) \ out(') = ;.(3) The �-level �SP n hidSPconsists of a set P of �-predicates (including the behavioral equalities) and co-Horn axiomsr(t)) (G) ') for P such that (a) holds true, G) ' is poly-modal and G is a goal over hidSP .The axioms for behavioral equalities are called behavior axioms and read as follows:x �s y ) x � y for all visible sorts s 2 �,x �s y ) f(x; z) �s0 f(y; z) for all destructors f : sw ! s0 2 �,x �s y ) (r(x; z) ) r(y; z)) andx �s y ) (r(y; z) ) r(x; z)) for all separators r : sw 2 �,x �s y ) (�(x; z; x0) ) 9y0(�(y; z; y0) ^ x0 �s0 y0)) andx �s y ) (�(y; z; y0) ) 9x0(�(x; z; x0) ^ x0 �s0 y0)) for all transition predicates � : sws0 2 �.(4) The �-level SP n �SPconsists of a set P of static �-predicates, a set DP of dynamic predicates and generalized Hornaxioms r(t)( ' for P and �(t; u)( ' for DP such that (a) and (b) hold true and for alluniversal goals 8Y (G) H) of ', G is a goal over �SP .If SP = visSP , then SP is visible. ❏Together with the condition of Def. 2.2 that all hidden constructors have hidden ranges the levels ofa swinging speci�cation entail a hierarchy of their Herbrand models (cf. Lemma 5.9). Excluding hiddenconstructors with visible ranges is also motivated intuitively by the viewpoint that objects with hiddencomponents cannot be visible. Hidden constructors with visible ranges represent certain \contexts" andthus are better modelled by observers that make contexts visible. Visible normal forms t of a functionalspeci�cation are uniquely decomposable: all ground normal forms that are equivalent to a ground instanceof t are themselves ground instances of t. Hidden normal forms enjoying the same property with respect tobehavioral equivalence are strongly normal (cf. Def. 6.1). For instance, the stream term x&s (cf. Ex. 2.8)is strongly normal. A hidden constructor c : w ! s with visible range s can be replaced by a constructorc0 : w ! s0 such that s0 is hidden and c(t) is uniquely decomposable w.r.t. structural s-equivalence i� c0(t)is uniquely decomposable w.r.t. behavioral s0-equivalence.Condition 2.4(a) reects the usual syntax of functional-logic programs. It also admits a simple proof thatSP is complete (cf. Def. 4.1). If \de�nedness predicates" Def : s are speci�ed by a Horn axiomDef (c(x1; : : : ; xn)) ( Def (x1) ^ � � � ^Def (xn)for each constructor c, then SP is complete i� for all de�ned functions f , Def (x)) Def (f(x)) is an inductivetheorem of SP (cf. Def. 4.6). Moreover, 2.4(a) is an essential part of most conuence and consistency criteria,



2 The syntax of swinging types 13such as [60], 10.46 und 10.48. 2.4(a) also ensures that basic deduction rules such as unfolding are sound (seeSection 4).The modality assumptions on the axioms of the hidden, �- and �-level of SP are essential for thebehavioral consistency of SP -models (cf. Def. 3.1). They restrict the occurrences of dynamic predicates inthe axioms, but this restriction is much weaker than previous similarlymotivated conditions such as the non-existence of hidden equations in Horn axiom premises (cf., e.g., [18], Cor. 4; [77], Thm. 5.4.5; [17], Ex. 3.24).Condition 2.4(b) also reveals the technical reason for the distinction between static and dynamic predicates.While static predicates can often be transformed easily into Boolean functions because all their argumentshave a sort of \input mode", a dynamic predicate has at least one argument (usually the last), which takesup output that is produced when an axiom for the predicate is \called". In fact, a static predicate r mayalso have output arguments, provided that these are not produced by a dynamic predicate � in the premiseof an axiom for r. For instance, an axiom of the form r(t; u(x))( �(v; x) satis�es 2.4(b) only if r is dynamic.Since the behavior axioms are completely determined by the observers, they are omitted in examples.The separation of the �-level from the �-level prevents a �-predicate and a �-predicate from being speci�edin a mutually-recursive way. Such alternating �xpoints were di�cult to handle and are actually not neededin practice, even for specifying modal operators (cf. Ex. 2.7). The hierarchy assumption in 2.4(3): G is agoal over hidSP , and the corresponding one in 2.4(4): G is a goal over �P , are essential for the monotonicityof the consequence operators that build up the Herbrand model (cf. Lemma 4.4).Example 2.5 The ubiquitious stack data type is presented as a visible swinging speci�cation.ENTRYsorts entrypreds 6� : entry � entryvars x; y : entryaxioms x 6� y () :(x � y)STACK = ENTRY thenvissorts stack entry0constructs def : entry ! entry0? :! entry0empty :! stackpush : entry � stack ! stackdefuncts pop : stack ! stacktop : stack ! entry0vars x : entry s : stackHorn axioms top(empty) � ?pop(empty) � emptytop(push(x; s)) � def (x)pop(push(x; s)) � sFor specifying a partial function f such as top the original range sort of f (here entry) is embedded intoa sum sort (here entry0) that includes \exceptions" (here ?) and thus totalizes f . In a later design step,entry0 may be re�ned to a hidden sort and structural entry0-equality may be implemented as a behavioralequality so that the single exeception ? can be splitted into several more informative error messages (see[64]). ❏



14 2 The syntax of swinging typesExample 2.6 The �rst speci�cation (FLAG1) of a type of ags stems from [29]. two examples illustratethe use of destructors versus separators. While FLAG1 is purely functional and speci�es behavioral equiva-lence in terms of destructors, FLAG2 adopts the relational view and thus uses a separator for determiningbehavioral equivalence.FLAG1 (cf. [29]) FLAG2hidsorts flag hidsorts flagconstructs new :! flag constructs new :! flagup; down; rev : flag ! flag up; down; rev : flag ! flagdestructs up? : flag ! bool separators up?; down? : flagvars b : bool x : flag vars x : flagHorn axioms up?(new) � true Horn axioms up?(new)up?(up(x)) � true up?(up(x))up?(down(x)) � false down?(down(x))up?(rev(x)) � not(up?(x)) up?(rev(x)) ( down?(x)down?(rev(x)) ( up?(x) ❏Example 2.7 It is well-known that all modal operators associated with classical modal logics such asCTL (cf. [27]) or the �-calculus (cf. [73]) are least or greatest �xpoints of state set functions. Co-Hornaxioms are su�cient for specifying greatest �xpoints, (generalized) Horn axioms are a suitable syntax forleast �xpoints. Hence (instances of) modal operators yield typical predicates of the �- or �-level of a swingingspeci�cation involving transition systems:STATEvissorts action1; : : : ; actionnhidsorts statestatic �-preds q; r : statetranspreds �!i : state � actioni � state 1 � i � n: : :Horn axioms : : :MODSPEC = STATE thendynamic preds �!i : state � state 1 � i � n�! : state � statestatic �-preds enabled : state the actual state has a direct successor in the graph of �!h:ir : state r holds true in some direct successorEF (r) : state r \exists �nally" (also written 3r)E(q U r) : state on some path (starting out from the actual state),q holds true until r is valid and r becomes valid eventually�-preds disabled : state the actual state has no direct successor[:]r : state r holds in all direct successor statesAG(r) : state r \always generally" (also written 2r)E1G(r) : state r \exists generally" on in�nite pathsEG(r) : state r \exists generally"E(q ; r) : state on some path, q leads to rE(q wU r) : state on some path, q holds until r becomes validA(q wU r) : state on all paths, q holds until r becomes valid



2 The syntax of swinging types 15some in�nite : state some path starting out from the actual state is in�nitestatic �-preds A1F (r) : state r \always �nally" on in�nite pathsAF (r) : state r \always �nally"A(q ; r) : state on all paths, q leads to rA(q U r) : state on all paths, q holds true until r is validand r becomes valid eventuallyall �nite : state all paths starting out from the actual state are �nitevars a : actioni s; s0 : state 1 � i � nHorn axioms s �!i s0 ( s a�!i s0s �! s0 ( s �!i s0enabled(s) ( s �! s0h:ir(s) ( s �! s0 ^ r(s0)EF (r)(s) ( r(s)EF (r)(s) ( s �! s0 ^ EF (r)(s0)EG(r)(s) ( disabled(s) ^ r(s)EG(r)(s) ( s �! s0 ^ r(s) ^ EG(r)(s0)E(q ; r)(s) ( q(s) ^ EF (r)(s)E(q ; r)(s) ( s �! s0 ^ E(q; r)(s0)E(q U r)(s) ( r(s)E(q U r)(s) ( q(s) ^ s �! s0 ^ E(q U r)(s0)some in�nite(s) ( EG(enabled)(s)co-Horn axioms disabled(s) ) (s �! s0 ) FALSE )[:]r(s) ) (s �! s0 ) r(s0))AG(r)(s) ) r(s)AG(r)(s) ) (s �! s0 ) AG(r)(s0))E1G(r)(s) ) r(s)E1G(r)(s) ) 9s0(s �! s0 ^E1G(r)(s0))* EG(r)(s) ) r(s)* EG(r)(s) ) (s �! s0 ) 9s0(s �! s0 ^EG(r)(s0))AF (r)(s) ) (disabled(s) ) r(s))AF (r)(s) ) (s �! s0 ) (r(s) _ AF (r)(s0)))A(q ; r)(s) ) (q(s) ) AF (r)(s))A(q ; r)(s) ) (s �! s0 ) A(q ; r)(s0))A(q wU r)(s) ) (q(s) _ r(s))A(q wU r)(s) ) (s �! s0 ) (r(s) _ (q(s) ^ A(q wU r)(s0))))E(q wU r)(s) ) (q(s) _ r(s))E(q wU r)(s) ) (enabled(s) ) (r(s) _ 9s0(s �! s0 ^ E(q wU r)(s0))))* some in�nite(s) ) 9s0(s �! s0 ^ some in�nite(s0))generalized Horn axiomsA1F (r)(s) ( r(s)A1F (r)(s) ( 8s0(s �! s0 ) A1F (r)(s0))* AF (r)(s) ( r(s)* AF (r)(s) ( s �! s0 ^ 8s0(s �! s0 ) AF (r)(s0))A(q U r)(s) ( r(s)A(q U r)(s) ( q(s) ^ enabled(s) ^ 8s0(s �! s0 ) A(q U r)(s0))* A(q U r)(s) ( A(q wU r)(s) ^ AF (r)(s)



16 2 The syntax of swinging types* E(q wU r)(s) ( E(q U r)(s)* E(q wU r)(s) ( EG(q)(s)all �nite(s) ( AF (disabled)(s)* all �nite(s) ( 8s0(s �! s0 ) all �nite(s0))Most of these formulas are derived form temporal propositions insofar as they quantify over �nite or in�niteruns (= paths in the graph of �!). E-formulas quantify existentially. A-formulas quantify universally.Formulas preceded by an asterisk (*) provide alternative axioms for the speci�ed predicates. ❏Example 2.8 Let NAT be a speci�cation of natural number arithmetic. For LISTORD see Ex. 2.1. Aswinging speci�cation of in�nite sequences of entry-elements reads as follows:INFSEQ = LISTORD and NAT thenhidsorts stream = stream(entry)constructs & : entry � stream! streamblink :! stream(nat)nats : nat! streamodds : stream! streamzip : stream � stream ! streammap : (entry ! entry) � stream! streamdestructs head : stream! entrytail : stream ! streamdefuncts # : list � stream ! streamevens : stream! streamfirstn : nat� stream! listnthtail : nat� stream! streamstatic �-preds exists : (entry ! bool) � stream�-preds forall : (entry ! bool)� streamfair : (entry ! bool)� streamvars n : nat x; y : entry L : list s; s0 : streamf : entry ! entry g : entry ! boolHorn axioms head(x&s) � x tail(x&s) � shead(blink) � 0 tail(blink) � 1&blinkhead(nats(n)) � n tail(nats(n)) � nats(n + 1)head(zip(s; s0)) � head(s) tail(zip(s; s0)) � zip(s0; tail(s))head(odds(s)) � head(s) tail(odds(s)) � odds(tail(tail(s))head(map(f; s)) � f(s) tail(map(f; s)) � map(f; tail(s))nil#s � s(x :: L)#s � x&(L#s)evens(s) � odds(tail(s))firstn(0; s) � nilfirstn(n + 1; s) � head(s) :: firstn(n; tail(s))nthtail(0; s) � snthtail(n + 1; s) � nthtail(n; tail(s))exists(g; s) ( g(head(s)) � trueexists(g; s) ( exists(g; tail(s))co-Horn axioms forall(g; s) ) g(head(s)) � true ^ forall(g; tail(s))



3 Structures and congruences 17fair(g; s) ) exists(g; s) ^ fair(g; tail(s))The following should hold in a standard model of INFSEQ. & appends an entry to a stream. blinkdenotes a stream whose elements alternate between zeros and ones. nats(n) generates the stream of allnumbers starting from n. odds(s) returns the stream of all elements of s that have odd-numbered positionsin s. zip merges two streams into a single stream by alternatively appending an element of one stream to anelement of the other stream. # concatenates a list and a stream into a stream. head, tail, firstn, nthtail,map, exists and forall have the same meaning as stream functions as they have as list functions. fair(g; s)holds true i� g holds true for in�nitely many elements of s. ❏3 Structures and congruencesDe�nition 3.1 (semantical notions) Let � = (S; F; P ) be a signature. A �-structure A consists of anS-sorted set, the carrier of A, also denoted by A, for all f : w ! s 2 F , a function fA : Aw ! As, and forall r : w 2 P , a relation rA � Aw. r : w 2 P is called the complement of r w.r.t. A if rA = Aw n rA. IfP is empty, A is called a �-algebra. A is a Herbrand structure if for all s 2 S, As = T�;s, and for allf : w! s 2 F and t 2 T�(X)w , fA(t) = f(t).Given �s: ss 2 P for all s 2 S, A is a structure with �-equality if for all s 2 S, �As = f(a; a) j a 2 Asg.A �-structure B is monotone w.r.t. A if� for all ground static �-atoms p, A j= p implies B j= p,� for all ground dynamic atoms �(t; u), A j= �(t; u) implies B j= �(t; v) for some v 2 T�;s with vA = uA,� for all ground �-atoms q, B j= q implies A j= q.A ���- resp. ���-homomorphism h : A! B is an S-sorted function such that for all f : w ! s 2 F ,hs � fA = fB � hw, for all r 2 �� resp. r 2 ��, h(rA) � rB, and for all r 2 �� resp. r 2 ��, rB � h(rA).h is a �-isomorphism if there is a ���- resp. ���-homomorphism g : B ! A such that g � h = idA andh � g = idB . A and B are �-isomorphic i� there is a �-isomorphism h : A! B.The interpretation of �-terms in a �-structure A depends on a (�rst-order) valuation of variables in A,i.e. an S-sorted function b : X ! A. Given a further valuation c : X ! A and Y � X, we write b =Y c ifb(x) = c(x) for all x 2 X n Y . Given x 2 X and a 2 A, b[a/x]: X ! A is de�ned by b[a=x](x) = a andb[a=x] =x b. a=x denotes b[a=x] for any b. b extends to a function b� : T�(X) ! A de�ned by b�(x) = b(x)for all x 2 X and b�(t) = fA(b�(t1); : : : ; b�(tn)) for all t = f(t1; : : : ; tn) 2 T�(X). Given a term t withvar(t) = fx1; : : : ; xng, we sometimes use the function tA : An ! A de�ned by tA(b(x1); : : : ; b(xn)) = b�(t).A is reachable if for all a 2 A there is t 2 T� with tA = a.4A valuation b : X ! A solves an atom r(t) in A if b�(t) 2 rA. This notion extends to �rst-order formulasas usual. If b solves ' in A, we write A j=b '. A satis�es or is a model of ' or ' is valid in A, writtenA j= ', if all valuations in A solve ' in A. A class C of �-structures satis�es ' i� all A 2 C satisfy '. Two�-formulas ' and  are equivalent in a class C of �-structures if C satis�es ' ,  . Two �-formulas areequivalent if they are equivalent in all �-structures.Let � be swinging. An S-sorted binary relation � � A �B is a �-bisimulation if4Each �-structure has a least reachable �-substructure (with respect to the inclusion of carriers).



18 3 Structures and congruences
:∃Figure 1. Compatibility versus zigzag compatibility of � with �!� for all f : w! s 2 F , 1 � i � n, a 2 Asi , b 2 Bsi and tj 2 T�;sj , 1 � j 6= i � n, a � b impliesfA(tA1 ; : : : ; a; : : : ; tAn ) � fB (tB1 ; : : : ; b; : : : ; tBn );� for all r : s1 : : : sn 2 statP , 1 � i � n, a 2 Asi , b 2 Bsi and tj 2 T�;sj , 1 � j 6= i � n, a � b implies(tA1 ; : : : ; a; : : : ; tAn ) 2 rA i� (tB1 ; : : : ; b; : : : ; tBn ) 2 rB;� for all � : s1 : : : sns 2 dynP , 1 � i � n, a 2 Asi , a0 2 As, b 2 Bsi , b0 2 Bs and tj 2 T�;sj , 1 � j 6= i � n,(tA1 ; : : : ; a; : : : ; tAn ; a0) 2 �A ^ a � b implies 9 b0 2 B : (tB1 ; : : : ; b; : : : ; tBn ; b0) 2 �B ^ a0 � b0;(tB1 ; : : : ; b; : : : ; tBn ; b0) 2 �B ^ a � b implies 9 a0 2 A : (tA1 ; : : : ; a; : : : ; tAn ; a0) 2 �A ^ a0 � b0:� is compatible with f : w ! s 2 F if for all a 2 Aw and b 2 Bw , a � b implies fA(a) � fB(b). � iscompatible with r : w 2 P if for all a 2 Aw and b 2 Bw, a � b implies a 2 rA i� b 2 rB . � is zigzagcompatible with � : ws 2 P if for all (a; a0) 2 �A, a � b implies (b; b0) 2 �B for some b0 2 Bs with a0 � b0and for all (b; b0) 2 �B , a � b implies (a; a0) 2 �A for some a0 2 As with a0 � b0.A �rst-order formula ' is bisimulation invariant in a class C of �-structures if for all A;B 2 C,bisimulations � � A �B, b : X ! A and c : X ! B, b � c implies A j=b ' i� B j=c '.An S-sorted equivalence relation � � A�A is a �-congruence on A if � is compatible with F [P . �is a weak �-congruence on A if � is compatible with F [ statP and zigzag compatible with dynP .Let � be a (behavioral) �-congruence on A. Then the quotient B = A=� of A by � is the �-structurethat interprets s 2 S as the quotient set As=� and f : w ! s 2 F as the function fB : Bw ! B de�nedby fB ([a]) = [fA(a)] where [a] denotes the equivalence class of a consisting of all b 2 A with a � b.5nat: A! B denotes the natural mapping that sends an element a to its equivalence class [a].If � is a congruence, then B interprets r : w 2 P as the set of [a] 2 Bw with a 2 rA. If � is a weakcongruence, this de�nition is restricted to static predicates, while for all dynamic predicates � : ws 2 P ,([a]; [b]) 2 �B ()def 9 b0 � b : (a; b0) 2 �A:Let SP = (�; AX) be a (swinging) speci�cation. A �-structure A is an SP -model if A satis�es AXand EQ�. A is behaviorally SP -consistent if �A is a weak �-congruence and A=�A is an SP -model.6Mod(SP) is the class of all SP -models. Mod�(SP) is the class of SP -models with �-equality. Modbe(SP)is the class of SP -models A such that �A is an equivalence relation that includes �A. Modbc(SP) is theclass of SP -models A such that �A is a weak �-congruence. Modbcr(SP) is the class of reachable elements5If a = (a1; : : : ; an), then [a] stands for ([a1]; : : : ; [an]).6In [22], a function that is compatible with �A is called behaviorally coherent.



3 Structures and congruences 19ofModbc(SP ). Mod��(SP) is the class of SP -models A that interpret all �-predicates as the least relationsand all �-predicates as the greatest relations satisfying AX.Given a signature morphism � : �! �0 and a �0-structure A, the �-reduct Aj� of A is the �-structurede�ned by (Aj�)s = A�(s) for all s 2 S and fAj� = �(f)A for all f 2 F [ P . The least reachable �-substructure of Aj� is denoted by A�. If � is an inclusion, i.e. � � �0, we write Aj� instead of Aj� and A�instead of A� and call Aj� the �-reduct of A. ❏�-congruences are weak �-congruences because the latter are reexive. The di�erence between congruenceand weak congruence becomes clear if one transforms a static predicate r : w and a dynamic predicate� : ws into function symbols �r : w ! bool and f� : w ! set(s), respectively, and interprets �r as thecharacteristic function �Ar : Aw ! f0; 1g, de�ned by �Ar (a) = 1, a 2 rA, and f� as the set-valued functionfA� : Aw ! }(As), de�ned by fA� (a) = fb 2 As j (a; b) 2 �Ag. In fact, an equivalence relation on A iscompatible with r i� it is compatible with �r, while compatibility with � is equivalent to compatibility withf� .Proposition 3.2 Let � : � ! �0 be a signature morphism, A be a �0-structure and ' be a �-formula.Aj� satis�es ' i� A satis�es �('). A� satis�es ' i� for all � : X ! T�, A satis�es �('� ). ❏Proposition 3.3 Let SP = (�; AX) be a swinging speci�cation, A 2 Mod��(SP ), � be a weak �-congruence on A and B =def A=� 2Mod(SP ). Then B 2Mod��(SP ) (cf. Def. 3.1).Proof. Let F be the set of function symbols of �, C be an SP -model whose F -reduct agrees with BjFand D be the �-structure whose F -reduct agrees with AjF and which interprets each predicate r : w 2 � asthe set fa 2 Aw j [a] 2 rCg. Since C is an SP -model, D is an SP -model. Since A 2 Mod��(SP ) and � iscompatible with �P and zigzag compatible with �P , we obtain for all r 2 �P ,[a] 2 rB ) 9a0 � a : a0 2 rA ) 9a0 � a : a0 2 rD ) 9a0 : [a] = [a0] 2 rC ;and for all r 2 �P , [a] 2 rC ) a 2 rD ) a 2 rA ) [a] 2 rB:Hence B 2Mod��(SP ). ❏Lemma 3.4(1) Let A be a reachable �-structure. An S-sorted equivalence relation � � A� A is a bisimulation i� �is a weak congruence.(2) Suppose that �A is the greatest relation on A satisfying the set AX� of behavior axioms for � (cf. Def.2.4(3)). Then each weak congruence on A satis�es AX� i� it is a subrelation of �A.Proof. (1) The \if"-part follows immediately. Suppose that � is a bisimulation. Let f : s1 : : : sn ! s bea function symbol, a = (a1; : : : ; an) 2 As1:::sn and b = (b1; : : : ; bn) 2 Bs1:::sn such that a � b. Then there is(t1; : : : ; tn) 2 T�;s1:::sn such that a = (tA1 ; : : : ; tAn ). HencefA(a) � fA(b1; tA2 ; : : : ; tAn ) � fA(b1; b2; tA3 ; : : : ; tAn ) � � � � � fA(b):The compatibility of � with statP and the zigzag compatibility of � with dynP can be shown analogously.(2) Let � be a weak congruence on A. � satis�es the behavior axioms for hidden sorts because theyare part of the de�nition of a weak congruence. If � is a subrelation of �A, then a � b implies a �A b. Ifa 2 As for some visible sort s, then a �A b because A satis�es the behavior axiom x � y ) x � y. Hence



20 3 Structures and congruences� satis�es AX�. Conversely, if � satis�es AX�, then � is a subrelation of �A because �A is the greatestrelation on A satisfying AX�. ❏Lemma 3.5 (monotonicity and homomorphism) For all sorts s 2 � let �: ss be a predicate of �.Let A and B be �-structures.(1) Suppose that � is a �-predicate, A is reachable, �A is reexive and B is a structure with �-equality.B is monotone w.r.t. A i� there is a (unique) ���-homomorphism h : A! B.(2) Suppose that � is a �-predicate, B is reachable, �B is reexive and A is a structure with �-equality.B is monotone w.r.t. A i� there is a (unique) ���-homomorphism h : B ! A.(3) Suppose that � is a �-predicate and A is a Herbrand structure. B is monotone w.r.t. A i� there is a(unique) ���-homomorphism h : A! B.Proof. (1) \)": Let B be monotone w.r.t. A. Since A is reachable, for all a 2 A there is t 2 T� withtA = a. We de�ne h by h(tA) = tB . h is well-de�ned: Let tA = uA. Since �A is reexive, we obtaintA �A uA, i.e. A j= t � u. Hence B j= t � u because B is monotone w.r.t. A and � is a �-predicate.Therefore, tB �B uB and thus h(tA) = tB = uB = h(uA) because B is a structure with �-equality. Letf : w! s 2 F and tA 2 Aw. Thenh(fA(tA)) = h(f(t)A) = f(t)B = fB(tB) = fB(h(tA)):Let r be a static �-predicate and tA 2 rA. Then A j= r(t) and thus B j= r(t) because B is monotonew.r.t. A. Hence h(tA) = tB 2 rB . We have shown h(rA) � rB. Let � : ws be a dynamic predicate and(tA; uA) 2 �A. Then A j= �(t; u) and thus B j= �(t; v) for some v 2 T�;s with vA = uA because B is monotonew.r.t. A. Hence h(tA; uA) = h(tA; vA) = (tB ; vB) 2 �B and thus h(�A) � �B . Let r be a �-predicate andtB 2 rB . Hence B j= r(t) and thus A j= r(t) because B is monotone w.r.t. A. We conclude tA 2 rA andthus tB = h(tA) 2 h(rA). Therefore, rB � h(rA).\(": Let h : A ! B be a ���-homomorphism and t 2 T�. By induction on the size of t one showsh(tA) = tB . Let r(t) be a ground �-atom such that A j= r(t). Then tA 2 rA and thus tB = h(tA) 2 h(rA) �rB . Therefore, B j= r(t). Let r(t) be a ground �-atom such that B j= r(t). Then tB 2 rB � h(rA). HencetB = h(tA) for some tA 2 rA. We conclude A j= r(t).(2) \)": Let B be monotone w.r.t. A. Since B is reachable, for all b 2 B there is t 2 T� with tB = b.We de�ne h by h(tB) = tA. h is well-de�ned: Let tB = uB. Since �B is reexive, we obtain tB �B uB, i.e.B j= t � u. Hence A j= t � u because B is monotone w.r.t. A and � is a �-predicate. Therefore, tA �A uAand thus h(tB) = tA = uA = h(uB) because A is a structure with �-equality. Let f : w ! s 2 F andtB 2 Bw. Then h(fB(tB)) = h(f(t)B ) = f(t)A = fA(tA) = fA(h(tB)):Let r be a �-predicate and tB 2 rB. Then B j= r(t) and thus A j= r(t) because B is monotone w.r.t.A. Hence h(tB) = tA 2 rA. We have shown h(rB) � rA. Let r be a static �-predicate and tA 2 rA.Hence A j= r(t) and thus B j= r(t) because B is monotone w.r.t. A. We conclude tB 2 rB and thustA = h(tB) 2 h(rB). Therefore, rA � h(rB). Let � : ws be a dynamic predicate and (tA; uA) 2 �A. HenceA j= �(t; u) and thus B j= �(t; v) for some v 2 T�;s with vA = uA because because B is monotone w.r.t. A.We conclude (tB; vB) 2 �B and thus (tA; uA) = (tA; vA) = h(tB ; vB) 2 h(�B). Therefore, �A � h(�B).\(": Let h : B ! A be a ���-homomorphism and t 2 T�. By induction on the size of t one showsh(tB) = tA. Let r(t) be a ground �-atom such that A j= r(t). Then tA 2 rA � h(rB). Hence tA = h(tB) for



3 Structures and congruences 21some tB 2 rB. We conclude B j= r(t). Let r(t) be a ground �-atom such that B j= r(t). Then tB 2 rB andthus tA = h(tB) 2 h(rB) � rA. Therefore, A j= r(t).(3) \)": Let B be monotone w.r.t. A. We de�ne h by h(tA) = tB . Let f : w ! s 2 F and tA 2 Aw.Then h(fA(t)) = h(f(t)) = f(t)B = fB (tB) = fB(h(t)):h(rA) � rB for all r 2 �P and rB � h(rA) for all r 2 �P follow as in the proof of (1).\(": As in the proof of (1). ❏The interpretation of � in an SP -model A need not be a weak congruence. It is easy to see that thequotient A=�A is well-de�ned if and only if �A is a weak congruence. Hence A is behaviorally SP -consistentonly if �A is a weak congruence. Due to the modality assumptions on the axioms of SP , the converse holdstrue as well: if �A is a weak congruence, then A is behaviorally consistent (Thm. 3.9(b)).Lemma 3.6 Let SP = (�; AX) be a swinging speci�cation and A 2Modbe(SP ). Then �A is compatiblewith all visible function symbols and all visible or behavioral-equality predicates of �. Moreover, �A is zigzagcompatible with all equality predicates of �.Proof. Let AX� be the set of behavior axioms for � (cf. 2.4(4)). Since �A satis�es AX� and �A is asubset of �A, �A and �A coincide on visible carriers.Since �A and �A coincide on visible carriers and �A is transitive, �A is compatible with all visiblefunction symbols and predicates of �.Since �A is transitive, �A is compatible with all behavioral equalities of �. Since �A is a subset of �A,�A is transitive and �A is reexive, �A is zigzag compatible with all equality predicates of �. ❏Proposition 3.7 Let �0 � �, A be a reachable �0-structure and B be a reachable �-structure such thatfor all ground �0-atoms p, A j= p i� B j= p. Then A �= B�0 . ❏Let A be an SP -model. Then �A is a �-congruence and thus A=�A is an SP -model with �-equality.If �A is a weak congruence, then A=�A is an SP -model (Thm. 3.9(b)). For obtaining this result we haverestricted the axioms of SP to clauses with modal premises resp. conclusions (cf. 2.4). The di�erence betweena congruence and a weak congruence only concerns dynamic predicates (see Figure 1).So far ADT approaches7 mostly stick to functions for specifying behavioral properties. Transition re-lations only occur in the dynamic-data-type approach [5, 21]. Other restrictions concern the axioms. Forinstance, dynamic atoms are not admitted as axiom premises because otherwise factorizing w.r.t. behavioralequivalence may violate the axioms' validity. Are such constraints really necessary?In Def. 3.1, we have given the interpretation of dynP in quotients by weak congruences. The question iswhich sets of formulas are closed under the modi�ed quotient construction. Modal logic's Hennessy-MilnerTheorem (see Section 1) provides the key idea: two states s and t are bisimilar i� for all modal-logic formulas'(x), '(s) , '(t). The following theorem provides corresponding results for our notions of modality (cf.Def. 2.3).Theorem 3.8 (invariance properties of modal formulas) Let � be a swinging signature and A bea �-structure.(1) Modal formulas are bisimulation invariant in all classes of �-structures.7ADT = abstract data types



22 3 Structures and congruences(2) Let � be a weak congruence on A, ' be a weakly modal formula with output Y and b; c : X ! A. Thenb � c and A j=b ' imply A j=c0 ' for some c0 with b � c0 =Y c.(3) Hennessy-Milner Theorem. Suppose that �A is a weak congruence. Then for all b; c : X ! A,b �A c i� for all poly-modal formulas ', A j=b ' i� A j=c '.Proof. (1) Let A and B be �-structures, � � A � B be a bisimulation, ' = '(x) be a modal formula,a 2 A and b 2 B such that a � b and w.l.o.g. A j=a=x '.Case 1. ' is a static atom, say ' = r(t1; : : : ; x; : : : ; tn). Then A j=a=x ' implies (tA1 ; : : : ; a; : : : ; tAn ) 2 rA.Since r is static and � is a bisimulation, a � b implies (tB1 ; : : : ; b; : : : ; tBn ) 2 rB , i.e. B j=b=x '.Case 2. ' = : for a modal formula  . Then A 6j=a=x  . By induction hypothesis, B 6j=b=x  . HenceB j=b=x '.Case 3. ' = ( (x) ^ #(x)) for modal formulas  =  (x) and # = #(x). Then A j=a=x  and A j=a=x #.By induction hypothesis, B j=b=x  , B j=b=x #. Hence B j=b=x '.Case 4. ' = 9y(�(t(x); y) ^  ) for a dynamic atom �(t(x); y) and a modal formula  =  (y) such thatx 6= y. Let t(x) = (t1; : : : ; ti(x); : : : ; tn). Since � is a bisimulation, a � b implies tAi (a) � tBi (b). Moreover,A j=a=x ' implies (tA1 ; : : : ; tAi (a); : : : ; tAn ); a0) 2 �A and A j=a0=y  for some a0 2 A. Since � is a bisimulation,tAi (a) � tBi (b) implies (tB1 ; : : : ; tBi (b); : : : ; tBn ); b0) 2 �B and thus B j=(b=x)[b0=y] �(t(x); y) for some b0 2 B witha0 � b0. Since  (y) is modal, the induction hypothesis implies B j=b0=y  . Hence B j=b=x '.(2) Let b; c : X ! A such that b � c and A j=b '.Case 1. ' is poly-modal.Case 1.1. ' is a static atom. Then B j=c ' follows from the compatibility of � with function symbolsand static predicates.Case 1.2. ' = : for a poly-modal formula  . Then A 6j=b  . By induction hypothesis implies A 6j=c  .Hence A j=c '.Case 1.3. ' = ( ^ #) for poly-modal formulas  and #. Then A j=b  and A j=b #. By inductionhypothesis, A j=c  , A j=c #. Hence A j=c '.Case 1.4. ' = 9x for a poly-modal formula  . Then A j=b [a=x] for some a 2 A. Since � is reexive,the induction hypothesis implies A j=c [a=x] . Hence A j=c '.Case 1.5. ' = 9x(�(t; x)^ ) for a dynamic atom �(t; x) and a poly-modal formula such that x 62 var(t).Since A j=b ', there is a 2 A such that (b�(t); a) 2 �A and A j=b [a=x] . Since � is zigzag compatible with�, b � c implies (c�(t); a0) 2 �A and thus A j=c [a0=x]�(t; x) for some a0 � a. By induction hypothesis,A j=c [a0=x] . Hence A j=c '.Case 2. ' = �(t; x) is a dynamic atom with x 2 X n var(t). Then (b�(t); b(x)) 2 �A. Since � is zigzagcompatible with �, b � c implies (c�(t); a) 2 �A for some a � b(x). De�ne c0 by c0(x) = a and c0 =x c. Sincex 62 var(t), A j=c0 '.Case 3. ' = ( ^ #) for weakly modal formulas  and # with disjoint outputs Y resp. Z. By inductionhypothesis, A j=d  , A j=d0 # for some d; d0 with b � d =Y c and b � d0 =Z c. Since Y and Z are disjoint,we may de�ne c0 by c0 =Y [Z c, c0(x) = d(x) for all x 2 Y and c0(x) = d0(x) for all x 2 Z. Since d =Y c,A j=d  implies A j=c0  . Since d0 =Z c, A j=d0 # implies A j=c0 #. Hence A j=c0 '. Moreover, b � c0.Case 4. ' = 9x for a weakly modal formula  with output Y . Then A j=b [a=x] for some a 2 A. By



3 Structures and congruences 23induction hypothesis, A j=d  for some d with b[a=x] � d =Y c. We de�ne c0 by c0(x) = c(x) and c0 =x d.Hence A j=c0[d(x)=x]  and thus A j=c0 '. Moreover, b � c0 =Y nfxg c.(3) Let ' be poly-modal and b; c : X ! A such that b �A c and A j=b '. Then (2) implies A j=c '.Suppose that, conversely, for all poly-modal formulas ', A j=b ' i� A j=c '. Then, in particular, b �A bimplies b �A c because A j=b x � x and x � x is poly-modal. ❏The converse of Thm. 3.8(1): bisimulation invariant formulas are modal, will be proved in Section 7 (Thm.7.9). So far it provides the only reason for our consideration of bisimulations between di�erent structures.The proof of Thm. 7.9 involves steps from a given structure to new ones. Hence the result can only beobtained with respect to a class of structures that is closed under all model constructions used in the proof.The following result deals only with structures that interpret � as a weak �-congruence and is provedsimilarly to Thm. 3.8(2):Theorem 3.9 (modal formulas and behaviorally consistent models) Let SP be a swinging speci-�cation and A be a �-structure such that �A is a weak �-congruence. Let ' be a weakly modal formula withoutput Y and B = A=�A.(a) For all c : X ! A, B j=nat�c ' i� A j=c0 ' for some c0 with c �A c0 =Y c.(b) A is behaviorally SP -consistent.Proof. (a) follows from:(1) B j=nat�c ' ) A j=c ' if ' is poly-modal and A j=c0 ' for some c0 with c �A c0 =Y c otherwise;(2) A j=c ' ) B j=nat�c ':We show (1) and (2) by induction on the structure of '.(1) Let B j=nat�c '. Case 1. ' is a poly-modal formula.Case 1.1. ' is a static atom. Then A j=c ' follows from the interpretation of functions symbols andstatic predicates in B.Cases 1.2 and 1.3. ' = : or ' = ( ^ #) for poly-modal formulas  and #. A j=c ' can be shownanalogously to Case 1.2 resp. 1.3 of the proof of Thm. 3.8(2).Case 1.4. ' = 9z for a poly-modal formula  . Then B j=nat�c[a=x]  for some a 2 A. By inductionhypothesis, A j=c[a=x]  . Hence A j=c '.Case 1.5. ' = 9x(�(t; x)^ ) for a dynamic atom �(t; x) and a poly-modal formula such that x 62 var(t).Then B j=nat�c[a=x] (�(t; x) ^  ) for some a 2 A. By the interpretation of dynamic predicates in B,(c�(t); a0) 2 �A and thus A j=c[a0=x] �(t; x) for some a0 �A a. Since B j=nat�c[a=x]  and  is poly-modal, theinduction hypothesis implies A j=c[a=x]  . Since �A is a weak congruence and a �A a0, Thm. 3.8(3) impliesA j=c[a0=x]  . Hence A j=c '.Case 2. ' = �(t; x) is a dynamic atom with x 2 X n var(t). By the interpretation of dynamic predicatesin B, B j=nat�c ' implies (c�(t); a) 2 �A for some a �A c(x). We obtain A j=c0 ' for c0 de�ned by c0(x) = aand c0 =x c. Hence c0 �A c.Case 3. ' = ( ^ #) for weakly modal formulas  and # with disjoint outputs Y resp. Z. A j=c0 ' forsome c0 with c �A c0 =Y [X c can be shown analogously to Case 3 of the proof of Thm. 3.8(2).Case 4. ' = 9x for a weakly modal formula with output Y . A j=c0 ' for some c0 with c �A c0 =Y nfxg c



24 4 Functionality, �xpoints, standard modelscan be shown analogously to Case 4 of the proof of Thm. 3.8(2).(2) Let A j=c '. Case 1. ' is a poly-modal formula.Case 1.1. ' is a static atom. Then B j=nat�c ' follows from the interpretation of functions symbols andstatic predicates in B.Cases 1.2 and 1.3. ' = : or ' = ( ^ #) for poly-modal formulas  and #. B j=nat�c ' can be shownanalogously to Case 1.2 resp. 1.3 of the proof of Thm. 3.8(2).Case 1.4. ' = 9x for a poly-modal formula  . Then A j=c[a=x]  for some a 2 A. By inductionhypothesis, B j=nat�c[a=x]  . Hence B j=nat�c '.Case 1.5. ' = 9x(�(t; x) ^  ) for a dynamic atom �(t; x) and a poly-modal formula  such that x 62var(t). Then A j=c[a=x] (�(t; x) ^  ) for some a 2 A. Since  is modal, the induction hypothesis impliesB j=nat�c[a=x]  , while B j=nat�c[a=x] �(t; x) follows from the interpretation of dynamic predicates in B.Hence B j=nat�c '.Case 2. ' = �(t; x) for a dynamic atom �(t; x) with x 2 X n var(t). By the interpretation of dynamicpredicates in B, A j=c ' implies B j=nat�c '.Case 3. ' = ( ^ #) for weakly modal formulas  and # with disjoint outputs Y resp. Z. B j=nat�c 'can be shown analogously to Case 3 of the proof of Thm. 3.8(2).Case 4. ' = 9x for a weakly modal formula  with output Y . By induction hypothesis, B j=nat�c[a=x]  .Hence B j=nat�c '.(b) Let ' be an axiom of SP and A j= '. We show B j= '.Case 1. ' is a (generalized) Horn axiom, say ' = (p(  ). Let c : X ! A such that B j=nat�c H. Then' belongs to hidSP or the �-level of SP and thus, by Def. 2.4(b),  is weakly modal. Hence (1) impliesA j=c0 H for some c0 �A c. Since A satis�es ', we obtain A j=c0 p and thus B j=nat�c0 p by the interpretationof predicates in B. Hence c0 �A c implies B j=nat�c p. Therefore, B j=nat�c ', and we conclude B j= '.Case 2. ' is a co-Horn axiom, say ' = (p )  ). Let c : X ! A such that B j=nat�c p. Since p is astatic atom, A j=c p and thus A j=c  because A satis�es '. Since  is poly-modal, (2) implies B j=nat�c  .Therefore, B j=nat�c '. Again we conclude B j= '. ❏Lemma 3.10 Let SP be a visible speci�cation and A 2 Modbe(SP ). Then A is behaviorally SP -consistent.Proof. Since �A includes �A and A satis�es the �rst behavior axiom for �, �A coincides with �A. Hence�A is a congruence and thus a weak congruence. By Thm. 3.9(b), A is behaviorally SP -consistent. ❏4 Functionality, �xpoints, standard modelsDe�nition 4.1 (structural SP -equivalence, functionality) Let SP be a swinging speci�cation andhidSP = (�; AX) (cf. Def. 2.4). The cut calculus for SP consists of the following inference rules forderiving Horn clauses.8axiom rule TRUE' + where ' 2 AX [EQ�8Arrows attached to a rule indicate the direction of consequence, here with respect to all �-structures.



4 Functionality, �xpoints, standard models 25instantiation ''� + where � : X ! T�(X)modus ponens p( '; 'p +^-introduction ';  ' ^  +Given a formula ', we write SP `cut ' if ' is derivable with the cut calculus for SP . (Structural)SP -equivalence is the binary relation on T� that is de�ned as follows:t �SP t0 ()def SP `cut t � t0:Given t 2 T� and u 2 NF�, u is a normal form of t if t and u are SP -equivalent. SP is complete if eachground �-term has a normal form. SP is (structurally) consistent if each two SP -equivalent groundnormal forms are equal. SP is relational if it does not contain de�ned functions. SP is functional if it iscomplete and consistent. In this case nf(t) denotes the unique normal form of a ground term (tuple) t. ❏Relational speci�cations are functional.9Both completeness and consistency are essential for ensuring the soundness of proof rules dealing withconstructors and de�ned functions. Consistency calls for syntactic criteria some of which are already involvedin the de�nition of a swinging speci�cation. For su�cient ones, see [60, 63]. Completeness is a much simplerproof obligation: SP is complete i� for all de�ned functions f : w ! s and t 2 NF�;w, f(t) �SP u for someu 2 NF�. This is either shown \by hand" and induction on t or by constructing a (semi-)automatic proofof the formula Def (x)) Def (f(x)) (see Section 2).A term model of hidSP (cf. 2.4) could be de�ned directly in terms of the cut calculus. Since thisdoes not work for the �- and �-levels of SP , we prefer an equivalent de�nition that uses consequenceoperators on substructures. Roughly said, a consequence operator � stepwise adds valid atoms to modelsof a subspeci�cation. If � is monotone, a model of the entire speci�cation is obtained from a �xpoint of�. The existence of a suitable �xpoint is ensured by the �xpoint theorem of Knaster and Tarski. Morever,if � is continuous, then Kleene's �xpoint theorem provides a stepwise construction of the �xpoint. Let usrecapitulate set-theoretical versions of these �xpoint theorems.De�nition and Theorem 4.2 (continuity, �xpoints) (cf., e.g., [49]) Let U be a sorted set and� : }(U ) ! }(U ) be a monotone function with respect to sorted set inclusion. B � U is a �xpoint of �if �(B) = B. �1 =def [i2N�i(;) and �1 =def \i2N�i(U ) are the Kleene closures of �. � is upwardcontinuous if for all increasing chains B0 � B1 � B2 � : : : of subsets of U , �([i2NBi) is a subset of[i2N�(Bi). � is downward continuous if for all decreasing chains B0 � B1 � B2 � : : : of subsets of U ,\i2N�(Bi) is a subset of �(\i2NBi).Knaster-Tarski Theorem. lfp(�) =def \fB � U j �(B) � Bg is the least �xpoint of � and a supersetof �1. gfp(�) =def [fB � U j B � �(B)g is the greatest �xpoint of � and a subset of �1.Kleene's Theorem. If � is upward continuous, then �(�1) � �1 and thus �1 = lfp(�). If � isdownward continuous, then �1 � �(�1) and thus �1 = gfp(�). ❏De�nition 4.3 (consequence operator) Let SP = (�; AX) be a speci�cation, SP 0 = (�0; AX0) be asubspeci�cation of SP , A be a �0-structure and C be the class of �-structures whose �0-reduct agrees withA. The (AX n AX 0)-consequence operator on A, � : C ! C, is de�ned as follows. For all �-predicates9No joke!



26 4 Functionality, �xpoints, standard modelsr 2 � n�0 and B 2 C,a 2 r�(B) ()def 9 (r(t)( ') 2 AX nAX 0 9 b : X ! A : a = b�(t) ^B j=b ':For all �-predicates r 2 � n�0 and B 2 C,a 2 r�(B) ()def 8 (r(t)) ') 2 AX nAX 0 8 b : X ! A : a = b�(t)) B j=b ': ❏In terms of Thm. 4.2, B 2 C is regarded as a (�n�0)-sorted subset of the structure U 2 C that interpretsr : w 2 � n �0 as an all-relation, i.e. rU =def Aw. On the other hand, ; 2 C interprets r : w 2 � n�0 as anempty relation, i.e. r; =def ;. � : C ! C is monotone i� for all B;C 2 C and r 2 � n �0, rB � rC impliesr�(B) � r�(C).Lemma 4.4 Let SP = (�; AX) be a swinging speci�cation and � = (S; F; P ).(1) hidAX-consequence operators on (S; F; ;)-algebras are monotone and upward continuous.(2) (�AX n hidAX)-consequence operators on hid�-structures are monotone.(3) (AX n �AX)-consequence operators on ��-structures are monotone.Proof. (1) holds true because hidAX consists of Horn clauses and thus for all p ( ' 2 hidAX, ' doesnot contain neither negation symbols nor implication symbols nor universal quanti�ers.(2) �AX n hidAX consists of co-Horn clauses such that, by Def. 2.4(3) and (4), for all p ) (G ) ') 2�AX nhidAX, G is a hid�-goal. Hence G) ' is equivalent to a �rst-order formula  such that all negationsymbols of  directly precede hid�-atoms and  does not contain FALSE . Let A be a hid�-structure and Cbe the class of ��-structures whose hid�-reduct agrees with A. Since for all B 2 C and predicates r 2 hid�,rB = rA, we may assume that hid� also includes the complement r of r (cf. Def. 3.1). Hence for all B 2 Cand b : X ! B, B j=b G) ' () B j=b  () B j=b  [r(t)=:r(t) j r 2 hid�];i.e. G ) ' is equivalent in C to a negation- and implication-free formula. Therefore, the (�AX n hidAX)-consequence operator on A is monotone.(3) AX n �AX consists of generalized Horn clauses such that, by Def. 2.4(5), for all p( ' 2 AX n �AXand all universal goals 8Y (G ) h) of ', G is a ��-goal. Hence ' is equivalent to a �rst-order formula where all negation symbols directly precede �-atoms. Let A be a ��-structure and C be the class of�-structures whose ��-reduct agrees with A. Since for all B 2 C and predicates r 2 ��, rB = rA, we mayassume that �� also includes the complement r of r. Hence for all B 2 C and b : X ! B,B j=b ' () B j=b  () B j=b  [r(t)=:r(t) j r 2 ��];i.e. ' is equivalent in C to a negation- and implication-free formula. Therefore, the (AX n�AX)-consequenceoperator on A is monotone. ❏De�nition 4.5 (initial and �nal structures) Let � be a swinging signature and C be a class of �-structures, I 2 C is initial in C if for all A 2 C there is a unique ���-homomorphism h : I ! A. T 2 C is�nal in C if for all A 2 C there is a unique ���-homomorphism h : A! T (cf. Def. 3.1). ❏Each two initial (resp. �nal) �-structures are �-isomorphic.De�nition 4.6 (standard models, behavioral equivalence) Let SP = (�; AX) be a swingingspeci�cation with empty parameter. The Herbrand SP -model, Her(SP ), is the Herbrand �-structurethat is de�ned as follows (cf. Def. 4.3):



4 Functionality, �xpoints, standard models 27� For all predicates r 2 hid�, rHer(SP ) = rlfp(�) where � is the hidAX-consequence operator on T�.� For all r 2 �� n hid�, rHer(SP ) = rgfp(	) where 	 is the (�AX n hidAX)-consequence operator onHer(SP )jhid�.� For all r 2 �n��, rHer(SP ) = rlfp(�) where � is the (AXn�AX)-consequence operator on Her(SP )j��.The interpretation of � in Her(SP ) is called behavioral SP -equivalence and denoted by �SP . SPis behaviorally consistent if �SP is a weak �-congruence. SP is continuous if the above consequenceoperators 	 and � are downward resp. upward continuous. A �rst-order formula satis�ed by Her(SP ) iscalled an inductive theorem of SP .The initial SP -model, Ini(SP ), is the quotient of Her(SP ) by �SP . Provided that SP is behaviorallyconsistent, the �nal SP -model, Fin(SP ), is the quotient of Her(SP ) by �SP .
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Figure 2. Standard models of a swinging speci�cationGiven a parameterized speci�cation SP with parameter PAR = (�; AX) (cf. Section 2), an actualizationSP [�] of SP along � is correct w.r.t. a speci�cation SP 0 � SP [�] if Her(SP 0) satis�es �(AX). TheHerbrand SP -model is the class of Herbrand models of actualizations of SP . An inductive theoremof SP is an inductive theorem of all actualizations of SP . SP is functional, behaviorally consistent orcontinuous if all actualizations of SP are functional, behaviorally consistent or continuous, respectively. ❏Figure 2 illustrates the stepwise construction of the standard models Her(SP ), Ini(SP ) and Fin(SP ).Image �niteness and coinductivity, besides functionality the main criteria for the existence of Fin(SP ), arede�ned and discussed in Sections 5 and 6, respectively.The notion \inductive theorem" stems from the fact that the valuations of variables in a Herbrand modelare ground term substitutions and thus a �rst-order �-formula ' can be proved by structural induction onthe instances of ' by ground terms, i.e.Her(SP ) j= ' () 8� : X ! T� : Her(SP ) j= '�:The de�nition of an inductive theorem ' of a swinging speci�cation SP with parameter PAR entails thatthe axioms of PAR are the only assumptions about the parameter a proof of ' may refer to.



28 4 Functionality, �xpoints, standard modelsIf SP is functional, then the set NF� of ground normal forms extends to a �-structure: for all f : w! s 2� and t 2 NF�;w, fNF�(t) =def nf (f(t)) (cf. 4.1), and for all r : w 2 �, rNF� =def ft 2 NF� j t 2 rHer(SP )g.The normal form function nf induces a �-isomorphism from the initial SP -model to NF� that maps the�SP -equivalence class of t 2 T� to the normal form of t. Hence NF� is an SP -model. This is the modelconstruction one has in mind when talking about initial semantics. Consequently, if SP is not functionaland thus NF� is not an SP -model, SP has no \proper" initial semantics.First of all, functionality and, in particular, consistency (cf. 4.1) depend on the constructors of SP ,whereas behavioral consistency is a property of behavioral equivalence, which is speci�ed by the behavioraxioms that, in turn, are determined by the observers of SP (cf. 2.4). This reveals a duality betweenconstructors and observers. On the one hand, SP may lack observers. Then all hidden terms are behaviorallyequivalent, and visible terms are behaviorally equivalent i� they are structurally equivalent. On the otherhand, in contrast to coalgebraic speci�cations of hidden types (cf. [62]), SP should not lack constructors.Constructors are the \building blocks" of both visible and hidden data. If SP has no constructors, SP canbe functional only if the Herbrand, initial and �nal SP -models are empty.If all predicates of SP are equalities and thus all observers are functions (destructors), then behavioralSP -equivalence is contextual equivalence, i.e. for all t; t0 2 T�,t �SP t0 () 8 visible terms c(x) : Her(SP ) j= c(t) � c(t0): (6)The construction of Her(SP ) reects the hierarchical syntax of SP , such as stable models mirror thehierarchical syntax of strati�ed logic programs (cf. [2]):Lemma 4.7 (stepwise constructions of the Herbrand model) Let SP = (�; AX) be a swingingspeci�cation and �, 	 and � be the consequence operators of Def. 4.6. Then Her(SP )jhid� = [i2N�i(;)and for all ground hid�-atoms p,Her(SP ) j= p () 9i 2 N : �i(;) j= p; (1)Her(SP ) j= p () SP `cut p; (2)in particular, for all equality predicates � of SP , �Her(SP )=�SP (cf. 4.1). If 	 is downward continuous,then Her(SP )j�� = \i2N	i(T�) and for all ground �-atoms p,Her(SP ) j= p () 8i 2 N : 	i(T�) j= p: (3)If � is upward continuous, then Her(SP ) = [i2N�i(;) and for all ground �-atoms p,Her(SP ) j= p () 9i 2 N : �i(;) j= p: (4)Proof. (1), (3) and (4) follow from Lemma 4.4 and Kleene's �xpoint theorem (cf. Thm. 4.2). Let Cbe the class of Herband hid�-structures. The cut calculus is correct w.r.t. Mod(hidSP ). Hence for allA 2 C \Mod(hidSP ) and ground hid�-atoms p,SP `cut p implies A j= p: (5)Let B be Herband hid�-structure with rB = ft 2 T�;w j SP `cut r(t)g for all �-predicates r : w 2 �. Bsatis�es AX1 [EQhid�. Hence by (5), B is the least element of C \Mod(hidSP ) and thus the least �xpointof �. Therefore, B = Her(SP )jhid�, and we conclude (2). ❏



4 Functionality, �xpoints, standard models 29For instance, 	i(T�) interprets the predicate �g:fair(g; s) : stream (cf. Ex. 2.8) as the set of all groundINFSEQ-terms representing streams with at least i elements satisfying g.Herbrand and initial models always exist. Final models, however, presuppose behavioral consistency (cf.Thm. 5.1).Theorem 4.8 Let SP = (�; AX) be a swinging speci�cation (cf. Defs. 3.1 and 4.6).(1) Her(SP ) 2Modbe(SP ) \Mod��(SP ).(2) For all �rst-order formulas ' and � : X ! T�,Her(SP ) j=� ' () Ini(SP ) j=nat�� ':(3) Ini(SP ) 2Mod�(SP ) \Mod��(SP ).(4) Her(SP ) is initial in Mod(SP ).(5) Ini(SP ) is initial in Mod�(SP ).Proof. (1) Let AX� be the set of behavior axioms for � (cf. 2.4(3)). Since both �SP and the equivalenceclosure of any relation satisfying AX� satis�es AX� and since �SP is the greatest solution of AX�, both�SP and the equivalence closure of �SP are subsets of �SP . Hence �SP is an equivalence relation including�SP and thus Her(SP ) 2 Modbe(SP ). Her(SP ) 2 Mod��(SP ) follows directly from the interpretation ofpredicates in Her(SP ).(2) holds true because �SP is a �-congruence. (3) follows from (2) and Prop. 3.3.Let A 2 Mod�(SP ) and Her 0 be the Herbrand �-structure with rHer 0 = ft 2 T+� j tA 2 rAg for allpredicates r 2 �. Then for all ground �-atoms, Her 0 j= p i� A j= p. Hence Her 0 satis�es AX because Asatis�es AX. Since Her(SP ) 2Mod��(SP ), we obtain for all ground �-atoms r(t),Ini(SP ) j= r(t) (2)) Her(SP ) j= r(t) ) t 2 rHer ) t 2 rHer 0 , tA 2 rA ) A j= r(t); (6)and for all ground �-atoms q(u),A j= q(u) ) uA 2 qA , u 2 qHer 0 ) u 2 qHer ) Her(SP ) j= q(u) (2)) Ini(SP ) j= q(u): (7)(4) follows from (6), (7) and Lemma 3.5(3) because � is a �-predicate and Her(SP ) is a Herbrandstructure. (5) follows from (6), (7) and Lemma 3.5(1) because Ini(SP ) is reachable, � is a �-predicate, �Iniis reexive and A is a structure with �-equality. ❏The choice of Ini(SP ) as the standard model of SP has been motivated thoroughly in the literature (cf.,e.g., [51, 24, 56]). Initial models reduce the reasoning about data types to inductive theorem proving. Initialsemantics neatly complies with functional sorts, polymorphism and parameter speci�cations (cf. Section 1).If a functional sort s! s0 and the associated application operator apply : (s! s0) � s! s0 are declared ashidden and a destructor, respectively, the (s! s0)-component of behavioral SP -equivalence agrees with theextensional equivalence of terms denoting functions:f �SP;s!s0 g () 8t 2 T�;s : apply(f; t) �SP;s apply(g; t):The fact that Her(SP ) interprets �- and �-predicates as least resp. greatest relations on T� that satisfyAX is crucial for the soundness of the following proof rules. Let AXr be the set of axioms for a logicalpredicate r.



30 4 Functionality, �xpoints, standard models�xpoint induction on r r(x))  9q : q(x))  ^ V'2AXr '[q=r] m if r 2 �Pcoinduction on r  ) r(x)9q :  ) q(x) ^ V'2AXr '[q=r] m if r 2 �PThe case r =� provides a rule for proving behavioral equivalences:coinduction on �  ) t � u9q :  ) q(t; u) ^ V'2AX� '[q=�] mNote that AX� is the set of behavior axioms of SP (cf. Def. 2.4(3)).Fixpoint induction is due to Park (cf. [65]). Both rules can be generalized easily from a single predicate rto several predicates r1; : : : ; rn such that it admits proving n conjectures  1 ( r1(x); : : : ;  n ( rn(x) resp. 1 ) r1(x); : : : ;  n) rn(x) simultaneously.Fixpoint induction deals with conjectures  ( r(x) stating that  holds true for data related to eachother by r. r is often the graph of a de�ned function (see below). Coinduction deals with inverse conjectures ) r(x) stating that r holds true for a set of data speci�ed by  . In both cases, the conjecture mustbe given as an implication  ( '. Fixpoint induction is applicable if the premise ' can be speci�ed as a�-predicate. Coinduction is applicable if the conclusion  can be speci�ed as a �-predicate. Applying therule eliminates this predicate from the conjecture so that the rules in some way reduce a proof obligation.Fixpoint induction and coinduction are equivalence transformations. The downward implication + holdstrue because Her(SP ) satis�es AX and thus we may de�ne q as r. The upward implication * is validbecause all solutions of AXr in r are supersets resp. subsets of the least resp. greatest solution of AXr thatprovides the interpretation of r in the Herbrand model. In other words, if Her(SP ) satis�es '[q=r] for all' 2 AXr , then q(x)( r(x) resp. q(x)) r(x) are also satis�ed. Hence the antecedent of �xpoint inductionresp. coinduction follows from the succedent  ( q(x) resp.  ) q(x).q is an existentially quanti�ed predicate variable whose value ranges between  and r. Choosing qas a proper subset (in the case of induction) resp. superset (in the case of coinduction) of  means togeneralize resp. co-generalize  . This complies with the intuition that a smaller relation expresses astronger condition.If all predicates of SP are static, then the restriction of conduction on � to unconditional behavioralequivalences essentially agrees with the proof technique of hidden coinduction introduced in [22, 33].In this case the behavior axioms of SP are congruence axioms except for the �rst one that expresses thecoincidence of � and � an visible terms. Moreover, the succedent of conduction on � reduces to:9q : q(t; u) ^ ^'2AX� '[q=�]:This is also the proof obligation of hidden coinduction: choose a binary relation q that contains the pair(t; u) and satis�es the behavior axioms of SP with � replaced by q. If all predicates of SP are static, eachof these axioms describes either a congruence property of q or the condition that for all visible terms t; t0,q(t; t0) holds true only if t and t0 are structurally equivalent (cf. Def. 2.4(3)).While the above rules are correct w.r.t. Her(SP ) because the Herbrand model interprets predicates asleast/greatest relations satisfying their axioms, the following rules are sound because Her(SP ) is a �xpointof the consequence operators constructed from SP . Unfolding an atom r(t) means to apply all axioms forr to r(t) and thus to split the conjecture surrounding r(t) into as many subgoals as there are axioms for r.



4 Functionality, �xpoints, standard models 31Since Her(SP ) is a �xpoint of the consequence operators �, 	 and � (cf. Def. 4.6), complete unfolding rulesare equivalence transformations:�-atom unfolding r(t)Wni=1 9Zi : (t � ti ^'i) m if r 2 �P ,fr(t1)( '1; : : : ; r(tn)( 'ng = AXr and Zi = var(r(ti)( 'i)�-atom unfolding r(t)Vni=1 8Zi : (t � ti ) 'i) m if r 2 �P ,fr(t1)) '1; : : : ; r(tn)) 'ng = AXr and Zi = var(r(ti)) 'i)Theorem provers usually combine unfolding with term splitting and clash (see below), applied to theequations t � ti. For all 1 � i � n such that term splitting and clash lead to FALSE , the summandt � ti ^ 'i) resp. factor t � ti ) 'i) can be omitted when the unfolding rule's succedent is constructedwithout violating the rule's correctness.In contrast to �xpoint induction and coinduction the application of an unfolding rule to an atom r(t)need not remove r from the rule's antecedent. Whenever some axioms for r are recursive, i.e. contain r inthe premise resp. conclusion, these occurrences will appear in the rule's succedent.Given a predicate r of SP , the �xpoint properties of Her(SP ) often lead to (co-)Horn axioms for thecomplement r of r w.r.t. Her(SP ) if one simply negates the premises resp. conclusions of the axioms forr. For instance, if AXr = fr(t1) ( '1; : : : ; r(tn) ( 'ng, then the �xpoint property implies that Her(SP )satis�es r(x) , n_i=1 9Zi : (x � ti ^ 'i) and thus :r(x) , n̂i=18Zi : (x 6� ti _:'i):If this conjunction is equivalent to a goal set Wni=1 9Xi i consisting of atoms and negative literals :q(t) suchthat q = r or SP contains the complement q of q, then the Horn clausesr(x)(  1[q(t)=:q(t)]; : : : ; r(x)(  n[q(t)=:q(t)]axiomatize r as the complement of r|provided that the extended speci�cation terminates ([60], Thm. 10.39;[63], Satz 6.1.9).If r is a predicate of the visible or hidden level of SP , then r can be speci�ed as a �-predicate, either interms of r: r(x) ) (r(x) ) FALSE );or by grouping the axioms for r as follows:r(t1); : : : ; r(tk); r(u1)( ('1 ^ q(v1)); : : : ; r(un)( ('1 ^ q(vn));and \dualizing" them:r(t1)) FALSE ; : : : ; r(tk)) FALSE ; r(u1)) ('1 ) q(v1)); : : : ; r(un)) ('n ) q(vn))([63], Satz 8.3.4). The negation of a �-predicate r speci�ed by arbitrary co-Horn axioms such as:r(t) ) (G ) (9X1(G1 ^ r1(t1)) _ � � � _ 9Xn(Gn ^ rn(tn))));



32 4 Functionality, �xpoints, standard modelsleads to generalized Horn axioms for r:r(t) ( (G ^ 8X1(G1 ) r1(t1)) ^ � � � ^ 8Xn(Gn ) rn(tn))):Axioms for complements is all one needs for refuting conjectures in the Herbrand model. The maininference rule used in a refutation proof is the unfolding of complement atoms r(t).Given a functional speci�cation SP , ground goals over hidSP can be proved in a rewriting-oriented way,by applying Horn axioms as logic programs and reducing goals to TRUE . Moreover, instead of applyingcongruence axioms goal reductions rewrite terms analogously to the way they resolve logical atoms.A fresh variable of a Horn clause ' = (r(t)( H) (resp. ' = (t � u( H)) is a variable that occurs inu or H, but not in t. fresh(') denotes the set of fresh variables of '. Note that Condition 2.4(a) impliesfresh(') � H if ' is a Horn axiom of a swinging speci�cation.De�nition 4.9 Let SP be a swinging speci�cation and hidSP = (�; AX). The reduction calculusfor SP consists of the following rules for reducing goals. Let G be a �-goal and � : X ! T�(X).rewriting G(t�)G(u�) ^H� * if ' = (t � u( H) 2 AX and fresh(')� � NF�(X)resolution r(t�) ^GH� ^G * if r 6= �, ' = (r(t)( H) 2 AX and fresh(')� � NF�(X)reection t � t ^GG *A sequence G1; : : : ; Gn of goals such that for all 1 � i < n, Gi+1 is obtained from Gi by applying one of theabove rules, is called an SP -reduction of G1 into Gn and we write G1 `SP Gn. ❏De�nition and Theorem 4.10 (Church-Rosser Theorem) [60] Let SP be a swinging speci�cationand hidSP = (�; AX). For all ground �-goals G, G `SP ; implies SP `cut G. A complete speci�cation SPis functional i� SP is conuent, i.e. for all ground goals G,SP `cut G implies G `SP ;: ❏ (1)Theorem 4.10 also implies that a functional speci�cation can be transformed into an equivalent relationalone by turning each de�ned function into its graph or input-output relation:De�nition 4.11 (at formula) Let � be a swinging signature and �0 be � without de�ned functions.A �rst-order �-formula ' is at if all logical atoms of ' are �0-atoms and for all equations t � u of ', u is anormal form and either t is a normal form or there are a de�ned function f and a normal form t0 such thatt = f(t0). The following function mkat transforms a �rst-order formula ' into an equivalent at formulaflat(') = mkat('; ;):� mkat (p; V ) =def p for all at atoms p,� mkat (r(c(f(t))); V ) =def 9x mkat(r(c(x)) ^ x � f(t); V [ fxg) for all non-at atoms r(c(f(t)))where r is a predicate, f is a de�ned function, c(x) is a normal form und x 2 X n V ,� mkat (:'; V ) =def :mkat('; V ),� mkat ('�  ; V ) =def mkat('; V ) �mkat( ; V ) for all � 2 f^;_;)g,� mkat (8Y '; V ) =def 8Y mkat('; V [ Y ),



4 Functionality, �xpoints, standard models 33� mkat (9Y '; V ) =def 9Y mkat('; V [ Y ).For a set F of formulas, flat(F ) =def fflat(') j ' 2 Fg. Moreover, rel(�) is obtained from � by replacingeach de�ned function f : w ! s 2 � by the graph rf : ws of f . rel(F ) is obtained from F by replacingeach equation f(t) � u of F with de�ned function f by the atom rf (t; u). ❏For all modal, poly-modal and weakly modal formulas ', flat(') is modal, poly-modal or weakly modal,respectively (cf. 2.3).De�nition 4.12 Let SP = (�; AX) be a swinging speci�cation. The swinging speci�cations flat(SP ) =(�; flat(AX)) and rel(SP ) = (rel(�); rel(flat(AX))) are called the at and relational versions of SP ,respectively. ❏The only function symbols of rel(�) are the constructors of �. A visible predicate of rel(�) is a visiblepredicate of � or the graph of a visible de�ned function of �. A transition predicate of rel(�) is a transitionpredicate of � or the graph of a destructor of �. A dynamic predicate of rel(�) is a transition predicate of� or the graph of a de�ned function of �.Theorem 4.13 (equivalence of a functional speci�cation and its relational version) Let SPbe a functional and continuous speci�cation. Then rel(SP ) is functional and continuous and for all ground�-atoms p, Her(SP ) j= p () Her(rel(SP )) j= rel(flat(p)): (1)Proof. Let SP = (�; AX) and rel(SP ) = (�0; AX0). Since relational speci�cations are functional,rel(SP ) is functional. Since the consequence operators 	 and � of Def. 4.6 are downward resp. upwardcontinuous, the corresponding consequence operators 	0 and �0 on corresponding reducts of Her(rel(SP ))are also downward resp. upward continuous. Hence by Thm. 4.10 and Lemma 4.7(3) and (4), (1) holds trueif for all de�ned functions f , predicates r that are speci�ed on the visible or hidden level, �-predicates q,predicates p that are speci�ed on the �-level, i 2 N and t; u 2 NF�,f(t) � u `SP ; () rf (t; u) `rel(SP ) ;; (2)t � u `SP ; () t � u `rel(SP ) ;; (3)r(t) `SP ; () r(t) `rel(SP ) ;; (4)t 2 q	i(T�) () t 2 q(�0)i(T�); (5)t 2 p�i(;) () t 2 p(�0)i(;): (6)One may �rst show (2)-(4) by induction on the length of SP - resp. rel(SP )-reductions. Then (5) and (6)follow by induction on i. ❏Corollary 4.14 Let SP be a functional and continuous speci�cation. For all �rst-order formulas formulas', Her(SP ) j= ' () Her(rel(SP )) j= rel(flat(')): ❏Corollary 4.15 Let SP be a functional and continuous speci�cation. Given a de�ned function f 2 �,�SP is compatible with f i� �rel(SP ) is zigzag compatible with the graph rf of f .Proof. Let f : w ! s and t; t0 2 T�;w such that t �SP t0 and �rel(SP ) is zigzag compatible with rf .By Thm. 4.13, Ini(SP ) j= f(nf (t)) � nf (f(t)) implies Ini(rel(SP )) j= rf (nf (t); nf (f(t))). Since �SP is a



34 5 The �nal model and hierarchy conditionssubset of � SP and � SP is transitive, t �SP t0 implies nf (t) �SP nf (t0) and thus nf (t) �rel(SP ) nf (t0).Since �rel(SP ) is zigzag compatible with rf , there is u 2 NF� such that nf (f(t)) �SP u and Ini(rel(SP )) j=rf (nf (t0); u). Hence by Thm. 4.13, Ini(SP ) j= f(nf (t0)) � u and thus f(t0) �SP u. Since �SP is a subset of� SP and � SP is transitive, we conclude f(t) �SP f(t0). Hence �SP is compatible with f . The conversecan be shown in a similar way. ❏One of the most useful consequences of Thm. 4.13 is the soundness of �xpoint induction and unfolding forproving inductive theorems about de�ned functions: if SP is functional, then by Thm. 4.13(1), the followingfunctional counterparts of �xpoint induction on �-predicates and �-atom unfolding, respectively, are correct.Let f be a de�ned function and AXf be the set of axioms for f (cf. Def. 4.11).�xpoint induction on f f(x) � y )  9q : q(x; y))  ^ V'2flat(AXf )'[q(t; u)=(f(t) � u)] mterm unfolding '(f(t))Wni=1 9Zi : (t � ti ^ '(ui) ^  i) mwhere ff(t1) � u1 (  1; : : : ; f(tn) � un (  ng = AXfand Zi = var(f(ti) � ui (  i)A further consequence of functionality is the soundness of rules for removing constructors:term splitting c(t1; : : : ; tn) � c(u1; : : : ; un)t1 � u1 ^ � � � ^ tn � un m where c is a constructorclash c(t) � d(u)FALSE m where c and d are di�erent constructorsIf SP is functional, these equivalences imply that the standard inequality axioms for SP specify thecomplement of � (cf. Def. 3.1):c(x1; : : : ; xn) 6� c(y1; : : : ; yn) ( xi 6� yi for all constructors c : s1 : : : sn ! s and 1 � i � n;c(x) 6� d(y) for all di�erent constructors c and d:Repeated applications of term splitting and clash remove an equation t � t0 i� t and t0 are ground normalforms. For eliminating equations with variables one also needs term replacement:term replacement t � t0 ^ '(t)'(t0) +(t � t0 ^ '(t)) )  (t)'(t0) )  (t0) *5 The �nal model and hierarchy conditionsFinal semantics was introduced for modelling permutative types such as �nite sets, �nite bags (multisets)and arrays with a �nite domain (cf., e.g., [28, 75, 46]). These types are constructor-based, but need equationsbetween normal forms for axiomatizing structural equality. Hence speci�cations of permutative types arecomplete, but not consistent (cf. 4.1). From a model-theoretic point of view, initial semantics is su�cientfor handling permutative types. Normal form equations are Horn axioms, hence there is an initial model.From a proof-theoretic viewpoint, however, this model is inadequate. Resolution- or rewriting-oriented proof



5 The �nal model and hierarchy conditions 35methods treat normal form equations separately from other axioms (cf., e.g., [66, 72, 45]). Here it is notthe normal forms, but their equivalence classes modulo the equivalence relation �E induced by the set E ofnormal form equations that represent data. Resolution and rewriting modulo �E work well if E is restrictedto particular equations such as those expressing the associativity, commutativity or idempotence of a binaryfunction. Otherwise suitable proof rules are complicated and di�cult to handle.In the swinging speci�cation of a permutative type, normal form equations t � t0 come as valid behavioralequivalences t � t0. Results on coalgebras, coinduction and greatest �xpoints obtained in category theoryand modal logic revealed that permutative types are particular hidden types and thus can be handled withthe same approaches that tackle state-oriented object types and in�nite types such as streams and processes(cf., e.g., [8, 29, 68, 70, 32, 44]). Vice versa, these types extend the range of applications for �nal-semanticsapproaches. As we have seen in Ex. 2.8, even streams can be presented as a functional speci�cation (cf. 4.1).At �rst sight, this seems to be inadequate because functionality includes completeness, while uncountablymany streams cannot be represented by countably many normal forms. But it need not bother us sinceuncountable sets can never be implemented entirely. The fact that the �nal model is embedded in theintended domain is completely su�cient for any formal reasoning about the type. The existence of anembedding is usually guaranteed if the speci�cation, say SP , is behaviorally consistent (cf. [62], Section 6).Hence the �nal model of a behaviorally consistent extension of SP by more hidden constructors will alsobe embedded in the intended domain. For instance, if SP = INFSEQ (cf. Ex. 2.8), then Fin(SP )stream isembedded in [N! Ini(SP )entry ], and, if SP = STREAM (cf. Ex. 6.6), then Fin(SP )stream is embeddedin [N! Ini(SP )entry] [ Ini(SP )�entry.Theorem 5.1 Let SP = (�; AX) be a behaviorally consistent speci�cation (cf. Defs. 3.1 and 4.6).(1) Her(SP ) 2Modbcr(SP ) and thus by Thm. 3.9(b), Fin(SP ) 2Mod(SP ).(2) For all poly-modal formulas ' and � : X ! T�,Her(SP ) j=� ' () Fin(SP ) j=nat�� ':(3) Fin(SP ) 2Modbcr(SP ) \Mod��(SP ) (cf. Def. 4.6).(4) If SP is visible, then Fin(SP ) coincides with Ini(SP ).(5) Fin(SP ) is �nal in Modbcr(SP ).Proof. (1) holds true by assumption and since Her(SP ) is reachable. (2) follows from Thm. 3.9(a).(3) Since Her(SP ) is behaviorally consistent, Fin(SP ) is an SP -model. �Fin is equality and hence aweak congruence. Since Fin(SP ) is reachable, we conclude Fin(SP ) 2Modbcr(SP ) from the interpretationof dynamic predicates in Fin(SP ). Since Fin(SP ) 2Mod(SP ), Prop. 3.3 implies Fin(SP ) 2Mod��(SP ).(4) holds true because �SP agrees with �SP on visible terms.(5) Let A 2 Modbcr(SP ) and Her 0 be the Herbrand �-structure de�ned by rHer0 = ft 2 T+� j tA 2 rAgfor all predicates r 2 �. Then for all ground �-atoms, Her 0 j= p i� A j= p. Hence Her 0 satis�es AX becauseA satis�es AX. By Thm. 4.8(1), Her(SP ) 2Mod��(SP ). Hence for all ground �-atoms q(u),A j= q(u) ) uA 2 qA , u 2 qHer 0 ) u 2 qHer ) Her(SP ) j= q(u) (2)) Fin(SP ) j= q(u); (6)and for all ground static �-atoms r(t) and ground dynamic atoms �(t; u),Fin(SP ) j= r(t) (2)) Her(SP ) j= r(t) ) t 2 rHer ) t 2 rHer 0 , tA 2 rA ) A j= r(t); (7)Fin(SP ) j= �(t; u) ) 9v : Her(SP ) j= �(t; v) ^ v �SP u ) (t; v) 2 �Her ^ v �SP u) (t; v) 2 �Her 0 ^ v �SP u , (tA; vA) 2 �A ^ v �SP u ) A j= �(t; v) ^ vFin = uFin: (8)



36 5 The �nal model and hierarchy conditionsSince �A is reexive, (5) follows from (6), (7) and Lemma 3.5(2) because � is a �-predicate, A is reachableand Fin(SP ) is a structure with �-equality. ❏Behavioral consistency ensures the existence of the �nal model. This is a model-theoretic side-e�ect ofbehavioral consistency, but not its most signi�cant consequence. More important in practice is the factthat behavioral consistency ensures that|due to our Hennessy-Milner Theorem 3.8(3)|behavioral termreplacement is sound for poly-modal formulas as term replacement is sound for arbitrary �rst-order formulas(see Section 4):behavioral term replacement t � t0 ^ '(t)'(t0) + if ' is poly-modal(t � t0 ^ '(t)) )  (t)'(t0) )  (t0) * if ' and  are poly-modalExample 5.2 Suppose that for some hidden sort s there are neither separators r : sw nor transitionpredicates � : sws0 and all destructors f : sw ! s0 are methods, i.e. s0 is a hidden sort. Then �SP;s coverall pairs of ground s-terms and thus Fin(SP )s is a singleton! For instance, consider the following swingingspeci�cation of integer numbers:INThidsorts intconstructs 0; 1 :! int+ : int� int! int� : int� int! intdestructs succ; pred : int! intseparators is0 : intvars x; y : intHorn axioms succ(0) � 1 pred(0) � 0� 1 is0(0)succ(1) � 1 + 1 pred(1) � 0succ(x + y) � succ(x) + y pred(x+ y) � pred(x) + ysucc(x � y) � succ(x) � y pred(x� y) � pred(x)� yThe �nal INT-model Fin(INT) is isomorphic to Z. The \normal form equations" (x + y) � y � x and(x�y)+y � x are inductive theorems of INT. If the separator is0 were omitted, behavioral INT-equivalencewould identify all ground INT-terms, i.e. Fin(INT) were a singleton. ❏De�nition 5.3 (relative completeness and consistency) Let SP and SP 0 be swinging speci�cationsand � : � ! �0 be a signature morphism. SP 0 is complete w.r.t. (SP; �) if for all sorts s 2 � andt0 2 T�0;�(s) there is t 2 T� such that t0 �SP �(t). SP 0 is monotone w.r.t. (SP; �) if for all ground�-atoms p, Her(SP ) j= p ) Her(SP 0)� j= p; (1)and for all ground �-atoms p, Her(SP 0)� j= p ) Her(SP ) j= p: (2)SP 0 is (relatively) consistent w.r.t. (SP; �) if, conversely, (1) holds true for all ground �-atoms p and(2) holds true for all ground �-atoms p. If � is an inclusion, i.e. � � �0, we write SP instead of (SP; �). ❏



5 The �nal model and hierarchy conditions 37Proposition 5.4 If SP 0 is monotone w.r.t. (SP; �), then for all t; t0 2 T�, t �SP t0 implies �(t) �SP 0�(t0) and t 6�SP t0 implies �(t) 6�SP 0 �(t0). If SP 0 is complete, monotone and consistent w.r.t. (SP; �), thenfor all �rst-order �-formulas ', Her(SP 0)� j= ' i� Her(SP ) j= '. ❏De�nition 5.5 (inductive equivalence) Let SP and SP 0 be swinging speci�cations with the samesignature �. SP and SP 0 are inductively equivalent if SP 0 is monotone and consistent w.r.t. SP , orequivalently: for all ground �-atoms p, Her(SP ) j= p i� Her(SP 0) j= p. ❏Proposition 5.6 Let SP and SP 0 be inductively equivalent speci�cations with signature �.(1) For all �rst-order �-formulas ', Her(SP ) j= ' i� Her(SP 0) j= '.(2) SP is functional i� SP 0 is functional.(3) SP is behaviorally consistent i� SP ' is behaviorally consistent.Proof. (1) follows from Prop. 5.4. By assumption, (behavioral) SP -equivalence coincides with (behav-ioral) SP 0-equivalence. This implies (2) and (3). (3) also relies upon the inductive equivalence of SP andSP 0 with respect to other predicates of �. ❏Lemma 5.7 Let SP = (�; AX) and SP 0 = (�0; AX0) be swinging speci�cations, � = (S; F; P ), �0 =(S0; F 0; P 0), � : � ! �0 be a signature morphism and C be a set of generalized Horn clauses or co-Hornclauses over �0.(1) If Her(SP 0)� is an SP -model, then SP 0 is monotone w.r.t. (SP; �). In particular, SP 0[C = (�0; AX[C) is monotone w.r.t. SP 0.(2) Her(SP 0) j= C i� SP 0 [ C is consistent w.r.t. SP 0.(3) Let � = �0. SP and SP 0 are inductively equivalent i� Her(SP ) j= AX0 and Her(SP 0) j= AX.Proof. (1) By assumption, Her(SP 0)� satis�es EQ� [ AX. Since Her(SP ) is the least solution of theHorn axioms among EQ� [ AX, for all r 2 �P , rHer(SP ) is a subset of rHer(SP 0)� . Since Her(SP ) is thegreatest solution of the co-Horn axioms among EQ�[AX, for all r 2 �P , rHer(SP 0)� is a subset of rHer(SP ).(2) \)": Let �C and �C be the set of Horn resp. co-Horn clauses of SP 0 [C. Since Her(SP 0[C) is theleast solution of EQ�0 [�C, Her(SP 0) j= EQ�0 [�C implies that for all r 2 �P 0, rHer(SP 0[C) is a subset ofrHer(SP 0). Since Her(SP 0 [ C) is the greatest solution of �C, Her(SP 0) j= �C implies that for all r 2 �P 0,rHer(SP 0) is a subset of rHer(SP 0[C). Hence SP 0 [C is consistent w.r.t. SP 0.\(": Let p ( H be a Horn clause of C and � : X ! T�0 such that Her(SP 0) j= H�. By (1)and assumption, Her(SP 0 [ C) j= H� and thus Her(SP 0 [ C) j= p�. Again by (1) and assumption,Her(SP 0) j= p�.Let p ) (H ) ') be a co-Horn clause of C and � : X ! T�0 such that Her(SP 0) j= p� ^H�. By (1)and assumption, Her(SP 0 [ C) j= p� ^H� and thus Her(SP 0 [ C) j= '�. Again by (1) and assumption,Her(SP 0) j= '�.(3) \(": Let p be a �-atom such that Her(SP 0) j= p. (1) implies Her(SP [AX 0) = Her(SP 0 [AX) j=p. Since Her(SP ) satis�es AX 0, (2) implies Her(SP ) j= p. Conversely, let Her(SP ) j= p. (1) impliesHer(SP 0 [AX) = Her(SP [AX0) j= p. Since Her(SP 0) satis�es AX, (2) implies Her(SP 0) j= p.Let p be a �-atom such that Her(SP 0) j= p. Since Her(SP 0) satis�es AX, (2) implies Her(SP [AX 0) =Her(SP 0 [ AX) j= p. By (1), Her(SP ) j= p. Conversely, let Her(SP ) j= p. Since Her(SP ) satis�es AX 0,(2) implies Her(SP 0 [AX) = Her(SP [AX0) j= p. By (1), Her(SP 0) j= p.



38 5 The �nal model and hierarchy conditions\)": Follows from Prop. 5.6(1) if one sets �rst ' = AX0 and then ' = AX. ❏Corollary 5.8 (negation and consistency) In addition to the assumptions of Lemma 5.7 suppose thatfor each predicate r 2 �, the complement r of r w.r.t. Her(SP ) is in �, �(r) is the complement of �(r)w.r.t. Her(SP 0) and r 2 �P implies r 2 �P or for all t 2 T�,Her(SP 0)� j= r(t) ) Her(SP ) j= r(t): (1)SP 0 is consistent w.r.t. (SP; �) if Her(SP 0)� is an SP -model.Proof. Let r(t) be a �-atom such that r is a �-predicate and Her(SP ) 6j= r(t). Then Her(SP ) j= r(t).Let r be a �-predicate. Since Her(SP 0)� satis�es EQ� [AX and Her(SP ) is the least solution of the Hornaxioms among EQ� [AX, we obtain Her(SP 0)� j= r(t) and thusHer(SP 0) j= �(r(t)) = �(r)(�(t)) = �(r)(�(t)):We conclude Her(SP 0) 6j= �(r)(�(t)) = �(r(t)). Hence Her(SP 0)� 6j= r(t). Conversely, we have shown (1).If r is a �-predicate, then (1) holds true by assumption.Let r(t) be a �-atom such that r is a �-predicate and Her(SP 0)� 6j= r(t), i.e. Her(SP 0) 6j= �(r(t)) =�(r)(�(t)). Then Her(SP 0) j= �(r)(�(t)) = �(r)(�(t)) = �(r(t))and thus Her(SP 0)� j= r(t). If r is a �-predicate, then, by the �rst part of the proof, (1) holds true. HenceHer(SP ) j= r(t) and thus Her(SP ) 6j= r(t). Let r be a �-predicate. Since Her(SP 0)� satis�es EQ� [ AXand Her(SP ) is the greatest solution of the co-Horn axioms among EQ� [AX, Her(SP 0)� j= r(t) impliesHer(SP ) j= r(t) and thus Her(SP ) 6j= r(t). ❏Lemma 5.9 A functional speci�cation SP is complete, monotone and consistent w.r.t. visSP , hidSPand �SP .Proof. Let SP = (�; AX). By Thms. 4.8 and 5.1, Her(SP ), Ini(SP ) and Fin(SP ) are reachable SP -models. Since SP is complete and for all sorts s 2 visSP , s-sorted normal forms are vis�-terms, SP iscomplete w.r.t. visSP , hidSP and �SP .Since all predicates of vis� are �-predicates, Lemma 5.7(1) implies that hidSP is monotone w.r.t. visSP .Since SP is functional and all hidden constructors have hidden range sorts, [60], Thm. 10.48(3) implies thathidSP is consistent w.r.t. visSP . �SP is monotone and consistent w.r.t. hidSP because �AX n hidAXconsists of axioms for �� n hid�. SP is monotone and consistent w.r.t. �SP because AX n �AX consists ofaxioms for � n ��. Hence SP is monotone and consistent w.r.t. visSP , hidSP and �SP . ❏Consistency criteria based on conuence (cf. Thm. 4.10) are provided by, e.g., [60], Thm. 10.48 (see also[63]). Lemma 5.9 suggests a stepwise construction of Her(hidSP ) via a consequence operator on Her(visSP )(cf. Lemma 4.7):Lemma 5.10 (stepwise construction of Her(hidSP ) on Her(visSP )) Let SP = (�; AX) be afunctional speci�cation, � = (S; F; P ) and A be the Herbrand (vis�[F )-structure that is de�ned as follows:� For all predicates r : w 2 vis� and t 2 T�;w, t 2 rA ()def Her(visSP ) j= r(nf (t)).Let � be the hidAX-consequence operator on A. Then Her(SP )jhid� = [i2N�i(;) and thus for all hid�-atoms p, Her(SP ) j= p () 9i 2 N : �i(;) j= p:



5 The �nal model and hierarchy conditions 39Proof. By Lemma 4.4(1), lfp(�) = [i2N�i(;). As a �xpoint of �, lfp(�) satis�es hidAX n visAX. SinceHer(SP )jhid� is the least �xpoint satisfying hidAX, for all hid�-atoms p,Her(SP ) j= p ) lfp(�) j= p () 9i 2 N : �i(;) j= p:By Lemma 5.9, Her(SP ) is consistent w.r.t. Her(visSP ). Hence for all visible hid�-atoms r(t) and i 2 N,Her(SP ) j= r(t) () Her(SP ) j= r(nf (t)) () Her(visSP ) j= r(nf (t)) () t 2 rA = r�i(;): (1)Therefore, it remains to show that for all i 2 N and hidden hid�-atoms r(t),t 2 r�i(;) ) Her(SP ) j= r(t): (2)Since r; = ;, (2) holds true for i = 0. Let i > 0 and t 2 r�i(;). By the de�nition of �, there are(r(u) ( H) 2 hidAX n visAX and � : X ! T� such that t = u� and �i�1(;) j= H�. By inductionhypothesis, (2) holds true for i � 1. Hence by (1), �i�1(;) j= H� implies Her(SP ) j= H� and thusHer(SP ) j= r(u�) = r(t) because Her(SP ) satis�es r(u)( H. ❏Let SP = (�; AX) be a continuous speci�cation and 	;� as in Def. 4.6. By Lemma 4.7(3) and (4),for all ground �-atoms p; Her(SP ) j= p () 8i 2 N : 	i(T�) j= p;for all ground �-atoms p; Her(SP ) j= p () 9i 2 N : �i(;) j= p:How can the downward resp. upward continuity of 	 resp. � be violated? Remember that 	 is inducedby co-Horn axioms, while � is induced by generalized Horn axioms. Suppose that r(x) ) 9yq(x; y) is theonly axiom for some predicate r 2 ��nhid�. 	 is downward continuous if for all decreasing chains fBigi2Nof ��-structures whose hid�-reduct agrees with Her(SP )jhid�, r\i	(Bi) is a subset of r	(\iBi). But thismeans that 8i9y : qBi(x; y) implies 9y8i : qBi(x; y), which, obviously, need not hold true. Dually, supposethat r(x) ( 8yq(x; y) is the only axiom for some predicate r 2 � n ��. � is upward continuous if for allincreasing chains fBigi2Nof �-structures whose ��-reduct agrees with Her(SP )j��, r�([iBi) is a subset ofr[i�(Bi). But this means that 8y9i : qBi(x; y) implies 9i8y : qBi(x; y), which need not hold true either.Hence existential quanti�ers in the conclusions of co-Horn axioms and universal quanti�ers in the premisesof generalized Horn axioms may violate the continuity of a swinging speci�cation. Modal logic suggests asu�cient condition on quanti�ed subformulas to ensure continuity. If such a formula is modal in the senseof Def. 2.3, it only occurs in one of the following forms:9y(�(t(x); y) ^ '(y)) or 8y(�(t(x); y) ) '(y))where � is a dynamic predicate. Modal logic would call � �nitely branching or image �nite if for all groundterms u there are only �nitely many ground terms v such that �(u; v) holds true. The generalization of image�niteness to arbitrary existential or universal goals in the sense of Def. 2.3 leads to the following de�nition:De�nition 5.11 (image �niteness) Let SP = (�; AX) be a swinging speci�cation. Given a �-goal G,S(G) =def f� : var(G)! NF� j Her(SP ) j= G�gis the set of normal form solutions of G. Given Y � X, G is Y -image �nite if for all � : X ! NF�,S(G�XnY ) is �nite.An existential ��-goal 9Y ' is image �nite if ' is a hid�-goal or ' contains a nonempty Y -image �nitehid�-goal. A universal �-goal 8Y (G ) H) is image �nite if G and H are ��-goals or G is a Y -image�nite ��-goal.



40 5 The �nal model and hierarchy conditionsA (dual) goal set is image �nite if it consists of image �nite existential (resp. universal) goals (cf. Def.2.3). SP is image �nite if for all co-Horn axioms p) (G) ') of SP , ' is an image �nite goal set and forall generalized Horn axioms p( ' of SP , ' is an image �nite dual goal set. ❏MODSPEC (cf. Ex. 2.7) is image �nite if the dynamic predicate !: state � state is �nitely branching:for all t 2 T� there are at most �nitely many t0 2 T� such that Her(MODSPEC) satis�es t! t0.Example 5.12 INFSEQ (cf. Ex. 2.8) is image �nite. However, the conclusion of the following axiom forfair is not image �nite:fair(g; s) ) 9n; s0 : (nthtail(n; s) � s0 ^ g(head(s0)) � true ^ fair(tail(s0))):In terms of Def. 5.11, G = (nthtail(n; s) � s0 ^ g(head(s0)) � true) and H = fair(tail(s0)). The existentialgoal 9n; s0 : (G ^ H) is not image �nite because there are streams t such that G[t=s] has in�nitely manynormal form solutions. However, let G0 = (G^ forall(not � g; firstn(n; s))). Then 9n; s0 : (G0 ^H) is image�nite because for all streams t, G0[t=s] has at most one normal form solution. ❏Before presenting the general proof that image �niteness implies continuity let us illustrate the essentialpoints at the �-predicate p = some in�nite and the �-predicate q = all �nite of Ex. 2.7. We recall theaxioms for p and q: p(s) ) 9s0(s! s0 ^ p(s0))q(s) ( 8s0(s! s0 ) q(s0))The corresponding consequence operators, say 	 and �, are de�ned as follows: For all subsets S of T�;state,	(S) =def fs 2 T�;state j 9s0(s! s0 ^ s0 2 S)g;�(S) =def fs 2 T�;state j 8s0(s! s0 ) s0 2 S)g:Let ! be image �nite. We show that 	 is downward continuous. This holds true i� for all decreasing chainsfSigi2N� T�;state, 8i9s0 : (s! s0 ^ s0 2 Si) =) 9s08i : (s! s0 ^ s0 2 Si): (1)Indeed, (1) is valid:8i9s0i : (s! s0i ^ s0i 2 Si) ! is image �nite=) 9s0 : jfi j s0 = s0igj = ! =) 8i9ji � i : s0ji = s0Sji�Si=) 9s08i : (s! s0 ^ s0 2 Si):We show that � is upward continuous. This holds true i� for all increasing chains fSigi2N� T�;state,8s09i : (s! s0 ) s0 2 Si) =) 9i8s0 : (s! s0 ) s0 2 Si): (2)Since ! is image �nite and fSig is increasing, there is m 2 N such that for all s0, if s! s0 2 Si for some i,then s0 2 Sm. Hence (2) is obtained as follows:8s09i : (s! s0 ) s0 2 Si) Si�Sm=) 8s0 : (s! s0 ) s0 2 Sm) =) 9i8s0 : (s ! s0 ) s0 2 Si):Lemma 5.13 Given a complete speci�cation SP and the notations of Def. 5.11, let C be the class of��-structures whose hid�-reduct agrees with A = Her(SP )jhid�, B0 � B1 � B2 � � � � 2 C and ' be (1) animage �nite existential goal or (2) an image �nite goal set over ��. Then for all b : X ! A,8i 2 N : Bi j=b ' implies \i2NBi j=b ':



5 The �nal model and hierarchy conditions 41Proof. (1) Let ' = 9Y (G ^H) be an existential goal and b : X ! A such that for all i 2 N, Bi j=b '.If G and H are hid�-goals, then A j=b ' and thus \i2NBi j=b ' follows immediately. Let G be a Y -image�nite hid�-goal. Then for all � : X ! NF� with dom(�) = X n Y , S(G�) is �nite. Since SP is complete,for all i 2 N there is � i : X ! NF� such that Bi j=b (G ^H)� i, dom(� i) = Y and b(x) �SP � i(x) for allx 2 Y . Since G is a hid�-goal, we obtain A j= G�� i for some � : X ! NF� with dom(�) = X n Y andb(x) �SP �(x) for all x 2 X n Y . Since S(G�) is �nite, there is � : X ! NF� such that dom(� ) = Y and� = � i for in�nitely many i. Hence for all i 2 N there is ji � i such that � ji = � .10 Since for all i 2 N,Bji j=b (G ^H)� ji , we conclude that for all i 2 N, Bji j=b (G ^ H)� and thus Bi j=b (G ^ H)� becauseBji � Bi. Hence \i2NBi j=b '.(2) Let ' = ('1 _ � � � _ 'n) be an image �nite goal set and b : X ! A such that for all i 2 N, Bi j=b '.We show \i2NBi j=b ' by induction on n. If n = 1, then the conjecture follows from (1). Otherwise let = ('2 _ � � � _ 'n). If for all i 2 N, Bi j=b  , then by induction hypothesis, \i2NBi j=b  and thus\i2NBi j=b '. Otherwise Bi 6j=b  for some i 2 N. Let k = minfi j Bi 6j=b  g. Since fBig is decreasing,we have Bi 6j=b  and thus Bi j=b '1 for all i � k. Hence by (1), \i�kBi j=b '1. Since for all 0 � i < k,Bi j=b  and thus Bi j=b ', we conclude \i2NBi = B0 \ � � � \Bk�1 \ (\i�kBi) j=b '. ❏Lemma 5.14 Given a complete speci�cation SP and the notations of Def. 5.11, let C be the class of�-structures whose ��-reduct agrees with A = Her(SP )j��, B0 � B1 � B2 � � � � 2 C and ' be (1) an image�nite universal goal or (2) an image �nite dual goal set over �. For all b : X ! A,[i2NBi j=b ' implies 9i 2 N : Bi j=b ':Proof. (1) Let ' = 8Y (G) H) be an image �nite universal goal and b : X ! A such that [i2NBi j=b '.If G and H are ��-goals, then A j=b ' and thus 9i 2 N : Bi j=b ' follows immediately. Let G be a Y -image�nite ��-goal. Since SP is complete, there is � : X ! NF� with b �SP �. Hence S(G�XnY ) is �nite. SinceG is a ��-goal, for all i 2 N and b : X ! A, Bi j=b G i� A j=b G. Hence Bi j=b ' is equivalent to:8 c =Y b : A j=c G ) Bi j=c H; (3)while the assumption [i2NBi j=b ' is equivalent to:8 c =Y b : A j=c G ) 9 i 2 N : Bi j=c H: (4)Since SP is complete, (3) and (4) are equivalent to:8 � =Y � : A j= G� ) Bi j= H�; (5)and to: 8 � =Y � : A j= G� ) 9 i 2 N : Bi j= H�; (6)respectively. It remains to conclude from (6) that (5) holds true for some i. We reformulate (6) as follows:8 � 2 S(G�XnY ) 9 i 2 N : Bi j= H�XnY �: (7)Since S(G�XnY ) is �nite and fBig is increasing, (7) implies that there is i with Bi j= H�XnY � for all� 2 S(G�XnY ). But this is equivalent to (5).10This|crucial|proof step follows the proof of [40], Thm. 2.1, which states a corresponding result in modal logic.



42 5 The �nal model and hierarchy conditions(2) Let ' = ('1 ^ � � �^'n) be an image �nite dual goal set and b : X ! A such that [i2NBi j=b '. Thenfor all 1 � j � n, [i2NBi j=b 'j. Hence by (1), for all 1 � j � n there is mj 2 N such that Bmj j=b 'j .Since fBig is increasing, we conclude Bm j=b ' for m = maxfmj j 1 � j � ng. ❏Theorem 5.15 (image �niteness implies continuity) A complete and image �nite speci�cation SPis continuous.Proof. Let C be the class of ��-structures whose hid�-reduct agrees with A = Her(SP )jhid� andB0 � B1 � B2 � � � � 2 C. The (�AX n hidAX)-consequence operator 	 on A is downward continuous i� forall predicates r 2 �� n hid�, \i2Nr	(Bi) � r	(\i2NBi);which is equivalent to: 8i 2 N : a 2 r	(Bi) implies a 2 r	(\i2NBi): (1)By the de�nition of 	 (cf. Def. 4.3), (1) holds true if for all (r(t) ) ') 2 �AX and b : X ! A such thata = b�(t), 8i 2 N : Bi j=b ' implies \i2NBi j=b ': (2)We show (2). Let (r(t) ) ') 2 �AX and b : X ! A such that a = b�(t). By Def. 2.4(3) and (4), there area hid�-goal G = (r1(t1) ^ � � � ^ rk(tk)) and a goal set  such that ' = (G )  ). Since for all 1 � i � k,ri 2 hid�, we may assume that hid� includes the complement ri of ri : w (cf. Def. 3.1) and thus for allB 2 C, riB = T�;w n rBi . Let � = (r1(t1) _ � � � _ rk(tk) _  ). Since for all B 2 C, B j= � i� B j=  , (2) holdstrue i� 8i 2 N : Bi j=b � implies \i2NBi j=b �: (3)Since  is image �nite, � is also image �nite. Hence (3) follows from Lemma 5.13.Let C be the class of �-structures whose ��-reduct agrees with A = Her(SP )j�� and B0 � B1 � B2 �� � � 2 C. The (AX n�AX)-consequence operator � on A is upward continuous i� for all predicates r 2 �n��,a 2 r�([i2NBi) implies 9i 2 N : a 2 r�(Bi): (4)By the de�nition of � (cf. Def. 4.3), (4) holds true if there are (r(t) ( ') 2 AX and b : X ! A such thata = b�(t) and [i2NBi j=b ' implies 9i 2 N : Bi j=b ': (5)Since ' is image �nite, (5) follows from Lemma 5.14. ❏Functionality and continuity are the key properties of a swinging speci�cation that allow us to reasonabout its Herbrand model via consequence operators:Lemma 5.16 (stepwise constructions of the Herbrand model) Let SP = (�; AX) be a func-tional and continuous speci�cation and �;	;�;� be the consequence operators of Def. 4.6 and Lemma 5.10,respectively.(1) Her(SP )jhid� = [i2N�i(;) and for all hid�-atoms p,Her(SP ) j= p () 9i 2 N : �i(;) j= p () SP `cut p () p `SP ;:



6 Coinductive axioms 43(2) Her(SP )jhid� = [i2N�i(;) and for all hid�-atoms p,Her(SP ) j= p () 9i 2 N : �i(;) j= p:(3) Her(SP )j�� = \i2N	i(T�) and for all �-atoms p,Her(SP ) j= p () 8i 2 N : 	i(T�) j= p:(4) Her(SP ) = [i2N�i(;) and for all �-atoms p,Her(SP ) j= p () 9i 2 N : �i(;) j= p:Proof. (1) follows from Lemma 4.7(1) and (2) and Thm. 4.10. (2) is Lemma 5.10. (3) and (4) areimmediate consequences of Lemma 4.7(3) and (4). ❏6 Coinductive axiomsBy Lemma 3.10, a visible speci�cation SP is behaviorally consistent. If SP has nonempty hidden, �- or�-levels, additional conditions are needed to ensure that SP is behaviorally consistent. We �rst group thesymbols and atoms speci�ed above the visible level of SP (cf. Def. 2.4). A symbol is non-observing if it isnot an observer.Given a hidden term t, an atom �(t; a; u) is observing if � is a transition predicate or �(t; a; u) =(f(t; a) � u) and f is a destructor or �(t; a; u) = r(t; a) and r is a separator. An atom �(t; u) is non-observing if � is a non-observing dynamic predicate or �(t; u) = (f(t) � u) and f is a non-observing de�nedfunction or �(t; u) = r(t) and r is a non-observing static predicate. A goal is non-observing if it consistsof non-observing atoms.Given a term tuple t, visvar(t) and hidvar(t) denote the sets of visible resp. hidden variables of t.De�nition 6.1 (coinductivity) Let SP = (�; AX) be a swinging speci�cation. A �-normal form t isstrongly normal if for all � : X ! NF� and u 2 NF�, t� �SP u implies t� = u and � �SP � for some� : X ! NF�. A co-Horn clause r(t)) ' is coinductive if t is strongly normal.A Horn clause p ( ' is coinductive if either p = �(t; u) is non-observing and t is strongly normal orp = �(t; a; u) is observing,' = G ^ �1(t1; a1; u1) ^G1 ^ � � � ^ �n(tn; an; un) ^Gnand the following conditions hold true: Let V0 = var(t; a;G) and for all 1 � i � n, Vi = Vi�1 [var(ai; ui; Gi).(1) t is strongly normal or t = c(t0) for a constructor c and a strong normal form t0, a is strongly normal,G is weakly modal and non-observing, var(u) � Vn and out(G) \ var(t; a) = ;.(2) For all 1 � i � n, �i(ti; ai; ui) is observing, (ti; ai) is normal, ui is strongly normal, Gi is weakly modaland non-observing, var(ti) � Vi�1, (var(ui) [ out(Gi)) \ (Vi�1 [ var(ai; ui)) = ; and hidvar(ai) �var(a).SP is coinductive if(3) for all axioms ' of SP n visSP , ' is coinductive or an axiom for a non-observing symbol f such that�SP is (zigzag) compatible with f ,



44 6 Coinductive axioms(4) for all axioms p ( ' for observers and all non-observing symbols f occurring in ', the axioms for fare coinductive and do not contain observers.11 ❏Note the di�erent rôles the variables of t, a resp. u play in an observing atom �(t; a; u): those of t areconsumed, those of u are produced, var(a) may contain both \input" and \output" variables. Intuitively,conditions 6.1(1) and (2) entail a data ow through a conductive axiom p( ' that starts out from t and the\input part" of a, proceeds to the \output part" of a, ti and the \input part" of ai, i > 0, then propagatesfrom ui and the \output part" of ai to tj and the \input part" of aj , j > i, and �nally returns to the \outputpart" of a and u.At least the observers must have coinductive axioms if the whole speci�cation shall be coinductive. Theconditions on observer axioms are less restrictive than those on axioms for non-observing symbols. This maylead one to declare more symbols as observers. However, more observers increase the number of behavioraxioms and thus the number of \cases" generated by unfolding a behavioral equivalence t � t0 or by applyingconduction to a clause of the form  ) t � t0 (cf. Section 4).Functional visible speci�cations are coinductive because then all ground normal forms are strongly normaland thus all axioms are coinductive. Other coinductive speci�cations cover usual formats of transition systemspeci�cations [37, 20], SOS (= structural operational semantics) rules [67], codatatypes [39] as well as �=�-complete equations12 [33] or observer complete function de�nitions [16]. �=�-completeness and observercompleteness are simple subcases of coinductivity. They deal with purely functional speci�cations whosebehavioral equality is determined by destructors only and whose axioms are mostly unconditional equations.An observer complete de�nition in the sense of [16] admits axioms such as d(c(x)) � u where d is a\context" term consisting of several destructors. u may also have subterms of the form e(c(v)) such that eis a smaller context that d. Our notion of coinductivity restricts d to a single destructor and e to a variable.Apart form the fact that most examples obey the \restriction" there is a simple way of extending an observercomplete speci�cation to a coinductive one that is consistent w.r.t. the former: for each destructor f andeach axiom f(d(c(x))) � u where d is a non-variable context, introduce a new constructor, say dc, for thecomposition d � c, replace f(d(c(x))) � u by f(dc(x)) � u, add d(c(x)) � dc(x) to the set of axioms anditerate this procedure until all axioms are coinductive. It terminates because d is a smaller context thatf � d. As an example consider the following observer complete de�nition of blink : stream ! stream (cf.Ex. 2.8): head(blink) � 0 head(tail(blink)) � 1 tail(tail(blink)) � tail(blink):While blink denotes the stream of alternating zeros and ones, starting with a zero, tail(blink)) stands forthe stream of alternating zeros and ones, starting with a one. Hence tail(blink) actually denotes a furtherconstructor, blink0 : stream! stream:head(blink) � 0 head(blink0) � 1 tail(blink0) � blink tail(blink) � blink0:Example 6.2 INFSEQ (cf. Ex. 2.8) is coinductive. Even the following speci�cation of stream compre-hension analogously to list comprehension (cf. Ex. 2.1) is coinductive:head(filter(g; s)) � x ( head(s) � x ^ g(x) � true (1)head(filter(g; s)) � head(filter(g; tail(s))) ( head(s) � x ^ g(x) � false: (2)11This excludes mutually-recursive axiomatizations of observers and non-observers.12� and � are sets of destructors and constructors, respectively. �=�-completeness is a special case of the congruence criterionof [69], Thm. 16.



6 Coinductive axioms 45However, only coinductivity and functionality imply behavioral consistency (see Thm. 6.5 below), but (1)and (2) are not complete and thus not functional for streams s none of whose elements satis�es g. Correctaxioms for filter can only be part of a speci�cation of �nite and in�nite streams such as STREAM (Ex.6.6). ❏One may atten (2) such that the right-hand side of the conclusion consists of non-observing symbolsand the resulting axiom is still coinductive and equivalent to the original one:head(filter(g; s)) � y ( head(s) � x ^ g(x) � false ^ tail(s) � s0 ^ head(filter(g; s0)) � y: (3)Each coinductive axiom can be transformed analogously:Lemma 6.3 Given a coinductive speci�cation SP , for each axiom  = (�(t; a; u) ( ') with observingconclusion there is a coinductive axiom  0 = (�(t; a; u0) ( '0) such that u0 is normal and SP and (SP nf g) [ f 0g are inductively equivalent.Proof. We show the conjecture by induction on the number k of occurrences of de�ned functions in u.Since  is coinductive, ' = G ^ �1(t1; a1; u1) ^G1 ^ � � � ^ �n(tn; an; un) ^Gnsuch that Def. 6.1(1) and (2) hold true. If k = 0, the proof is complete with  0 =  . Let k > 0. Then thereis a minimal subterm f(t) of u such that f is a de�ned function and t is normal. Let x 2 X n var( ). If f isa destructor, then 6.1(1) and (2) hold true for n+ 1 instead of n, �1(t1; a1; u1) = (f(t) � x), and Gn+1 = ;.If f is non-observing, then 6.1(1) and (2) hold true for Gn^f(t) � x instead of Gn. Hence in the both cases, 00 = �(t; a; u[x=f(t)]) ( ' ^ f(t) � xand thus SP 0 = (SP n f g) [ f 00g are coinductive. Obviously, SP and SP 0 are inductively equivalent. Byinduction hypothesis, there is a coinductive axiom  0 = (�(t; a; u0) ( '0) such that u0 is normal and SP 0and (SP 0 nf 00g)[f 0g are inductively equivalent. Since SP 0 nf 00g = SP nf g, SP and (SP nf g)[f 0gare inductively equivalent. ❏Coinductive de�nition schemas should not be confused with coinductive proof rules such as �xpoint orhidden coinduction (see Section 4). To emphasize the di�erence some authors call the former corecursionschemas (cf., e.g., [11]). Strong normal forms give rise to rules of term splitting and clash \modulo behavioralequivalence" (see Section 4):behavioral term splitting c(t1; : : : ; tn) � c(u1; : : : ; un)t1 � u1 ^ � � � ^ tn � un m if c(x) is strongly normalbehavioral clash c(t) � d(u)FALSE m if c(x) and d(y) are di�erent strong normal formsDe�nition and Lemma 6.4 Given a swinging speci�cation SP = (�; AX), the constructor closure� of �SP is the binary relation on T� that is de�ned inductively as follows:� �SP � �,� for all constructors c : w! s and t; t0 2 T�;w, t � t0 implies c(t) � c(t0).Let t be a strong normal form, � : X ! NF� and u 2 NF� such that t� � u. Then t� = u and � � � forsome � : X ! NF�.



46 6 Coinductive axiomsProof by induction on the size of t. Let t� � u. If t� �SP u, then t� = u and � � � for some� : X ! NF� because t is strongly normal. Otherwise t� = c(v), v � u0 and c(u0) = u for some constructorc and v; u0 2 NF�. If t is a variable, then de�ne � : X ! NF� by t� = u and � =Xnftg �. Otherwise t = c(t0)and v = t0� for some t0 2 NF�(X). Hence t0� � u0 and thus by induction hypothesis, t0� = u0 and � � � forsome � : X ! NF�. Hence in both cases, t� = u and � � � . ❏Theorem 6.5 (criteria for behavioral consistency) A coinductive, functional and continuous spec-i�cation SP is behaviorally consistent.Proof. Let SP = (�; AX). By Lemma 3.6, �SP is compatible with all non-equality symbols of visSP(cf. 2.4) and all behavioral equalities and zigzag compatible with all equality predicates. Def. 6.1(3) and (4)imply that the hidden level of SP splits into three successive sublevels:� The 1st hidden level consists of all non-observing symbols of the hidden level of SP and their axiomssuch that these do not contain observers.� The 2nd hidden level consists of all observers of SP and their axioms.� The 3rd hidden level consists of all remaining symbols of the hidden level of SP and their axioms.Let � be the constructor closure of �SP . � is compatible with the constructors of �. Since �SP satis�esthe behavior axioms of SP , �SP is a subset of �SP and thus of �.At �rst, we show that � satis�es the behavior axioms for visible sorts. Let s be a visible sort and t �s t0.We prove Her(SP ) j= t � t0 by induction on the size of t; t0. If t �s t0, then t �SP t0. Otherwise t = c(u),u � u0 and t0 = c(u0) for a constructor c and term tuples u; u0. By induction hypothesis, u �SP u0. Hencet �SP t0.Since �SP is the greatest relation satisfying the behavior axioms, we conclude that the restriction of �to visible sorts is a subrelation of �SP and thus equal to the corresponding restrictions of �SP and �SP .Hence � is compatible with all non-equality symbols of visSP .Let SP1 = (�1; AX1) be visSP together with the 1st hidden level of SP . Suppose that� is (zigzag) compatible with all symbols speci�ed on the 1st hidden level. (1)Since � is compatible with all non-equality symbols of visSP , (1) implies that � is (zigzag) compatible with�1. Next we show (1).Let rSP1 = (r�1; rAX1) be the relational version of SP1 (cf. Def. 4.12). Since SP is coinductive, rSP1 isalso coinductive. Since SP is functional, Cor. 4.15 implies that (1) is equivalent to (2): for all non-observingground r�1-atoms �(t; u) there is u0 2 NF� [ f"g such thatHer(rSP1) j= �(t; u) ^ t � t0 implies Her(rSP1) j= �(t0; u0) ^ u � u0: (2)By Lemma 5.16(1), (2) follows from a corresponding property of an approximation of Her(rSP1): for allnon-observing ground r�1-atoms �(t; u) speci�ed on the 1st hidden level and i 2 N there is u0 2 NF� [ f"gsuch that �i(;) j= �(t; u) ^ t � t0 implies �i(;) j= �(t0; u0) ^ u � u0 (3)where � is the (rAX1 n visAX)-consequence operator on Her(rSP1)jvis� and visSP = (vis�; visAX).We prove (3) by induction on i. Since for all �-predicates r 2 r�1, r; = ;, (3) holds true for i = 0. Leti > 0. By induction hypothesis, (3) is valid for i� 1 and thus� is a behavioral �1-congruence on �i�1(;). (4)



6 Coinductive axioms 47Let �i(;) j= �(t; u) and t � t0. By the de�nition of � and since rSP1 is coinductive, there are an axiom�(t0; u0) ( ' on the 1st hidden level and � : X ! NF� such that t0 is strongly normal, (t0; u0)� = (t; u)and �i�1(;) j= '�. Since t0 is strongly normal and t0� = t � t0, Lemma 6.4 implies t0� = t0 and � � � forsome � : X ! NF�. By Def. 2.4(b), ' is weakly modal with output Y such that var(t0) \ Y = ;. Since� � � , (4) and Thm. 3.8(2) imply �i�1(;) j= '� 0 for some � 0 � � with � 0 =Y � . Hence �i(;) j= �(t0; u0)� 0and u = u0� � u0� � u0� 0. Since var(t0)\Y = ;, t0� 0 = t0� = t0. Hence �i(;) j= �(t0; u0) for u0 = u0� 0 � u.This completes the proof of (1). Next we show that �SP is compatible with all constructors of �.Suppose that � satis�es all behavior axioms for � (cf. Def. 2.4(3)). Then � agrees with �SP becausebehavioral SP -equivalence is the greatest relation satisfying the behavior axioms and because �SP is includedin �. Consequently, �SP is (zigzag) compatible with all constructors of �.Since we have already shown above that � satis�es the behavior axioms for visible sorts, it remains toshow that � satis�es the behavior axioms for the hidden sorts of �. This can be reduced to the followingcondition (5) because � � �SP � � is a subset of �: for all observing ground atoms �(t; a; u) there isu0 2 T� [ f"g such thatHer(SP ) j= �(t; a; u) ^ t � t0 implies Her(SP ) j= �(t0; a; u0) ^ u � u0: (5)Since SP is functional and � is compatible with SP -equivalence, we may assume that t; t0; a; u; u0 are normalforms. Hence by Lemma 5.16(1), (5) is equivalent to (6): for all ground normal forms t; a; u and observingatoms �(t; a; u) there is u0 2 NF� [ f"g such that�(t; a; u) `SP ; ^ t � t0 implies �(t0; a; u0) `SP ; ^ u � u0: (6)Hence it remains to show (6).By (1), Thm. 3.8(2) and since SP is functional, for all weakly modal �1-goals G and �; � : X ! NF�,� � � ^ G� `SP ; implies G� 0 `SP ; for some � 0 : X ! NF� with � � � 0 =out(G) � : (7)Let �(t; a; u) `SP ; and t � t0. We show the conclusion of (6) by induction on the length of a shortestreduction R of �(t; a; u) into the empty goal. Since SP is coinductive, there are a goal' = G0 ^ �1(t1; a1; u1) ^G1 ^ � � � ^ �n(tn; an; un) ^Gnand an axiom �(t0; a0; u0)( ' on the 2nd hidden level such that Def. 6.1(1) and (2) hold true for t0; a0; u0; G0instead of t; a; u;G. Moreover, there is � : X ! NF� such that (t0; a0; u0)� = (t; a; u), G0� `SP ; and forall 1 � i � n there is an SP -reduction of �i(ti; ai; ui)� into ; that is shorter than R. By the de�nition of �,we have one of two cases:(A) t �SP t0,(B) t = d(v), v � v0 and d(v0) = t0 for some constructor d and ground terms v and v0.Case A. �(t; a; u) `SP ; implies Her(SP ) j= �(t; a; u). Suppose that �(t; a; u) = (f(t; a) � u) for somedestructor f : w ! s. Hence f(t; a) �SP f(t0; a) because �SP satis�es the behavior axioms. We concludeHer(SP ) j= (f(t0; a) � u0) = �(t0; a; u0) for u0 = f(t0; a) �SP f(t; a) = u. If � is a separator, thenHer(SP ) j= �(t0; a; u) because �SP satis�es the behavior axioms. Hence Her(SP ) j= �(t0; a; u0) for u0 = u. If� is a transition predicate, then Her(SP ) j= �(t0; a; u0) for some u0 �SP u because �SP satis�es the behavioraxioms.



48 6 Coinductive axiomsHence in all three subcases, Her(SP ) j= �(t0; a; u0) for some u0 �SP u. Since �SP is a subset of �, weconclude u0 � u.Case B. By Def. 6.1(1), there are two subcases, namely B1: t0 is strongly normal, or B2: t0 = c(t00) fora constructor c and a strong normal form t00. In Case B1, (t0; a0)� = (t; a) � (t0; a) and Lemma 6.4 implies(t0; a0)� = (t0; a) and � � � for some � : X ! NF�. In Case B2, c(t00�) = t0� = t = d(v) and thus c = dand t00� = v. Hence (t00; a0)� = (v; a) � (v0; a) and Lemma 6.4 implies (t00; a0)� = (v0; a) and � � � for some� : X ! NF�.We construct a substitution � 0 : X ! NF� with(a) t0� = t0� 0and prove by induction on i that for all 0 � i � n,(b) ai� = ai� 0,(c) �i(ti; ai; ui)� 0 `SP ; if i > 0,(d) Gi� 0 `SP ;,(e) x� � x� 0 for all x 2 Vi.De�ne x� 0 = x� for all x 2 var(t0; a0). Then (a) holds true. Since a0� = a = a0�, (b) holds true for i = 0.By (7), � � � and G0� `SP ; imply G0� 00 `SP ; for some � 00 : X ! NF� with � � � 00 =out(G0) � . De�nex� 0 = x� 00 for all x 2 var(G0) n var(t0; a0). Since out(G0) \ var(t0; a0) = ;, we have x� 00 = x� = x� 0 for allx 2 var(G0)\var(t0; a0). Hence G0� 00 `SP ; implies (d) for i = 0. Moreover, for all x 2 var(G0)nvar(t0; a0),x� � x� 00 = x� 0. Hence V0 = var(t0; a0; G0), (a) and (b) for i = 0 imply (e) for i = 0.Let i > 0. Suppose that (b)-(e) hold true for i� 1. Since hidvar(ai) � var(a0) and a0� = a0� 0, we havex� = x� 0 for all x 2 hidvar(ai). De�ne x� 0 = x� for all x 2 visvar(ai) n Vi�1. Hence (e) for i � 1 impliesx� � x� 0 and thus x� �SP x� 0 for all x 2 visvar(ai). We conclude x� = x� 0 for all x 2 visvar(ai) becausex� and x� 0 are normal and SP is consistent. Hence for all x 2 var(ai), x� = x� 0, and thus (b) holds true.Since var(ti) � Vi�1 and ti is normal, (e) for i� 1 implies ti� � ti� 0. Since �i(ti; ai; ui)� has a reductioninto ; that is shorter than R, the induction hypothesis (6) implies �i(ti� 0; ai�; u0) `SP ; and ui� � u0 for someu0 2 NF�. Since ui is strongly normal, u0 is normal and ui� � u0, Lemma 6.4 implies ui# = u0 and � � # forsome # : X ! NF�. De�ne x� 0 = x# for all x 2 var(ui)n(Vi�1[var(ai)). Since (Vi�1[var(ai))\var(ui) = ;,ui� = u0 implies ui� 0 = u0. Hence by (b), �i(ti� 0; ai�; u0) `SP ; implies (c).De�ne � : X ! NF� by x� = x� 0 for all x 2 Vi�1 [ var(ai; ui) and x� = x� otherwise. By (e) for i � 1,x� � x� 0 = x� for all x 2 Vi�1. By (b), x� = x� 0 = x� for all x 2 var(ai). Since x� � x# = x� 0 = x� forall x 2 var(ui) n (Vi�1 [ var(ai)), we conclude � � �. Hence by (7), Gi� `SP ; implies Gi� 00 `SP ; for some� 00 : X ! NF� with � � � 00 =out(Gi) �. De�ne x� 0 = x� 00 for all x 2 var(Gi) n (Vi�1 [ var(ai; ui)). Sinceout(Gi) \ (Vi�1 [ var(ai; ui)) = ;, we have x� 00 = x� = x� 0 for all x 2 var(Gi) \ (Vi�1 [ var(ai; ui)). HenceGi� 00 `SP ; implies (d). Moreover, for all x 2 var(Gi) n (Vi�1 [ var(ai; ui)), x� � x� 00 = x� 0, and for allx 2 var(ui) n (Vi�1 [ var(ai)), x� � x# = x� 0. Hence Vi = Vi�1 [ var(ai; ui; Gi), (e) for i� 1 and (b) imply(e).(c) for all 0 � i � n and (d) for all 1 � i � n imply '� 0 `SP ;. Hence �(t0; a0; u0)� 0 `SP ;. In Case B1(see above), (a) and (b) for i = 0 imply (t0; a0)� 0 = (t0�; a0�) = (t0; a). In Case B2 (see above), (a) and (b)for i = 0 imply (t0; a0)� 0 = (t0�; a0�) = (c(t00� ); a0�) = (c(v0); a) = (d(v0); a) = (t0; a).Since var(u0) � Vn, (e) for i = n implies x� � x� 0 for all x 2 var(u0). By Lemma 6.3 and Prop. 5.6(3),



6 Coinductive axioms 49we may assume that u0 is normal. Hence by (1), u0� � u0� 0. Therefore, the conclusion of (6) holds true foru0 = u0� 0.This �nishes Case B of the proof of (6) from which we have already concluded that �SP is compatiblewith the constructors of �. Since �SP is (zigzag) compatible with �1 and all behavioral equalities and sinceHer(SP ) satis�es the behavior axioms for �, it remains to show the following properties:(8) For all destructors f : sw ! s0, t 2 T�;s and a �SP a0 2 T�;w, f(t; a) �SP f(t; a0).(9) For all separators r : sw and t 2 T�;s, Her(SP ) j= r(t; a) ^ a �SP a0 implies Her(SP ) j= r(t; a0).(10) For all transition predicates � : sws0 and t 2 T�;s,Her(SP ) j= �(t; a; u) ^ a �SP a0 implies Her(SP ) j= �(t; a0; u0) ^ u �SP u0 for some u0.(11) �SP is (zigzag) compatible with all symbols speci�ed on the 3rd hidden or a higher level of SP .Let rSP = (r�; rAX) be the relational version of SP , SP2 = (�2; AX2) be the subspeci�cation of rSPconsisting of vis(rSP ) and the 1st and 2nd hidden level of SP , hid(rSP ) = (�3; AX3) and �(rSP ) =(�4; AX4) (cf. Defs. 2.4 and 4.12). Since Her(SP ) satis�es the behavior axioms for �, (8)-(10) imply that�SP is (zigzag) compatible with �2.Since SP is coinductive, rSP is also coinductive. Since SP is functional, Cor. 4.15 implies that (8)-(11)can be combined to the following two implications: for all observing ground r�-atoms �(t; a; u) there isu0 2 NF� [ f"g such thatHer(rSP ) j= �(t; a; u) ^ a �SP a0 implies Her(rSP ) j= �(t; a0; u0) ^ u �SP u0; (12)and for all non-observing ground r�-atoms �(t; u) there is u0 2 NF� [ f"g such thatHer(rSP ) j= �(t; u) ^ t �SP t0 implies Her(rSP ) j= �(t0; u0) ^ u �SP u0: (13)By Lemma 5.16(1), (3) and (4), (12) and (13) follow from corresponding properties of approximations ofHer(rSP ): for all observing ground r�-atoms �(t; a; u) and i 2 N there is u0 2 NF� [ f"g such that�i(;) j= �(t; a; u) ^ a �SP a0 implies �i(;) j= �(t; a0; u0) ^ u �SP u0 (14)where � is the AX2-consequence operator on NF�, for all non-observing ground r�-atoms �(t; u) and i 2 Nthere is u0 2 NF� [ f"g such that�i(;) j= �(t; u) ^ t �SP t0 implies 9 j 2 N : �j(;) j= �(t0; u0) ^ u �SP u0 (15)where � is the (AX3 n AX2)-consequence operator on Her(rSP )j�2 , for all �-predicates r : w 2 �, t; t0 2NF�;w and i 2 N, 	i(NF�) j= r(t) ^ t �SP t0 implies 	i(NF�) j= r(t0) (16)where 	 is the (AX4 n AX3)-consequence operator on Her(rSP )j�3 , and for all non-observing ground r�-atoms �(t; u) with � 2 � n�4, t; t0 2 NF�;w and i 2 N there is u0 2 NF� [ f"g such that�i(;) j= �(t; u) ^ t �SP t0 implies 9 j 2 N : �j(;) j= �(t0; u0) ^ u �SP u0 (17)where � is the (rAX nAX4)-consequence operator on Her(rSP )j�4 .We prove (14)-(17) by induction on i. Since for all �-predicates r 2 r�, r; = ; and for all �-predicatesr : w 2 r�, rNF� = NF�;w, (14)-(17) hold true for i = 0. Let i > 0.



50 6 Coinductive axiomsProof of (14). Let �i(;) j= �(t; a; u) and a �SP a0. By the de�nition of � and since rSP is coinductive,there are an axiom �(t0; a0; u0) ( ' on the 2nd hidden level as in Def. 6.1 and � : X ! NF� such that(t0; a0; u0)� = (t; a; u) and �i�1(;) j= '�. Since a0 is strongly normal, a0� = a �SP a0 implies a0� = a0and � �SP � for some � : X ! NF�. By Def. 2.4(b), ' is weakly modal with output Y such thatvar(t0; a0)\Y = ;. Since � �SP � , the induction hypothesis (14) for i�1 and Thm. 3.8(2) imply �i�1(;) j='� 0 for some � 0 �SP � with � 0 =Y � . Hence �i(;) j= �(t0; a0; u0)� 0 and u = u0� �SP u0� �SP u0� 0. Sincevar(t0; a0)\ Y = ;, (t0; a0)� 0 = (t0; a0)� = (t0�; a0). Hence �i(;) j= �(t0�; a0; u0) for u0 = u0� 0 �SP u. Since�SP=� satis�es the behavior axioms of � (see above), t0� �SP t0� = t implies �i(;) j= �(t; a0; u00) for someu00 �SP u0 �SP u.Proof of (15). Let �i(;) j= �(t; u) and t �SP t0. By the de�nition of � and since rSP is coinductive,there are an axiom �(t0; u0) ( ' on the 3rd hidden level and � : X ! NF� such that (t0; u0)� = (t; u),�i�1(;) j= '� and by 6.1(3), t0 is strongly normal or �SP is zigzag compatible with �. In the second case,there is u0 �SP u such that Her(SP ) j= �(t0; u0) and thus �i(;) j= �(t0; u0) because �(t0; u0) is a �3-atom. Inthe �rst case (t0 is strongly normal), t0� = t �SP t0 implies t0� = t0 and � �SP � for some � : X ! NF�.By Def. 2.4(b), ' is weakly modal with output Y such that var(t0) \ Y = ;. Since � �SP � and � ismonotone, the induction hypothesis (15) for i � 1 and Thm. 3.8(2) imply �j(;) j= '� 0 for some j 2 N and� 0 �SP � with � 0 =Y � . Hence �j+1(;) j= �(t0; u0)� 0 and u = u0� �SP u0� �SP u0� 0. Since var(t0)\Y = ;,t0� 0 = t0� = t0. Hence �j+1(;) j= �(t0; u0) for u0 = u0� 0 �SP u.Proof of (16). Let 	i(NF�) j= r(t) and t �SP t0. By the de�nition of 	,for all (r(t0)) ') 2 AX and � : X ! T�, t = t0� implies 	i�1(NF�) j= '�. (18)Suppose that for all (r(t0)) ') 2 AX and � : X ! T�, t0 = t0� implies 	i�1(NF�) j= '� . (19)By the de�nition of 	, 	i(NF�) j= r(t0) and thus the proof is complete. It remains to show (19). Letr(t0) ) ' be a co-Horn clause of AX and � : X ! T� such that t0 = t0� . By 6.1(3), t0 is strongly normalor �SP is compatible with r. In the second case, Her(SP ) j= r(t0) and thus 	i(NF�) j= r(t0) because r(t0)is a �4-atom. By the de�nition of 	, 	i(NF�) j= r(t0� ) and (r(t0) ) ') 2 AX imply 	i�1(NF�) j= '� .In the �rst case (t0 is strongly normal), there is � : X ! NF� such that t0� = t and � �SP �. By (18),	i�1(NF�) j= '�. By Def. 2.4(4), ' is poly-modal. Since t �SP t0, the induction hypothesis (16) for i � 1and Thm. 3.8(3) imply 	i�1(NF�) j= '� .Proof of (17). Let �i(;) j= �(t; u) and t �SP t0. By the de�nition of � and since rSP is coinductive,there are an axiom �(t0; u0) ( ' on the �-level of AX and � : X ! NF� such that (t0; u0)� = (t; u),�i�1(;) j= '� and by 6.1(3), t0 is strongly normal or �SP is zigzag compatible with �. In the second case,there is u0 �SP u such that Her(SP ) j= �(t0; u0) and thus �i(;) j= �(t0; u0). In the �rst case (t0 is stronglynormal), t0� = t �SP t0 implies t0� = t0 and � �SP � for some � : X ! NF�. By Def. 2.4(b), ' isweakly modal with output Y such that var(t0) \ Y = ;. Since � �SP � and � is monotone, the inductionhypothesis (17) for i � 1 and Thm. 3.8(2) imply �j(;) j= '� 0 for some j 2 N and � 0 �SP � with � 0 =Y � .Hence �j+1(;) j= �(t0; u0)� 0 and u = u0� �SP u0� �SP u0� 0. Since var(t0)\ Y = ;, t0� 0 = t0� = t0. Hence�j+1(;) j= �(t0; u0) for u0 = u0� 0 �SP u. ❏Example 6.6 In the following stream speci�cation, the destructors head and tail of INFSEQ (cf. Ex.2.8) are replaced by a transition predicate �!: stream � entry � stream. This allows us to include �nitesequences into the stream domain.STREAM = LISTORD and NAT then



6 Coinductive axioms 51hidsorts stream = stream(entry)constructs empty :! stream& : entry � stream! streamblink :! stream(nat)nats : nat! stream(nat)odds; evens : stream! streamzip : stream � stream ! streammap : (entry ! entry) � stream! streamfilter : (entry ! bool) � stream ! streamseparators disabled : streamtranspreds �! : stream � entry � streamstatic �-preds enabled; finite : streamexists : (entry ! bool) � stream�-preds fair : (entry ! bool)� streaminfinite : streamforall : (entry ! bool)� streamvars n : nat x; y : entry L : list s; s0; t; t0 : streamf : entry ! entry g : entry ! boolHorn axioms x&s x�! sblink 0�! 1&blinknats(n) n�! nats(n+ 1)odds(s) x�! odds(t) ( s x�! s0 ^ s0 y�! tevens(s) x�! evens(t) ( s y�! s0 ^ s0 x�! tzip(s; s0) x�! zip(s0; t) ( s x�! tzip(s; s0) x�! zip(s; t) ( disabled(s) ^ s0 x�! tmap(f; s) f(x)�! map(f; t) ( s x�! tfilter(g; s) x�! filter(g; t) ( s x�! t ^ g(x) � truefilter(g; s) y�! t0 ( s x�! t ^ g(x) � false ^ filter(g; t) y�! t0enabled(s) ( s x�! tdisabled(empty)disabled(odds(s)) ( disabled(s)disabled(evens(s)) ( disabled(s)disabled(evens(s)) ( s x�! t ^ disabled(t)disabled(zip(s; s0)) ( disabled(s) ^ disabled(s0)disabled(map(f; s)) ( disabled(s)disabled(filter(g; s)) ( disabled(s)disabled(filter(g; s)) ( s x�! t ^ g(x) � false ^ disabled(filter(g; t))finite(s) ( disabled(s)finite(s) ( s x�! t ^ finite(t)exists(g; s) ( s x�! t ^ g(x) � trueexists(g; s) ( s x�! t ^ exists(g; t)co-Horn axioms infinite(s) ) 9x; t : (s x�! t ^ infinite(t))forall(g; s) ) (s x�! t ) (g(x) � true ^ forall(g; t)))fair(g; s) ) exists(g; s)fair(g; s) ) (s x�! t ) fair(g; t))



52 7 A modal invariance theoremIn the �nal STREAM-model, s x�! t holds true if x is the �rst entry and t is the rest of s. disabledand enabled separate empty from nonempty streams. finite and infinite distinguish �nite from in�nitestreams. The other function symbols and predicates are interpreted as the synomymous symbols of INFSEQ(cf. Ex. 2.8). The Horn axioms were inspired by transition system speci�cations given in [70, 44]. CCS-likeprocesses can be speci�ed coinductively in a quite similar way (see [62]). ❏7 A modal invariance theoremThis section is devoted to the proof of Thm. 7.9. As its forerunner, [14], Thm. 4.18, it depends on acompactness theorem, which, in turn, is based on 6Los' Theorem that tells us which model classes are closedunder ultraproducts (cf., e.g., [12, 10, 26]). Given a swinging speci�cation SP , we will see that Mod(SP ),Mod�(SP ), Modbe(SP ) and Modbc(SP ) are all of this kind (cf. Def. 3.1).Let I be set. F � }(I) is a �lter over I if(1) ; 62 F ,(2) A 2 F ^A � B � I implies B 2 F , or, equivalently, A \B 2 F implies A;B 2 F ,(3) A;B 2 F implies A \B 2 F .F � }(I) has the �nite intersection property (�p) i� the intersection of each �nite subset of F isnonempty. By (3), all �lters have the �p. Conversely, if F has the �p, thenfA � I j B1 \ � � � \Bn � A; B1 \ � � � \Bn 2 Fgis a �lter. Hence a subset of }(I) can be extended to a �lter i� it has the �p. For instance, the setfN n fig j i 2 Ng has the �p and is thus contained in a �lter.A �lter F that is maximal w.r.t. the subset relation on }(I) is called an ultra�lter. A �lter is anultra�lter i� for all A � I, A 2 F or I nA 2 F .Lemma 7.1 (Ultra�lter Theorem) Each �lter F over I can be extended to an ultra�lter.Proof. Let F be the set of all �lters containing F . F is partially ordered by set inclusion. It is easyto show that the union of each totally ordered subset of F is again in F . Hence by Zorn's Lemma, F hasmaximal element. ❏Since M = fN n fig j i 2 Ng has the �p, Lemma 7.1 implies that M is contained in an ultra�lter, whichwe denote by F!.A class C of �-structures is elementary if there is a closed �rst-order �-formula ' such that A 2 C i�A satis�es '.Let SP = (�; AX) be a swinging speci�cation. Mod(SP ), Modbe(SP ) and Modbc(SP ) are elementary.De�nition 7.2 (ultraproducts) Let F be an ultra�lter over I, fAigi2I be a family of �-structures andA = Qi2I Ai. For all k 2 I, let prk : A ! Ai be the projection sending (ai)i2I to ak. prk extends to afunction on }(A+) by prk(B) =def f(prk(a1); : : : ; prk(an)) j (a1; : : : ; an) 2 Bg. The ultraproduct A=F ofAi, i 2 I, modulo F is the �-structure de�ned as follows:� For all sorts s 2 �, (A=F )s = As.� For all function symbols f : s1 : : : sn ! s 2 �, a = (a1; : : : ; an) 2 (A=F )s1:::sn and i 2 I,pri(fA=F (a)) = fAi (pri(a1); : : : ; pri(an)).



7 A modal invariance theorem 53� For all predicates r : s1 : : : sn 2 �, (a1; : : : ; an) 2 rA=F i� fi 2 I j (pri(a1); : : : ; pri(an)) 2 rAig 2 F .If for all i; j 2 I, Ai = Aj , then A=F is called an ultrapower of Ai.Given S-sorted binary relations �i � Ai�Ai, i 2 I, the ultraproduct extension of �i, i 2 I, moduloF is the S-sorted relation � � A=F � A=F that is de�ned as follows: for all a; b 2 A=F ,a � b ()def fi 2 I j pri(a) �i pri(b)g 2 F: ❏By (2) and (3), � is a �-congruence if for all i 2 I, �i is a �-congruence.Def. 7.2 di�ers from the classical notion of an ultraproduct insofar as the carrier of A=F is not a quotientofQi2I Ai, but the product itself. In fact, the usual ultraproduct is the quotient of A=F by the ultraproductextension of the equality relations on Ai, i 2 I. These ultraproducts preserve classes of �-structures with�-equality, such as Mod�(SP ). We obtain the same closure property if we �rst construct an ultraproductA=F in the sense of Def. 7.2 and then factorize A=F by the ultraproduct extension � of the equality relationson the components of A. Sincea � b () fi 2 I j pri(a) = pri(b)g 2 F () fi 2 I j pri(a) �Ai pri(b)g 2 F () a �A=F b;the quotient of A=F by � is indeed a �-structure with �-equality.We adapt 6Los' Theorem to many-sorted signatures and the ultraproduct de�nition 7.2:Theorem 7.3 ( 6Los' Theorem) Let F be an ultra�lter, fAigi2I be a family of �-structures and A =Qi2I Ai. Let ' be a �rst-order �-formula and b be a valuation in A=F .A=F j=b ' i� fi 2 I j Ai j=pri�b 'g 2 F:Proof by induction on the structure of a minimal formula  that is equivalent to ' and built up of atoms,negation, conjunction and universal quanti�cation. Let J = fi 2 I j Ai j=pri�b  g.Case 1.  is an atom, say  = r(t1; : : : ; tn). ThenA=F j=b  () (b�(t1); : : : ; b�(tn)) 2 rA=F () fi 2 I j (pri(b�(t1)); : : : ; pri(b�(tn))) 2 rAig 2 F() fi 2 I j ((pri � b)�(t1); : : : ; (pri � b)�(tn)) 2 rAig 2 F () J 2 F:Case 2.  = :#. ThenA=F j=b  () A=F 6j=b # ind:hyp:() fi 2 I j Ai j=pri�b #g 62 F () I n fi 2 I j Ai j=pri�b #g 2 F() fi 2 I j Ai 6j=pri�b #g 2 F () J 2 F:Case 3.  = #^ �. ThenA=F j=b  () A=F j=b # ^A=F j=b � ind:hyp:() fi 2 I j Ai j=pri�b #g 2 F ^ fi 2 I j Ai j=pri�b �g 2 F() fi 2 I j Ai j=pri�b #g \ fi 2 I j Ai j=pri�b �g 2 F () J 2 F:Case 4.  = 8x : # for some x 2 X. Then J = fi 2 I j 8ai 2 Ai : Ai j=(pri�b)[ai=x] #g = fi 2 I j 8a 2A=F : Ai j=pri�b[a=x] #g. Hence for all a 2 A=F , J is a subset of J(a) =def fi 2 I j Ai j=pri�b[a=x] #g.Suppose that J 2 F () 8a 2 A=F : J(a) 2 F: (4)



54 7 A modal invariance theoremThen A=F j=b  () 8a 2 A=F : A=F j=b[a=x] # ind:hyp:() 8a 2 A=F : J(a) 2 F (4)() J 2 F:Hence it remains to show (4). The \)"-part follows from J � J(a). Suppose that J 62 F . Then I n J 2 F .For all i 2 I n J there is ai 2 Ai such that Ai j=(pri�b)[ai=x] :#. Let a 2 A=F such that for all i 2 I n J ,pri(a) = ai. Then pri � b[a=x] = (pri � b)[ai=x] and thusI n J � fi 2 I j Ai j=(pri�b)[ai=x] :#g = fi 2 I j Ai j=pri�b[a=x] :#g = I n J(a):Hence by (2), I n J(a) 2 F and thus J(a) 62 F . This completes the proof of the \("-part of (4). ❏An immediate consequence is the following:Corollary 7.4 All elementary classes of �-structures are closed under ultraproducts. ❏Corollary 7.5 (Compactness Theorem) Let � be a set of �rst-order �-formulas and C be a class�-structures that is closed under ultraproducts.(1) If for all �nite subsets �0 of � there are A 2 C and b : X ! A such that A j=b �0, then there are B 2 Cand c : X ! B such that B j=c �.(2) Let ' be a �rst-order �-formula. If C j= V� ) ', then there is a �nite subset �0 of � such thatC j= V�0 ) '.Proof. (1) Let �+ be the set �nite conjunctions of elements of �. By assumption, for all ' 2 �+ thereare A' 2 C and b' : X ! A' such that A' j=b' '. Let A = Q'2�+ A' and for all �nite conjunctions ' ofelements of �, let D' = f 2 � j A j=b 'g. Since for all '1; : : : ; 'n 2 �+, D'1 \ � � � \D'n = D'1^���^'n ,S = fD' j ' 2 �+g has the �p and thus can be extended to an ultra�lter F . We de�ne c : X ! A=F bypr' � c = b' for all ' 2 �+. By Thm. 7.3,A=F j=c ' () f 2 � j A j=pr �c 'g = f 2 � j A j=b 'g = D' 2 F:But D' 2 F follows from the construction of F . Hence (1) holds true for B = A=F .(2) Suppose that for all �nite subsets �0 of � there are A 2 C and b : X ! A such that A 6j=b V�0 ) 'and thus A j=b V�0 ^ :'. Then for all �nite subsets �0 of � [ f:'g there are A 2 C and b : X ! A withA j=b V�0. Hence by (1), there are B 2 C and c : X ! B such that B j=c �[f:'g and thus B 6j=c V�) '.We conclude C j= V�) '. ❏A �-structure A is !-saturated if for each countable set � of �rst-order �-formulas the following holdstrue: if for all �nite subsets �0 of � there is b : X ! A such that A j=b �0, then there is c : X ! A such thatA j=c �.Given �-structures A and B, an injective S-sorted function h : A ! B is an elementary embeddingof A in B if for all �rst-order �-formulas ' and valuations b in A, A j=b ' i� B j=h�b '. We say that A iselementarily embedded in B.Theorem 7.6 Each �-structure A is elementarily embedded in an !-saturated ultrapower of A.Proof.13 Since the set fN n fig j i 2 Ng has the �p, it can be extended to an ultra�lter F . The functionh : A ! ANde�ned by h(a) = (a; a; a; : : :) embeds A in AN=F . h is an elementary embedding because byThm. 7.3, for all �rst-order formulas ' and b : X ! A,AN=F j=h�b ' () fi 2 N j A j=pri�h�b 'g 2 F () fi 2 N j A j=b 'g 2 F ;62F; I2F() A j=b ':13The proof proceeds along the lines of the proofs of [12], Lemma 2.3, and [26], Thm. 8.5.



7 A modal invariance theorem 55We claim that AN=F is !-saturated. Let � = f'0; '1; '2; : : :g be a countable set of �rst-order formulas.Suppose that for all �nite subsets �0 of � there is b : X ! AN=F such that AN=F j=b �0. Then, in particular,for all k 2 N there is bk : X ! AN=F such that AN=F j=bk '0 ^ � � � ^'k.Let k 2 N. By Thm. 7.3, fi 2 N j A j=pri�bk '0 ^ � � �^'kg 2 F . Since ; 62 F , there is f(k) 2 N such thatA j=prf(k)�bk '0 ^ � � � ^'k. We de�ne c : X ! AN=F by pri � c = prf(i) � bi for all i 2 N. Since k was chosenarbitrarily, we obtain 8i � k : A j=pri�c 'k: (5)Moreover, by Thm. 7.3, AN=F j=c 'k () Dk =def fi 2 N j A j=pri�c 'kg 2 F: (6)Since for all i 2 N, N n fig 2 F , Ek =def fi 2 N j i � kg = Tk�1i=0 (Nn fig) 2 F . By (6), Ek is a subset of Dk.Hence Ek 2 F implies Dk 2 F and thus by (7), AN=F j=c 'k. We conclude that AN=F is !-saturated. ❏From now on we follow the proof of Benthem's Invariance Theorem ([14], Thm. 4.18) in order to obtainour modal invariance theorem.Given a �-structure A and a 2 A, a modal formula '(x) with A j=a=x '(x) is called a modal theoremof a (cf. Def. 2.3). mod(a) denotes the set of all modal theorems of a. Given �-structures A and B, a 2 Aand b 2 B, a and b are modally equivalent if mod(a) = mod(b).Lemma 7.7 a and b are modally equivalent i� mod(a) � mod(b) or mod(b) � mod(a).Proof. W.l.o.g. let mod(a) � mod(b). Assume that there is '(x) 2 mod(b)nmod(a). Then A j=a=x :'(x).Hence :'(x) is a modal theorem of a. Since mod(a) � mod(b), we conclude that :'(x) is a modal theoremof b, which contradicts the assumption that '(x) is also a modal theorem of b. Hence mod(a) = mod(b). ❏Lemma 7.8 Let A and B be !-saturated �-structures. Then � � A�B de�ned by: a � b i� mod(a) =mod(b) is a bisimulation (cf. Def. 2.3).Proof. Let s1; : : : ; sn 2 S, 1 � i � n, a 2 Asi , b 2 Bsi and tj 2 T�;sj for all 1 � j 6= i � n such thata � b, i.e. for all modal formulas '(x), A j=a=x '(x) i� B j=b=x '(x).Let f : s1 : : : sn ! s be a function symbol. Then for all modal formulas '(x),A j=fA(tA1 ;:::;a;:::;tAn )=x '(x) () A j=a=x '(f(t1; : : : ; x; : : : ; tn))() B j=b=x '(f(t1; : : : ; x; : : : ; tn)) () B j=fB(tB1 ;:::;a;:::;tBn )=x '(x):Hence fA(tA1 ; : : : ; a; : : : ; tAn ) � fB(tB1 ; : : : ; b; : : : ; tBn ).Let r : s1 : : : sn be a static predicate. Since '(x) = r(t1; : : : ; x; : : : ; tn) is a modal formula, A j=a=x '(x)i� B j=b=x '(x). Hence (tA1 ; : : : ; a; : : : ; tAn ) 2 rA i� (tB1 ; : : : ; b; : : : ; tBn ) 2 rB.Let � : s1 : : : sns be a dynamic predicate, a0 2 As and b0 2 Bs. We must show(tA1 ; : : : ; a; : : : ; tAn ; a0) 2 �A implies 9 b0 2 B : (tB1 ; : : : ; b; : : : ; tBn ; b0) 2 �B ^ a0 � b0; (1)(tB1 ; : : : ; b; : : : ; tBn ; b0) 2 �B implies 9 a0 2 A : (tA1 ; : : : ; a; : : : ; tAn ; a0) 2 �A ^ a0 � b0: (2)We show (1). (2) can be proved analogously. Let (tA1 ; : : : ; a; : : : ; tAn ; a0) 2 �A. By Def. 2.3, for all modaltheorems '(y) of a0, 9y(�(x; y)^'(y)) is a modal theorem of a. Since a � b, A j=a=x 9y(�(x; y)^'(y)) impliesB j=b=x 9x(�(x; y) ^ '(y)). Hence for all '(y) 2 mod(a0) there is b' 2 B such that B j=b'=y '(y). Since B



56 8 Conclusionis !-saturated, there is b0 2 B such that for all ' 2 mod(a0), B j=b0=y '(y). Hence all modal theorems of a0are modal theorems of b0 and thus by Lemma 7.7, a0 and b0 are modally equivalent. ❏Theorem 7.9 (Modal Invariance Theorem) Let ' be a unary �rst-order formula that is bisimulationinvariant in an elementary class C of �-structures (with or without �-equality). Then ' is modal in C.Proof. Let ' = '(x) and � be the set of modal formulas  =  (x) such that C satis�es ')  . Supposethat C satis�es V�) '. Then by Cor. 7.5(2), there is a �nite subset f 1; : : : ;  ng of � such that C satis�es( 1 ^ � � �^ n)) '. By the de�nition of �, we conclude that ' and  1 ^ � � �^ n are equivalent in C. Henceit remains to show C j= V�) '.Let A 2 C and a 2 A such that A j=a=x �. Suppose thatfor all �nite subsets � of mod(a) there are B 2 C and b 2 B such that B j=b=x ' ^V�: (1)By Cor. 7.5(1), (1) implies B j=b=x mod(a)[f'g for some B 2 C and b 2 B. Hence mod(a) = mod(b). ByThm. 7.6, A and B are second-order embedded in !-saturated extensions A+ resp. B+. Since C is second-order de�nable, A;B 2 C implies A+; B+ 2 C. Moreover, A j=a=x mod(a) implies A+ j=g(a)=x mod(a) andB j=b=x mod(a)[ f'g implies B+ j=h(b)=x mod (a)[ f'g where g and h are the embeddings of A and B inA+ resp. B+. Hence mod(g(a)) = mod(a) = mod(b) = mod(h(b)), i.e. h(b) and g(a) are modally equivalentand thus by Lemma 7.8, (h(b); g(a)) belongs to a bisimulation. Since ' is bisimulation invariant in C andA+; B+ 2 C, B+ j=h(b)=x ' implies A+ j=g(a)=x ' and thus A j=a=x '.It remains to show (1). Assume that there is a �nite subset � of mod(a) such that for all B 2 C andb 2 B, B 6j=b=x ' ^ V�. Then B j=b=x ' ) :V�. Hence :V� 2 � and thus A j=a=x :V� becauseA j=a=x �. But � � mod(a) implies A j=a=x V� and thus A 6j=a=x :V�, which contradicts A j=a=x :V�.
❏ Corollary 7.10 Let ' be a unary �rst-order formula that is bisimulation invariant inMod(SP ),Mod�(SP ),Modbe(SP ) or Modbc(SP ). Then ' is modal in Mod(SP ), Mod�(SP ), Modbe(SP ) or Modbc(SP ), respec-tively. ❏8 ConclusionWe have introduced swinging types as a speci�cation formalism that covers functional, relational and state-oriented \transitional" techniques. The approach developed here di�ers considerably from the preliminaryversions given in [58, 61]. Swinging types combine the dominant algebraic touch of other data type pre-sentations with concepts, results and methods obtained in relational semantics, modal logic, higher-orderfunctional programming and Horn clause rewriting. The integration of functions and relations becomesparticularly evident in the possibility to use de�ned functions or static or dynamic predicates as observersthat determine the behavior axioms and thus the interpretation of behavioral equality.Since the number of observers raises the number of behavior axioms and thus the number of cases producedby unfolding behavioral equivalences, only a few functions or predicates should be declared as observers. Formost behavioral equalities, one or two observers turn out to be su�cient (cf. [62]). Behavioral consistencyand behavioral term replacement require that � is a weak congruence. For this purpose we have establishedcoinductivity as a|mainly syntactic|property of a swinging speci�cation that ensures weak congruence andcovers most other congruence criteria to be found in the literature on hidden/observational or process types.From a practical point of view, more general weak-congruence criteria than coinductivity are not needed.
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