Conditional Strategic Hedge Transformations

Temur Kutsia



What Is It About?

v

Transforming term sequences into term sequences

v

Provided that some given conditions hold

v

Rules specify a single transformation step

v

Strategies define how rules are applied

v

All in one language



What Is It About?

» Terms are unranked

> A rule may transform the same sequence in (finitely many)
different ways: nondeterministic transformations
> A strategy may specify, for instance, the following sequence of
rule applications:
> Apply the rule R; as long as possible
» Transform the result with the first applicable rule from Ry and
R3
» Map the rule R3 on the resulting sequence
» Transform a subterm occurring somewhere deep in the result
by a rule Ry

» Not only rules, but also more complex strategies can be
combined in this way



Unranked Terms

Example
Flg.£(X), 9la.y)) (1)

@& @ )
OO

» Arity of function symbols is not fixed.

» Different occurrences of the same function symbol may have
different number of arguments.



Hedges

Example

f(g, f(X),9(a,y)), X, 9(y)

. ®O
@0 w O
®OO

> Finite sequences of unranked terms.



Theories over Unranked Terms and Hedges

Active subject of study in recent years.

>

v

v

v

v

Nearly ubiquitous in XML-related applications.
Suitable data structures for knowledge representation.
Model variadic procedures in programming languages.
Appear in

automata theory,

rewriting,

program analysis and transformation,
etc.

vV vy VvVYyy

Most of the research activities focus on formal languages,
automata, corresponding logics.



Variable Instantiations

Variables (in the first-order case):
» Individual variables — can be instantiated by individual terms.

» Sequence variables — can be instantiated by hedges.



Variable Instantiations

Example

f(g, F(X),9(a,v))

{(X = (g

(

@ -
®

a),y),y— f(a)}

®

H

0O



Variable Instantiations

Example

f(g, f(9(a),y),g(a, [(a)))  {X = (g(a),y), v [la)}

e Q@ 6



Variable Instantiations

Variables (in the second-order case):

v

Individual variables — can be instantiated by individual terms.

v

Sequence variables — can be instantiated by hedges.

v

Function variables — can be instantiated by function symbols.

v

Context variables — can be instantiated by contexts (special
unary functions).



Variable Instantiations
Example

fla, (1 (b, X)) {C = glgla),0,b), X = (), =1}

Yol

F @



Variable Instantiations

Example
fla,g(g(a),(b), b)) {C = glg(a),0,b), X = (), /"= 11}
() ORNO
OO0 ®o®

GO @
@@



Variables

» Sequence variables are pragmatic necessity when function
symbols are unranked.

» They help to select subsequences of arbitrary length.

» Context variables help to select subexpressions at arbitrary
depth.

» Function variables are handy when one does not know the
function symbol name.

> All of them greatly increase expressive power and flexibility.

» Have to be dealt with more involved symbolic techniques.



Matching

> When a rule is applied, its left hand side should match the
hedge to be transformed.

> Requires a matching algorithm.



Syntactic matching for Unranked Terms

» Given: Two unranked terms: pattern and data.

» Find: A substitution that when applied to the pattern, makes
it identical to the data.



Syntactic Matching for Unranked Terms

(X, C(f(Y)), 2) =




Syntactic Matching for Unranked Terms

(X, C(f (), 2) = [flg(f(®),9(f(a,b), h(f(a), f)),b;c)
Joe @
(D G G
01010, 0 0
{ , X ),C = g(0),Y = b, Z — (



Syntactic Matching for Unranked Terms

(X, C(f (), 2) = [flg(f(®),9(f(a,b), h(f(a), f)),b;c)
goe e
ONO 0
0010, 0 9
{ , X = g(f(),C v glo,h(f



Syntactic Matching for Unranked Terms

(X, C(f (), 2) = [flg(f(®),9(f(a,b), h(f(a), f)),b;c)
goo @
& 0 0
000, 0 9
{ , X = g(f(),C—g(f ), Y= a,Z—(



Syntactic Matching for Unranked Terms

(X, C(f (), 2) = [flg(f(®),9(f(a,b), h(f(a), f)),b;c)
goe e
& 0 0
000, 0 (O
{ , X —=g(f(0),Cw—g(f



Syntactic Matching for Unranked Terms

(X, C(f(V)), 2)




Syntactic Matching for Unranked Terms

(X,C(f(Y)),Z) = f(g(f(b)),g(f(a,b),h(f(a),f)),b,c)

d@

Ce [[9 —seqv 7—seq Y € Ha b*

{ , X = g(f(),C v glo,h(f



Solving Matching Problems

v

A sound, terminating, and complete algorithm.

v

Integrates membership constraints into matching.

v

No generate-and-test.

v

Computes the right answers directly.



Transformations

» Ternary predicate ::—.
» Atoms: ::— (t, (h1), (ha2)), where
» () is an unranked function symbol.
» t can not be a sequence variable.
> hy, ho — hedges.
» The term ¢ is called a strategy.
» Syntactic sugar: t :: hy — he.
> Intuition: The strategy t transforms the hedge h; into the
hedge ho.
» (Conditional) hedge transformation rules: Nonnegative Horn
clauses in this language.

> Queries: Negative clauses.



Rules and Queries

> Rules:
strategyy :: hedgeg — hedge), <
strategy; :: hedge; — hedge,
strategyy :: hedge, — hedge,,.
> Queries

< strategy; :: hedge; — hedge,

strategyy :: hedge, — hedge,,.



Logic: Bad News

» Logic with unranked symbols and sequence variables is not
compact.

» Counterexample of compactness. An infinite set consisting of:

3X. p(X)
-p
Vzi. —p(z1)
Vi, xe. —p(z1,22)

V1, 22, x3. —p(x1, T2, 23)

» Every finite subset of this set has a model, but the entire set
does not.



Logic: Bad News

Consequences:
» No complete proof theory.

» A potentially serious blow to prospects of automated
reasoning with sequence variables.



Good News

v

The clausal fragment behaves well.

v

Herbrand’s theorem holds.

v

Refutationally complete proof method possible.

v

Clausal fragment covers many practical cases.



Inference System: The pLog Calculus

» Resolution:

& strihy — ho, Q str’ by — hi < Body
(< Body, id :: hly = ho, Q)o ’

where o € mesm({str’ < str,h); < hi}).



Inference System: The pLog Calculus

» Resolution:

& strihy — ho, Q str’ by — hi < Body

(< Body, id :: hly = hs, Q)o
where o € mesm({str’ < str,h); < hi}).

> Identity factoring:

<id: hy — ho,Q
Qo ’

where o € mesm({ha < h1}).

9



Inference System: The pLog Calculus

» Resolution:

& strihy — ho, Q str’ by — hi < Body
(< Body, id :: hly = ho, Q)o ’

where o € mesm({str’ < str,h); < hi}).
> Identity factoring:

<id: hy — ho,Q
Qo ’
where o € mesm({ha < h1}).

» Resolution + identity factoring is refutationally complete for
conditional hedge transformations.

> We have to guarantee that at each step there is a matching
problem (and not unification).



Well-Modedness Guarantees Matching

Well-moded queries and clauses:

> A query
<=ty h —>h’1,...,tn 2 hy, — h;l
is well-moded, if forall 1 <¢ <n,

U;;ll vars(h}) D wvars(ti, hy).



Well-Modedness Guarantees Matching

Well-moded queries and clauses:

> A query
<ty hy — R,y hy — R
is well-moded, if forall 1 <¢ <n,
U’ lvars(h}) D wvars(ti, hy).
> A clause
0 ::h/0—>hn+1 <tyhy = b, ty i hy — R
is well-moded if for all 1 <43 <n+1,

U; %vars(fo,h]) 2D wvars(ti, hy).



Negation and Anonymous Variables

» Anonymous variables (for each kind of variable we have) are
very handy.

» They need a special treatment in matching (not hard).
» Clause bodies and queries may contain negative literals.
» They are interpreted as “negation as finite failure”.

> t:: hy /4 ho: All attempts to transform h into ho by t
terminate with failure.

» Well-modedness has to be extended to clauses and queries
with anonymous variables and negation.



Simple Example:

Clauses:

Goal:

Answers:

First-Order Rewriting

rewrite(z) :: C(x) = C(y) <z 10 — y.



Defining and Combining Strategies

Composition:

compose(Tsy, Xsirs) 2 X = YV <
Tstr 02 X — 4,
compose(Xsirs) 2 Z — Y.
compose() = X — X.

Choice:

choice(Zspr, Xotrs) = X = Y <
Tstr 0 X — Y.

choice(Zsir, Ystry Xstrs) = X — Y <
choice(Ystr, Xotrs) = X — Y.



Defining and Combining Strategies

Closure:

closure(zgy) =+ X — X.

closure(zgy) =+ X — YV <
Tstr 0 X — 4,
closure(xsy) 2 Z — Y.

Normal form:

nf(zsr) o X = YV <
closure(zgy) 2 X — Y,
Tstr 2 Y 5 _geq-



Defining and Combining Strategies

First applicable strategy:

first(zspr, Xors) 0 X — YV <

Tstr 2 X — Y.
first(Zstr, Ystr, Xstrs) = X = Y <
Tstr 12 X 7L> -seq >

first(yser, Xotrs) = X — Y.
Map:

map(zsir) () = ().
map(zsy) == (2, X) = (y, V) <
Tstr 22 T — Y,

map(xsy) 2 X — Y.



Simple Example. Sorting.

reorder(Forg) (X, 2, Y, y, Z) = (X,y, Y, 2,Z) <
Ford(y7x)-



Simple Example. Sorting.

reorder(Forg) (X, 2, Y, y, Z) = (X,y, Y, 2,Z) <
Ford(y7x)-

» reorder(F,.) reorders two elements in the input hedge that
are in the reversed order with respect to F,.4.

» reorder(>) :: (1,3,2) — Y nondeterministically returns two
instantiations for Y: (3,1,2) and (2,3,1).



Simple Example. Sorting

s0rt(Forg) := nf (reorder(F,pq))



Simple Example. Sorting

sort(Fopq) := nf (reorder(Forg))

» The query
sort(>) :(3,3,1,2,4) = Y.

computes the instantiation of Y: (4,3,3,2,1).



Simple Example. Zip

ZiPStep = (Fova(va)vF(y¢ Y)vF(Z)) -
(F0p7F(X)7F(Y)aF(ZaF0P(x7y)))'
zipstep :: (fun, F', ', 2) — 2.

zip i (Fop, F(X),F(Y)) = 2z <=
nf (zipstep) :: (Fop, F(X),F(Y),F) — z.



Simple Example. Zip

zipstep = (Fop, F(2,X), F(y,Y),F(Z)) —
(F0p7F(X)vF(Y)aF(ZaFOP(xay)))'
zipstep :: (fun, F', ', 2) — 2.

zip i (Fop, F(X),F(Y)) = 2z <=
nf (zipstep) :: (Fop, F(X),F(Y),F) — z.

» The query

zip : (g,f(1,2,3),f(a,b,c)) — z.

computes the instantiation of z: f(g(1,a),g(2,b),9(3,¢)).



Simple Example. Substitution Application

applystep :: (z — y, C(z)) = (z — y, C(y)).

apply :: (CCsubst, yezpr) — Zinstance <
nf(applystep) = (Isubsta yea:pr) — (—mda Zinstance)~



Simple Example. Substitution Application

applystep :: (z — y, C(x)) — (z — y, C(y)).

apply :: (xsubsty yezpr) — Zinstance <
nf(applystep) = (Isubsta yem’pr) — (—mda Zinstance)'

» The query
apply = (v f(a), f(v, g(b,v))) — 2.

computes the instantiation of z: f(f(a), g(b, f(a))).



Simple Example. Occurrence Check

occurs i (T, —ctz(T)) — true.



Simple Example. Occurrence Check

occurs = (T, _etz(x)) — true.

» The query occurs :: (v, f(v, g(b,v)))
» The query occurs :: (g(b,v), f(v, g(b
» The query occurs :: (u, f(v, g(b,v)))

— true succeeds.
,v))) — true succeeds.

— true fails.



Example. First-Order Unification Rules

decomposition :: ({F(X;1) = F(X2), Xegs }+ Zsubst) —

({ qusa Xeqs}a Zsubst) ~
Zip (:’F(Xl)aF(XQ)) - F(qus)-

orient :: ({l‘ =Y, Xeqé’}’ Zsubst) — ({y =z, Xeqs}a Zsubst) ~
variable :: y — true,

variable :: x 4 true.

variable :: x — true.

variable :: y — true.



Example. First-Order Unification Rules

elimination :: ({z =y, Xegs },{Z}) = ({Yegs }.{U, 2 — y}) <=
variable :: x — true,
occurs :: (z,y) /4 true,
apply =2 (2 = y,{Xegs}) = { Vegs
apply :: (x — y,{Z}) = {U}.



Example. First-Order Unification Strategy

transform =

choice(decomposition, elimination, orient).

unify 2 Xegs — Uunifier <

firstone (nf (transform)) == ({Xegs}, {}) = ({}; { Uunifier })-



Example. First-Order Unification Strategy

transform =

choice(decomposition, elimination, orient).

unify 2 Xegs — Uunifier <

firstone (nf (transform)) == ({Xegs}, {}) = ({}; { Uunifier })-

> Query: unify :: (f(x) =f(h(y)), g(x,x) =g(z,h(a))) = U
» Answer: U = (x — h(a), y— a, z+ h(a))



Example. First-Order Matching

» The same rules can be used for matching.

» To make it more efficient, we can replace the elimination rule
with the new one:

elimination’ :: ({z =y, Xegs }, {Z}) = ({Yegs . {Z, 2 — y}) <
variable :: x — true,

apply :: (37 =Y, {Xeqs}) — {qus}'

/
transform’' :=

choice(decomposition, elimination’, orient).

match :: Xegs — Upnatcher <

firstone (nf (transform”)) :: {Xegs 1 {}) — ({}7{Umatche'r})-.
7\

'S



Potential Use in Web-Related Topics

Querying and transforming XML.

> A list of query operations that are desirable for an XML query
and transformation language: selection, extraction, reduction,
restructuring, and combination.

» We demonstrate, on the car dealer office example, how these
operations can be expressed in pLog calculus.



Car Dealer Office Example

<list-manuf>
<manuf>
<mn-name>Mercury</mn-name>
<year>1998</year>
<model>
<mo-name>Sable LT</mo-name>
<front-rating>
3.84
</front-rating>
<side-rating>
2.14
</side-rating>
<rank>9</rank>
</model>
</manuf> ...
</list-manuf>

<list-vehicle>
<vehicle>
<vendor>
Scott Thomason
</vendor>
<make>Mercury</make>
<model>Sable LT</model>
<year>1999</year>
<color>
metallic blue
</color>
<price>26800</price>
</vehicle>
</list-vehicle>



Select and Extract

list-manuf
/ manuf \
mn-name ~ year / model

Mercury 1998 mo-name front-rating side-rating rank

Sable LT 3.84 2.14 9

Select and extract manuf elements where some model has rank < 10:

sel_and_extr :: list-manuf (_seq, C(rank(z)), _seq) = C(rank(z)) <
xr < 10.



Reduction

list-manuf

/ manuf \
mn-name ~ year / model

Mercury 1998 mo-name front-rating side-rating rank

Sable LT 3.84 2.14 9

» From the manufacturer elements, we want to drop those model
sub-elements whose rank is greater than 10.

» We also want to elide the front-rating and side-rating elements
from the remaining models.



Reduction

One-step reduction:

red_step :: manuf (X1, model(_seq, rank(z)), Xo) — manuf (X;, Xz) <
x > 10.
red_step :: manuf (X;, model(y, —ind, -ind, rank(z)), Xg) —

manuf (X;, model(y, rank(z)), Xo) <
z < 10.

Reduction: reduce each element of list-manuf (i.e., each manuf)
by the red_step as much as possible.

reduce :: list-manuf (X;) — list-manuf (Xg) <
map(nf (red_step)) :: X; — Xo.



Extended Rule Syntax

v

Matching problems extended with membership constraints can
be tailored in the atoms.

strategy :: hy — hg where {v; € Ly,..., vy € Ly}

Well-modedness extends to the corresponding rules and
queries.

v

v

Such rules can be used to validate documents against DTDs
(for quite a large class of DTDs).

v



Incomplete Queries

» Often, a query author does not know or is not interested in
the entire structure of a Web document.

> Queries are incomplete.

» Classification of incompleteness (Schaffert, 2004): in breadth,
in depth, with respect to order, with respect to optional
elements.

> Pretty easily expressed in the plog calculus.



Incompleteness in Breadth

» plog does do not need any extra construct for incomplete
queries in breadth.

» Anonymous sequence variables can be used as wildcards for
arbitrary sequences of nodes.

» Named sequence variables can extract arbitrary sequences of
nodes without knowing the exact structure.



Incompleteness in Depth

> plog does do not need any extra construct for incomplete
queries in depth either.

» Anonymous context variables can be used to descend in
arbitrary depth in terms to reach a query subterm, skipping
the content in between.

» Named context variables can extract the entire context above
the query subterm without knowing the structure of the
context.



Incompleteness with Respect to Order

> It allows to specify neighboring nodes in a different order than
the one in that they occur in the data tree.

» Can be incorporated into plLog calculus with the help of
equational matching modulo orderless theory.

» Without it, an extra line of code is required to get the same
effect.



Incompleteness with Respect to Optional Elements

» Since sequence variables can be instantiated with the empty
hedge, such queries are trivially expressed in plLog.



Related Applications

v

Logic-based XML querying and transformation in Xcerpt (Bry,
Schaffert et al. 2002).

XML processing in XDuce (Hosoya and Pierce, 2003).
Rule-based verification of Web sites (Alpuente et al. 2006)
» Access control via strategic rewriting (Dougherty et al. 2007).

v

v



Summary

> Necessary ingredients for computing via strategic conditional
hedge transformations:

» Matching with context and sequence variables (solving): Basic
mechanism for instantiating variables.

» Resolution and identity factoring (proving): Inference
mechanism.

» Conditional hedge transformations (transforming):
Computation via deduction.

» Separating control and transformations.

» Modeling nondeterministic computations.





