Conditional Strategic Hedge Transformations

Temur Kutsia

What Is It About?

- Transforming term sequences into term sequences
- Provided that some given conditions hold
- Rules specify a single transformation step
- Strategies define how rules are applied
- All in one language

What Is It About?

- Terms are unranked
- A rule may transform the same sequence in (finitely many) different ways: nondeterministic transformations
- A strategy may specify, for instance, the following sequence of rule applications:
- Apply the rule R_{1} as long as possible
- Transform the result with the first applicable rule from R_{2} and R_{3}
- Map the rule R_{3} on the resulting sequence
- Transform a subterm occurring somewhere deep in the result by a rule R_{4}
- Not only rules, but also more complex strategies can be combined in this way

Unranked Terms

Example

$$
f(g, f(X), g(a, y))
$$

- Arity of function symbols is not fixed.
- Different occurrences of the same function symbol may have different number of arguments.

Hedges

Example

$$
f(g, f(X), g(a, y)), X, g(y)
$$

- Finite sequences of unranked terms.

Theories over Unranked Terms and Hedges

Active subject of study in recent years.

- Nearly ubiquitous in XML-related applications.
- Suitable data structures for knowledge representation.
- Model variadic procedures in programming languages.
- Appear in
- automata theory,
- rewriting,
- program analysis and transformation,
- etc.
- Most of the research activities focus on formal languages, automata, corresponding logics.

Variable Instantiations

Variables (in the first-order case):

- Individual variables - can be instantiated by individual terms.
- Sequence variables - can be instantiated by hedges.

Variable Instantiations

Example

$$
f(g, f(X), g(a, y)) \quad\{X \mapsto(g(a), y), y \mapsto f(a)\}
$$

Variable Instantiations

Example

$$
f(g, f(g(a), y), g(a, f(a))) \quad\{X \mapsto(g(a), y), y \mapsto f(a)\}
$$

Variable Instantiations

Variables (in the second-order case):

- Individual variables - can be instantiated by individual terms.
- Sequence variables - can be instantiated by hedges.
- Function variables - can be instantiated by function symbols.
- Context variables - can be instantiated by contexts (special unary functions).

Variable Instantiations

Example

$$
f(a, C(F(b, X))) \quad\{C \mapsto g(g(a), \circ, b), X \mapsto(), F \mapsto h\}
$$

Variable Instantiations

Example

$$
f(a, g(g(a), h(b), b)) \quad\{C \mapsto g(g(a), o, b), X \mapsto(), F \mapsto h\}
$$

Variables

- Sequence variables are pragmatic necessity when function symbols are unranked.
- They help to select subsequences of arbitrary length.
- Context variables help to select subexpressions at arbitrary depth.
- Function variables are handy when one does not know the function symbol name.
- All of them greatly increase expressive power and flexibility.
- Have to be dealt with more involved symbolic techniques.

Matching

- When a rule is applied, its left hand side should match the hedge to be transformed.
- Requires a matching algorithm.

Syntactic matching for Unranked Terms

- Given: Two unranked terms: pattern and data.
- Find: A substitution that when applied to the pattern, makes it identical to the data.

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

$$
\{F \mapsto f, X \mapsto(), C \mapsto g(\circ), Y \mapsto b, Z \mapsto(g(f(a, b), h(f(a), f), b, c)\}
$$

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

$$
\{F \mapsto f, X \mapsto g(f(b)), C \mapsto g(\circ, h(f(a), f)), Y \mapsto(a, b), Z \mapsto(b, c)\}
$$

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

$\{F \mapsto f, X \mapsto g(f(b)), C \mapsto g(f(a, b), h(\circ, f)), Y \mapsto a, Z \mapsto(b, c)\}$

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

$$
\{F \mapsto f, X \mapsto g(f(b)), C \mapsto g(f(a, b), h(f(a), \circ)), Y \mapsto(), Z \mapsto(b, c)\}
$$

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

$$
C \in \llbracket g\left({ }_{-s e q}, \circ,,_{-s e q}\right)^{*} \rrbracket, Y \in \llbracket a . b^{*} \rrbracket
$$

Syntactic Matching for Unranked Terms

$$
F(X, C(f(Y)), Z) \quad=\quad f(g(f(b)), g(f(a, b), h(f(a), f)), b, c)
$$

$$
\{F \mapsto f, X \mapsto g(f(b)), C \mapsto g(o, h(f(a), f)), Y \mapsto(a, b), Z \mapsto(b, c)\}
$$

Solving Matching Problems

- A sound, terminating, and complete algorithm.
- Integrates membership constraints into matching.
- No generate-and-test.
- Computes the right answers directly.

Transformations

- Ternary predicate $:: \rightarrow$.
- Atoms: $:: \rightarrow\left(t,\left\langle h_{1}\right\rangle,\left\langle h_{2}\right\rangle\right)$, where
- \rangle is an unranked function symbol.
- t can not be a sequence variable.
- h_{1}, h_{2} - hedges.
- The term t is called a strategy.
- Syntactic sugar: $t:: h_{1} \rightarrow h_{2}$.
- Intuition: The strategy t transforms the hedge h_{1} into the hedge h_{2}.
- (Conditional) hedge transformation rules: Nonnegative Horn clauses in this language.
- Queries: Negative clauses.

Rules and Queries

- Rules:

$$
\begin{aligned}
& \text { strategy }_{0}:: \text { hedge }_{0} \rightarrow \text { hedge }_{0}^{\prime} \Leftarrow \\
& \text { strategy }_{1}:: \text { hedge }_{1} \rightarrow \text { hedge }_{1}^{\prime}, \\
& \quad \ldots \\
& \text { strategy }_{n}:: \text { hedge }_{n} \rightarrow \text { hedge }_{n}^{\prime} .
\end{aligned}
$$

- Queries

$$
\begin{aligned}
\Leftarrow & \text { strategy }_{1}:: \text { hedge }_{1} \rightarrow \text { hedge }_{1}^{\prime}, \\
& \ldots \\
& \text { strategy }_{n}:: \text { hedge }_{n} \rightarrow \text { hedge }_{n}^{\prime} .
\end{aligned}
$$

Logic: Bad News

- Logic with unranked symbols and sequence variables is not compact.
- Counterexample of compactness. An infinite set consisting of:

$$
\begin{aligned}
\exists X . & p(X) \\
& \neg p \\
\forall x_{1} \cdot & \neg p\left(x_{1}\right) \\
\forall x_{1}, x_{2} . & \neg p\left(x_{1}, x_{2}\right) \\
\forall x_{1}, x_{2}, x_{3} . & \neg p\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

- Every finite subset of this set has a model, but the entire set does not.

Logic: Bad News

Consequences:

- No complete proof theory.
- A potentially serious blow to prospects of automated reasoning with sequence variables.

Good News

- The clausal fragment behaves well.
- Herbrand's theorem holds.
- Refutationally complete proof method possible.
- Clausal fragment covers many practical cases.

Inference System: The ρ Log Calculus

- Resolution:

$$
\frac{\Leftarrow \operatorname{str}:: h_{1} \rightarrow h_{2}, Q \quad \text { str } \quad:: h_{1}^{\prime} \rightarrow h_{2}^{\prime} \Leftarrow \text { Body }}{\left(\Leftarrow \text { Body, id }:: h_{2}^{\prime} \rightarrow h_{2}, Q\right) \sigma},
$$

where $\sigma \in \operatorname{mcsm}\left(\left\{s t r^{\prime} \ll \operatorname{str}, h_{1}^{\prime} \ll h_{1}\right\}\right)$.

Inference System: The ρ Log Calculus

- Resolution:

$$
\frac{\Leftarrow \operatorname{str}:: h_{1} \rightarrow h_{2}, Q \quad \text { str } \quad:: h_{1}^{\prime} \rightarrow h_{2}^{\prime} \Leftarrow \text { Body }}{\left(\Leftarrow \text { Body, id }:: h_{2}^{\prime} \rightarrow h_{2}, Q\right) \sigma},
$$

where $\sigma \in \operatorname{mcsm}\left(\left\{s t r^{\prime} \ll \operatorname{str}, h_{1}^{\prime} \ll h_{1}\right\}\right)$.

- Identity factoring:

$$
\frac{\Leftarrow i d:: h_{1} \rightarrow h_{2}, Q}{Q \sigma},
$$

where $\sigma \in \operatorname{mcsm}\left(\left\{h_{2} \ll h_{1}\right\}\right)$.

Inference System: The ρ Log Calculus

- Resolution:

$$
\frac{\Leftarrow \operatorname{str}:: h_{1} \rightarrow h_{2}, Q \quad \text { str } \quad:: h_{1}^{\prime} \rightarrow h_{2}^{\prime} \Leftarrow \text { Body }}{\left(\Leftarrow \text { Body, id }:: h_{2}^{\prime} \rightarrow h_{2}, Q\right) \sigma},
$$

where $\sigma \in \operatorname{mcsm}\left(\left\{s t r^{\prime} \ll \operatorname{str}, h_{1}^{\prime} \ll h_{1}\right\}\right)$.

- Identity factoring:

$$
\frac{\Leftarrow i d:: h_{1} \rightarrow h_{2}, Q}{Q \sigma}
$$

where $\sigma \in \operatorname{mcsm}\left(\left\{h_{2} \ll h_{1}\right\}\right)$.

- Resolution + identity factoring is refutationally complete for conditional hedge transformations.
- We have to guarantee that at each step there is a matching problem (and not unification).

Well-Modedness Guarantees Matching

Well-moded queries and clauses:

- A query

$$
\Leftarrow t_{1}:: h_{1} \rightarrow h_{1}^{\prime}, \ldots, t_{n}:: h_{n} \rightarrow h_{n}^{\prime}
$$

is well-moded, if for all $1 \leq i \leq n$,

$$
\cup_{j=1}^{i-1} \operatorname{vars}\left(h_{j}^{\prime}\right) \supseteq \operatorname{vars}\left(t_{i}, h_{i}\right)
$$

Well-Modedness Guarantees Matching

Well-moded queries and clauses:

- A query

$$
\Leftarrow t_{1}:: h_{1} \rightarrow h_{1}^{\prime}, \ldots, t_{n}:: h_{n} \rightarrow h_{n}^{\prime}
$$

is well-moded, if for all $1 \leq i \leq n$,

$$
\cup_{j=1}^{i-1} \operatorname{vars}\left(h_{j}^{\prime}\right) \supseteq \operatorname{vars}\left(t_{i}, h_{i}\right) .
$$

- A clause

$$
t_{0}:: h_{0}^{\prime} \rightarrow h_{n+1} \Leftarrow t_{1}:: h_{1} \rightarrow h_{1}^{\prime}, \ldots, t_{n}:: h_{n} \rightarrow h_{n}^{\prime}
$$

is well-moded if for all $1 \leq i \leq n+1$,

$$
\cup_{j=0}^{i-1} \operatorname{vars}\left(t_{0}, h_{j}^{\prime}\right) \supseteq \operatorname{vars}\left(t_{i}, h_{i}\right) .
$$

Negation and Anonymous Variables

- Anonymous variables (for each kind of variable we have) are very handy.
- They need a special treatment in matching (not hard).
- Clause bodies and queries may contain negative literals.
- They are interpreted as "negation as finite failure".
- $t:: h_{1} \nrightarrow h_{2}$: All attempts to transform h_{1} into h_{2} by t terminate with failure.
- Well-modedness has to be extended to clauses and queries with anonymous variables and negation.

Simple Example: First-Order Rewriting

Clauses: \quad rewrite $(z):: C(x) \rightarrow C(y) \Leftarrow z:: x \rightarrow y$.

$$
\text { strat }:: f(x) \rightarrow g(x) .
$$

$$
\text { strat }:: f(f(x)) \rightarrow x .
$$

Goal: rewrite (strat) :: $h(f(f(a)), f(a)) \rightarrow x$.

Answers: $\quad x=h(g(f(a)), f(a))$.

$$
x=h(a, f(a)) .
$$

$$
x=h(f(g(a)), f(a)) .
$$

$$
x=h(f(f(a)), g(a)) .
$$

Defining and Combining Strategies

Composition:

$$
\begin{aligned}
& \operatorname{compose}\left(x_{\text {str }}, X_{\text {strs }}\right):: X \rightarrow Y \Leftarrow \\
& x_{\text {str }}:: X \rightarrow Z, \\
& \text { compose }\left(X_{\text {strs }}\right):: Z \rightarrow Y . \\
& \text { compose }():: X \rightarrow X .
\end{aligned}
$$

Choice:

$$
\begin{aligned}
& \text { choice }\left(x_{\text {str }}, X_{\text {strs }}\right):: X \rightarrow Y \Leftarrow \\
& x_{\text {str }}:: X \rightarrow Y . \\
& \text { choice }\left(x_{\text {str }}, y_{\text {str }}, X_{\text {strs }}\right):: X \rightarrow Y \Leftarrow \\
& \text { choice }\left(y_{\text {str }}, X_{\text {strs }}\right):: X \rightarrow Y .
\end{aligned}
$$

Defining and Combining Strategies

Closure:

$$
\begin{aligned}
& \operatorname{closure}\left(x_{\text {str }}\right):: X \rightarrow X . \\
& \text { closure }\left(x_{\text {str }}\right):: X \rightarrow Y \Leftarrow \\
& \quad x_{\text {str }}:: X \rightarrow Z, \\
& \quad \text { closure }\left(x_{\text {str }}\right):: Z \rightarrow Y .
\end{aligned}
$$

Normal form:

$$
\begin{aligned}
& n f\left(x_{\text {str }}\right):: X \rightarrow Y \Leftarrow \\
& \text { closure }\left(x_{s t r}\right):: X \rightarrow Y, \\
& x_{\text {str }}:: Y \nrightarrow-\text { seq } .
\end{aligned}
$$

Defining and Combining Strategies

First applicable strategy:

$$
\begin{aligned}
& \operatorname{first}\left(x_{s t r}, X_{s t r s}\right):: X \rightarrow Y \Leftarrow \\
& \quad x_{\text {str }}:: X \rightarrow Y . \\
& \operatorname{first}\left(x_{s t r}, y_{s t r}, X_{\text {strs }}\right):: X \rightarrow Y \Leftarrow \\
& \quad x_{\text {str }}:: X \nrightarrow-\text { seq }, \\
& \quad \operatorname{first}\left(y_{s t r}, X_{\text {strs }}\right):: X \rightarrow Y .
\end{aligned}
$$

Map:

$$
\begin{aligned}
& \operatorname{map}\left(x_{s t r}\right)::() \rightarrow() \\
& \operatorname{map}\left(x_{s t r}\right)::(x, X) \rightarrow(y, Y) \Leftarrow \\
& x_{s t r}:: x \rightarrow y, \\
& \operatorname{map}\left(x_{s t r}\right):: X \rightarrow Y .
\end{aligned}
$$

Simple Example. Sorting.

$$
\begin{aligned}
& \text { reorder }\left(F_{\text {ord }}\right)::(X, x, Y, y, Z) \rightarrow(X, y, Y, x, Z) \Leftarrow \\
& \quad F_{\text {ord }}(y, x) .
\end{aligned}
$$

Simple Example. Sorting.

$$
\begin{aligned}
& \text { reorder }\left(F_{\text {ord }}\right)::(X, x, Y, y, Z) \rightarrow(X, y, Y, x, Z) \Leftarrow \\
& \quad F_{\text {ord }}(y, x) .
\end{aligned}
$$

- reorder $\left(F_{\text {ord }}\right)$ reorders two elements in the input hedge that are in the reversed order with respect to $F_{\text {ord }}$.
- reorder $(>)::(1,3,2) \rightarrow Y$ nondeterministically returns two instantiations for $Y:(3,1,2)$ and $(2,3,1)$.

Simple Example. Sorting

$$
\operatorname{sort}\left(F_{\text {ord }}\right):=n f\left(\operatorname{reorder}\left(F_{\text {ord }}\right)\right)
$$

Simple Example. Sorting

$$
\operatorname{sort}\left(F_{\text {ord }}\right):=n f\left(\text { reorder }\left(F_{\text {ord }}\right)\right)
$$

- The query

$$
\operatorname{sort}(>)::(3,3,1,2,4) \rightarrow Y .
$$

computes the instantiation of $Y:(4,3,3,2,1)$.

Simple Example. Zip

$$
\begin{aligned}
& \text { zipstep }::\left(F_{\text {op }}, F(x, X), F(y, Y), F(Z)\right) \rightarrow \\
&\left(F_{o p}, F(X), F(Y), F\left(Z, F_{o p}(x, y)\right)\right) . \\
& \text { zipstep }::(-f u n \\
&(F, F, z) \rightarrow z . \\
& \text { zip }::\left(F_{o p}, F(X), F(Y)\right) \rightarrow z \Leftarrow \\
& \quad n f(\text { zipstep })::\left(F_{o p}, F(X), F(Y), F\right) \rightarrow z .
\end{aligned}
$$

Simple Example. Zip

$$
\begin{aligned}
& \text { zipstep }::\left(F_{o p}, F(x, X), F(y, Y), F(Z)\right) \rightarrow \\
&\left(F_{o p}, F(X), F(Y), F\left(Z, F_{o p}(x, y)\right)\right) . \\
& \text { zipstep }::(-f u n, F, F, z) \rightarrow z . \\
& \text { zip }::\left(F_{o p}, F(X), F(Y)\right) \rightarrow z \Leftarrow \\
& n f(z i p s t e p)::\left(F_{o p}, F(X), F(Y), F\right) \rightarrow z .
\end{aligned}
$$

- The query

$$
z i p::(g, f(1,2,3), f(a, b, c)) \rightarrow z
$$

computes the instantiation of $z: f(g(1, a), g(2, b), g(3, c))$.

Simple Example. Substitution Application

$$
\begin{aligned}
& \text { applystep }::(x \mapsto y, C(x)) \rightarrow(x \mapsto y, C(y)) . \\
& \text { apply }::\left(x_{\text {subst }}, y_{\text {expr }}\right) \rightarrow z_{\text {instance }} \Leftarrow \\
& \quad \text { nf (applystep })::\left(x_{\text {subst }}, y_{\text {expr }}\right) \rightarrow\left({ }_{\text {-ind }}, z_{\text {instance }}\right) .
\end{aligned}
$$

Simple Example. Substitution Application

$$
\begin{aligned}
& \text { applystep }::(x \mapsto y, C(x)) \rightarrow(x \mapsto y, C(y)) . \\
& \text { apply }::\left(x_{\text {subst }}, y_{\text {expr }}\right) \rightarrow z_{\text {instance }} \Leftarrow \\
& \quad n f(\text { applystep })::\left(x_{\text {subst }}, y_{\text {expr }}\right) \rightarrow\left({ }_{- \text {ind }}, z_{\text {instance }}\right) .
\end{aligned}
$$

- The query

$$
\text { apply }::(v \mapsto f(a), f(v, g(b, v))) \rightarrow z
$$

computes the instantiation of $z: f(f(a), g(b, f(a)))$.

Simple Example. Occurrence Check

$$
\text { occurs }::\left(x,_{-c t x}(x)\right) \rightarrow \text { true } .
$$

Simple Example. Occurrence Check

$$
\text { occurs }::\left(x,_{-c t x}(x)\right) \rightarrow \text { true } .
$$

- The query occurs :: $(v, f(v, g(b, v))) \rightarrow$ true succeeds.
- The query occurs $::(g(b, v), f(v, g(b, v))) \rightarrow$ true succeeds.
- The query occurs :: $(u, f(v, g(b, v))) \rightarrow$ true fails.

Example. First-Order Unification Rules

$$
\begin{aligned}
& \text { decomposition }::\left(\left\{F\left(X_{1}\right) \doteq F\left(X_{2}\right), X_{\text {eqs }}\right\}, z_{\text {subst }}\right) \rightarrow \\
&\left(\left\{Y_{\text {eqs }}, X_{\text {eqs }}\right\}, z_{\text {subst }}\right) \Leftarrow \\
& \text { zip }::\left(\doteq, F\left(X_{1}\right), F\left(X_{\mathcal{Z}}\right)\right) \rightarrow F\left(Y_{\text {eqs }}\right) . \\
& \text { orient }::\left(\left\{x \doteq y, X_{\text {eqs }}\right\}, z_{\text {subst }}\right) \rightarrow\left(\left\{y \doteq x, X_{\text {eqs }}\right\}, z_{\text {subst }}\right) \Leftarrow \\
& \quad \text { variable }:: y \rightarrow \text { true }, \\
& \text { variable }:: x \nrightarrow \text { true } .
\end{aligned}
$$

variable $:: \mathrm{x} \rightarrow$ true.
variable $:: \mathrm{y} \rightarrow$ true.

Example. First-Order Unification Rules

$$
\begin{aligned}
& \text { elimination }::\left(\left\{x \doteq y, X_{\text {eqs }}\right\},\{Z\}\right) \rightarrow\left(\left\{Y_{\text {eqs }}\right\},\{U, x \mapsto y\}\right) \Leftarrow \\
& \quad \text { variable }:: x \rightarrow \text { true }, \\
& \text { occurs }::(x, y) \nrightarrow \text { true }, \\
& \quad \text { apply }::\left(x \mapsto y,\left\{X_{\text {eqs }}\right\}\right) \rightarrow\left\{Y_{\text {eqs }}\right\}, \\
& \text { apply }::(x \mapsto y,\{Z\}) \rightarrow\{U\} .
\end{aligned}
$$

Example. First-Order Unification Strategy

transform :=
choice(decomposition, elimination, orient).

$$
\begin{aligned}
& \text { unify }:: X_{\text {eqs }} \rightarrow U_{\text {unifier }} \Leftarrow \\
& \quad \text { first }_{\text {one }}(n f(\text { transform }))::\left(\left\{X_{\text {eqs }}\right\},\{ \}\right) \rightarrow\left(\{ \},\left\{U_{\text {unifier }}\right\}\right) .
\end{aligned}
$$

Example. First-Order Unification Strategy

transform :=
choice(decomposition, elimination, orient).

$$
\begin{aligned}
& \text { unify }:: X_{\text {eqs }} \rightarrow U_{\text {unifier }} \Leftarrow \\
& \quad \text { first }_{\text {one }}(n f(\text { transform }))::\left(\left\{X_{\text {eqs }}\right\},\{ \}\right) \rightarrow\left(\{ \},\left\{U_{\text {unifier }}\right\}\right) .
\end{aligned}
$$

- Query: unify :: $(\mathrm{f}(\mathrm{x}) \doteq \mathrm{f}(\mathrm{h}(\mathrm{y})), \mathrm{g}(\mathrm{x}, \mathrm{x}) \doteq \mathrm{g}(\mathrm{z}, \mathrm{h}(\mathrm{a}))) \rightarrow U$
- Answer: $U=(\mathrm{x} \mapsto \mathrm{h}(\mathrm{a}), \mathrm{y} \mapsto \mathrm{a}, \mathrm{z} \mapsto \mathrm{h}(\mathrm{a}))$

Example. First-Order Matching

- The same rules can be used for matching.
- To make it more efficient, we can replace the elimination rule with the new one:

$$
\begin{aligned}
& \text { elimination }^{\prime}::\left(\left\{x \doteq y, X_{\text {eqs }}\right\},\{Z\}\right) \rightarrow\left(\left\{Y_{\text {eqs }}\right\},\{Z, x \mapsto y\}\right) \Leftarrow \\
& \quad \text { variable }:: x \rightarrow \text { true }, \\
& \quad \text { apply }::\left(x \mapsto y,\left\{X_{\text {eqs }}\right\}\right) \rightarrow\left\{Y_{\text {eqs }}\right\} .
\end{aligned}
$$

transform ${ }^{\prime}:=$
choice (decomposition, elimination', orient).
match $:: X_{\text {eqs }} \rightarrow U_{\text {matcher }} \Leftarrow$ first $_{\text {one }}\left(n f\left(\right.\right.$ transform $\left.\left.^{\prime}\right)\right)::\left(\left\{X_{\text {eqs }}\right\},\{ \}\right) \rightarrow\left(\{ \},\left\{U_{\text {matcher }}\right\}\right)$.

Potential Use in Web-Related Topics

Querying and transforming XML.

- A list of query operations that are desirable for an XML query and transformation language: selection, extraction, reduction, restructuring, and combination.
- We demonstrate, on the car dealer office example, how these operations can be expressed in ρ Log calculus.

Car Dealer Office Example

```
<list-manuf>
    <manuf>
    <mn-name>Mercury</mn-name>
    <year>1998</year>
    <model>
        <mo-name>Sable LT</mo-name>
        <front-rating>
            3.84
        </front-rating>
        <side-rating>
            2.14
        </side-rating>
        <rank>9</rank>
    </model> ...
    </manuf> ...
</list-manuf>
```

```
<list-vehicle>
    <vehicle>
        <vendor>
            Scott Thomason
        </vendor>
        <make>Mercury</make>
        <model>Sable LT</model>
        <year>1999</year>
        <color>
            metallic blue
        </color>
        <price>26800</price>
    </vehicle> ...
</list-vehicle>
```


Select and Extract

Select and extract manuf elements where some model has rank ≤ 10 :

$$
\begin{aligned}
& \text { sel_and_extr }:: \text { list-manuf }\left(__{-s e q}, C(\operatorname{rank}(x)), \text { _seq }\right) \rightarrow C(\operatorname{rank}(x)) \Leftarrow \\
& \quad x \leq 10
\end{aligned}
$$

Reduction

- From the manufacturer elements, we want to drop those model sub-elements whose rank is greater than 10.
- We also want to elide the front-rating and side-rating elements from the remaining models.

Reduction

One-step reduction:

$$
\begin{aligned}
& \text { red_step }:: \text { manuf }\left(X_{1}, \operatorname{model}(-\operatorname{seq}, \operatorname{rank}(x)), X_{2}\right) \rightarrow \operatorname{manuf}\left(X_{1}, X_{2}\right) \Leftarrow \\
& \quad x>10 . \\
& \text { red_step }:: \text { manuf }\left(X_{1}, \operatorname{model}(y,-\operatorname{ind},-\operatorname{ind}, \operatorname{rank}(x)), X_{2}\right) \rightarrow \\
& \quad \operatorname{manuf}\left(X_{1}, \operatorname{model}(y, \operatorname{rank}(x)), X_{\mathcal{L}}\right) \Leftarrow \\
& x \leq 10 .
\end{aligned}
$$

Reduction: reduce each element of list-manuf (i.e., each manuf) by the red_step as much as possible.

$$
\begin{aligned}
& \text { reduce }:: \operatorname{list-manuf}\left(X_{1}\right) \rightarrow \text { list-manuf }\left(X_{2}\right) \Leftarrow \\
& \quad \operatorname{map}(n f(\text { red_step })):: X_{1} \rightarrow X_{2}
\end{aligned}
$$

Extended Rule Syntax

- Matching problems extended with membership constraints can be tailored in the atoms.
- strategy $:: h_{1} \rightarrow h_{2}$ where $\left\{v_{1} \in \mathrm{~L}_{1}, \ldots, v_{n} \in \mathrm{~L}_{n}\right\}$.
- Well-modedness extends to the corresponding rules and queries.
- Such rules can be used to validate documents against DTDs (for quite a large class of DTDs).

Incomplete Queries

- Often, a query author does not know or is not interested in the entire structure of a Web document.
- Queries are incomplete.
- Classification of incompleteness (Schaffert, 2004): in breadth, in depth, with respect to order, with respect to optional elements.
- Pretty easily expressed in the ρ Log calculus.

Incompleteness in Breadth

- ρ Log does do not need any extra construct for incomplete queries in breadth.
- Anonymous sequence variables can be used as wildcards for arbitrary sequences of nodes.
- Named sequence variables can extract arbitrary sequences of nodes without knowing the exact structure.

Incompleteness in Depth

- ρ Log does do not need any extra construct for incomplete queries in depth either.
- Anonymous context variables can be used to descend in arbitrary depth in terms to reach a query subterm, skipping the content in between.
- Named context variables can extract the entire context above the query subterm without knowing the structure of the context.

Incompleteness with Respect to Order

- It allows to specify neighboring nodes in a different order than the one in that they occur in the data tree.
- Can be incorporated into ρ Log calculus with the help of equational matching modulo orderless theory.
- Without it, an extra line of code is required to get the same effect.

Incompleteness with Respect to Optional Elements

- Since sequence variables can be instantiated with the empty hedge, such queries are trivially expressed in ρ Log.

Related Applications

- Logic-based XML querying and transformation in Xcerpt (Bry, Schaffert et al. 2002).
- XML processing in XDuce (Hosoya and Pierce, 2003).
- Rule-based verification of Web sites (Alpuente et al. 2006)
- Access control via strategic rewriting (Dougherty et al. 2007).

Summary

- Necessary ingredients for computing via strategic conditional hedge transformations:
- Matching with context and sequence variables (solving): Basic mechanism for instantiating variables.
- Resolution and identity factoring (proving): Inference mechanism.
- Conditional hedge transformations (transforming): Computation via deduction.
- Separating control and transformations.
- Modeling nondeterministic computations.

