Conditional Strategic Hedge Transformations

Temur Kutsia

What Is It About?

- ► Transforming term sequences into term sequences
- Provided that some given conditions hold
- Rules specify a single transformation step
- Strategies define how rules are applied
- All in one language

What Is It About?

- Terms are unranked
- ► A rule may transform the same sequence in (finitely many) different ways: nondeterministic transformations
- A strategy may specify, for instance, the following sequence of rule applications:
 - ▶ Apply the rule R_1 as long as possible
 - \blacktriangleright Transform the result with the first applicable rule from R_2 and R_3
 - ▶ Map the rule R_3 on the resulting sequence
 - \blacktriangleright Transform a subterm occurring somewhere deep in the result by a rule R_4
- Not only rules, but also more complex strategies can be combined in this way

Unranked Terms

Example

$$f(g,f(X),g(a,y)) \\ \hline g \\ \hline f \\ g \\ \hline X \\ a \\ y \\ \hline$$

- Arity of function symbols is not fixed.
- ▶ Different occurrences of the same function symbol may have different number of arguments.

Hedges

Example

$$f(g, f(X), g(a, y)), X, g(y)$$

$$f$$

$$X$$

$$g$$

$$y$$

$$X$$

$$a$$

$$y$$

Finite sequences of unranked terms.

Theories over Unranked Terms and Hedges

Active subject of study in recent years.

- Nearly ubiquitous in XML-related applications.
- Suitable data structures for knowledge representation.
- Model variadic procedures in programming languages.
- Appear in
 - automata theory,
 - rewriting,
 - program analysis and transformation,
 - etc.
- ► Most of the research activities focus on formal languages, automata, corresponding logics.

Variables (in the first-order case):

- ▶ Individual variables can be instantiated by individual terms.
- Sequence variables can be instantiated by hedges.

Example

$$f(g, f(X), g(a, y)) \qquad \{X \mapsto (g(a), y), y \mapsto f(a)\}$$

$$X \mapsto g \quad y$$

$$x \mapsto g \quad y$$

$$x \mapsto f$$

$$x \mapsto f$$

Example

$$f(g, f(g(a), y), g(a, f(a))) \qquad \{X \mapsto (g(a), y), y \mapsto f(a)\}$$

$$X \mapsto g \quad y$$

$$y \quad a$$

$$y \quad b$$

$$y \quad b$$

Variables (in the second-order case):

- ▶ Individual variables can be instantiated by individual terms.
- Sequence variables can be instantiated by hedges.
- ► Function variables can be instantiated by function symbols.
- Context variables can be instantiated by contexts (special unary functions).

Example

$$f(a, C(F(b, X))) \qquad \{C \mapsto g(g(a), \circ, b), X \mapsto (), F \mapsto h\}$$

$$C \mapsto g$$

$$g \mapsto b$$

$$K \mapsto h$$

$$X \mapsto h$$

Example

Variables

- Sequence variables are pragmatic necessity when function symbols are unranked.
- ▶ They help to select subsequences of arbitrary length.
- Context variables help to select subexpressions at arbitrary depth.
- Function variables are handy when one does not know the function symbol name.
- ▶ All of them greatly increase expressive power and flexibility.
- ▶ Have to be dealt with more involved symbolic techniques.

Matching

- ▶ When a rule is applied, its left hand side should match the hedge to be transformed.
- ▶ Requires a matching algorithm.

- Given: Two unranked terms: pattern and data.
- ► Find: A substitution that when applied to the pattern, makes it identical to the data.

$$F(X,C(f(Y)),Z) = f(g(f(b)),g(f(a,b),h(f(a),f)),b,c)$$

$$= f(g(f(b)),g(f(a),f),b,c)$$

$$= f(g(f(b)),g(f(a),f),f,c)$$

$$= f(g(f(f(b)),g(f(a),f),f,c)$$

$$= f(g(f(f(b)),g(f$$

 $\{F \mapsto f, X \mapsto (), C \mapsto g(\circ), Y \mapsto b, Z \mapsto (g(f(a,b), h(f(a), f), b, c))\}$

$$F(X,C(f(Y)),Z) = f(g(f(b)),g(f(a,b),h(f(a),f)),b,c)$$

$$= f(g(f(b)),g(f(a),f)),f(g(f(a),f)),g(g($$

 $\{F \mapsto f, X \mapsto g(f(b)), C \mapsto g(\circ, h(f(a), f)), Y \mapsto (a, b), Z \mapsto (b, c)\}$

$$F(X,C(f(Y)),Z) = f(g(f(b)),g(f(a,b),h(f(a),f)),b,c)$$

$$= f(g(f(b)),g(f(a),f),b,c)$$

$$= f(g(f(b)),g(f(a),f),c)$$

$$= f(g(f(b)),g($$

$$\{F \mapsto f, X \mapsto g(f(b)), C \mapsto g(f(a,b), h(\circ, f)), Y \mapsto a, Z \mapsto (b,c)\}$$

 $\{F\mapsto f,X\mapsto g(f(b)),C\mapsto g(f(a,b),h(f(a),\circ)),Y\mapsto (),Z\mapsto (b,c)\}$

Solving Matching Problems

- ▶ A sound, terminating, and complete algorithm.
- Integrates membership constraints into matching.
- ▶ No generate-and-test.
- Computes the right answers directly.

Transformations

- ▶ Ternary predicate ::→.
- ▶ Atoms: $::\rightarrow (t, \langle h_1 \rangle, \langle h_2 \rangle)$, where
 - ▶ ⟨ ⟩ is an unranked function symbol.
 - t can not be a sequence variable.
 - ▶ h_1 , h_2 hedges.
 - ► The term *t* is called a strategy.
- ▶ Syntactic sugar: $t :: h_1 \rightarrow h_2$.
- ▶ Intuition: The strategy t transforms the hedge h_1 into the hedge h_2 .
- (Conditional) hedge transformation rules: Nonnegative Horn clauses in this language.
- Queries: Negative clauses.

Rules and Queries

Rules:

```
strategy_0 :: hedge_0 \to hedge'_0 \Leftarrow
strategy_1 :: hedge_1 \to hedge'_1,
...
strategy_n :: hedge_n \to hedge'_n.
```

Queries

```
 \Leftarrow strategy_1 :: hedge_1 \to hedge'_1, \\ \dots \\ strategy_n :: hedge_n \to hedge'_n.
```


Logic: Bad News

- Logic with unranked symbols and sequence variables is not compact.
- ► Counterexample of compactness. An infinite set consisting of:

$$\exists X. \ p(X)$$

$$\neg p$$

$$\forall x_1. \ \neg p(x_1)$$

$$\forall x_1, x_2. \ \neg p(x_1, x_2)$$

$$\forall x_1, x_2, x_3. \ \neg p(x_1, x_2, x_3)$$

Every finite subset of this set has a model, but the entire set does not.

Logic: Bad News

Consequences:

- No complete proof theory.
- ► A potentially serious blow to prospects of automated reasoning with sequence variables.

Good News

- ▶ The clausal fragment behaves well.
- Herbrand's theorem holds.
- Refutationally complete proof method possible.
- Clausal fragment covers many practical cases.

Inference System: The ρ Log Calculus

Resolution:

$$\frac{\Leftarrow str :: h_1 \to h_2, Q \qquad str' :: h'_1 \to h'_2 \Leftarrow Body}{(\Leftarrow Body, id :: h'_2 \to h_2, Q)\sigma}$$

where $\sigma \in mcsm(\{str' \ll str, h'_1 \ll h_1\})$.

Inference System: The ρ Log Calculus

Resolution:

$$\frac{\Leftarrow str :: h_1 \to h_2, Q \qquad str' :: h'_1 \to h'_2 \Leftarrow Body}{(\Leftarrow Body, id :: h'_2 \to h_2, Q)\sigma}$$

where $\sigma \in mcsm(\{str' \ll str, h'_1 \ll h_1\})$.

Identity factoring:

$$\frac{\Leftarrow id :: h_1 \to h_2, Q}{Q\sigma},$$

where $\sigma \in mcsm(\{h_2 \ll h_1\})$.

Inference System: The ρ Log Calculus

Resolution:

$$\frac{\Leftarrow str :: h_1 \to h_2, Q \qquad str' :: h'_1 \to h'_2 \Leftarrow Body}{(\Leftarrow Body, id :: h'_2 \to h_2, Q)\sigma}$$

where $\sigma \in mcsm(\{str' \ll str, h'_1 \ll h_1\})$.

► Identity factoring:

$$\frac{\Leftarrow id :: h_1 \to h_2, Q}{Q\sigma},$$

where $\sigma \in mcsm(\{h_2 \ll h_1\})$.

- Resolution + identity factoring is refutationally complete for conditional hedge transformations.
- ▶ We have to guarantee that at each step there is a matching problem (and not unification).

Well-Modedness Guarantees Matching

Well-moded queries and clauses:

A query

$$\Leftarrow t_1 :: h_1 \to h'_1, \dots, t_n :: h_n \to h'_n$$

is well-moded, if for all $1 \le i \le n$,

$$\bigcup_{j=1}^{i-1} vars(\mathbf{h'_j}) \supseteq vars(\mathbf{t_i}, \mathbf{h_i}).$$

Well-Modedness Guarantees Matching

Well-moded queries and clauses:

A query

$$\Leftarrow t_1 :: h_1 \to h'_1, \dots, t_n :: h_n \to h'_n$$

is well-moded, if for all $1 \le i \le n$,

$$\bigcup_{j=1}^{i-1} vars(h'_j) \supseteq vars(t_i, h_i).$$

A clause

$$t_0::h_0'\to h_{n+1} \Leftarrow t_1::h_1\to h_1',\ldots,t_n::h_n\to h_n'$$

is well-moded if for all $1 \le i \le n+1$,

$$\bigcup_{i=0}^{i-1} vars(t_0, h'_i) \supseteq vars(t_i, h_i).$$

Negation and Anonymous Variables

- Anonymous variables (for each kind of variable we have) are very handy.
- They need a special treatment in matching (not hard).
- Clause bodies and queries may contain negative literals.
- They are interpreted as "negation as finite failure".
- ▶ $t :: h_1 \not\to h_2$: All attempts to transform h_1 into h_2 by t terminate with failure.
- ▶ Well-modedness has to be extended to clauses and queries with anonymous variables and negation.

Simple Example: First-Order Rewriting

Clauses:
$$rewrite(z) :: C(x) \to C(y) \Leftarrow z :: x \to y.$$
 $strat :: f(x) \to g(x).$ $strat :: f(f(x)) \to x.$

Goal:
$$rewrite(strat) :: h(f(f(a)), f(a)) \to x.$$

Answers:
$$x = h(g(f(a)), f(a)).$$

$$x = h(a, f(a)).$$

$$x = h(f(g(a)), f(a)).$$

$$x = h(f(f(a)), g(a)).$$

Defining and Combining Strategies

Composition:

$$compose(x_{str}, X_{strs}) :: X \to Y \Leftarrow x_{str} :: X \to Z,$$

 $compose(X_{strs}) :: Z \to Y.$
 $compose() :: X \to X.$

Choice:

$$choice(x_{str}, X_{strs}) :: X \to Y \Leftarrow$$

$$x_{str} :: X \to Y.$$

$$choice(x_{str}, y_{str}, X_{strs}) :: X \to Y \Leftarrow$$

$$choice(y_{str}, X_{strs}) :: X \to Y.$$

Defining and Combining Strategies

Closure:

$$closure(x_{str}) :: X \to X.$$

 $closure(x_{str}) :: X \to Y \Leftarrow$
 $x_{str} :: X \to Z,$
 $closure(x_{str}) :: Z \to Y.$

Normal form:

$$nf(x_{str}) :: X \to Y \Leftarrow$$

$$closure(x_{str}) :: X \to Y,$$

$$x_{str} :: Y \not\to _{-seq}.$$

Defining and Combining Strategies

First applicable strategy:

$$first(x_{str}, X_{strs}) :: X \to Y \Leftarrow$$

$$x_{str} :: X \to Y.$$

$$first(x_{str}, y_{str}, X_{strs}) :: X \to Y \Leftarrow$$

$$x_{str} :: X \not\to {}_{-seq},$$

$$first(y_{str}, X_{strs}) :: X \to Y.$$

Мар:

$$map(x_{str}) :: () \to ().$$

 $map(x_{str}) :: (x, X) \to (y, Y) \Leftarrow$
 $x_{str} :: x \to y,$
 $map(x_{str}) :: X \to Y.$

Simple Example. Sorting.

$$reorder(F_{ord}) :: (X, x, Y, y, Z) \rightarrow (X, y, Y, x, Z) \Leftarrow F_{ord}(y, x).$$

Simple Example. Sorting.

$$reorder(F_{ord}) :: (X, x, Y, y, Z) \rightarrow (X, y, Y, x, Z) \Leftarrow F_{ord}(y, x).$$

- ▶ $reorder(F_{ord})$ reorders two elements in the input hedge that are in the reversed order with respect to F_{ord} .
- ▶ $reorder(>) :: (1,3,2) \to Y$ nondeterministically returns two instantiations for Y: (3,1,2) and (2,3,1).

Simple Example. Sorting

$$sort(F_{ord}) := nf(reorder(F_{ord}))$$

Simple Example. Sorting

$$sort(F_{ord}) := nf(reorder(F_{ord}))$$

The query

$$sort(>) :: (3,3,1,2,4) \rightarrow Y.$$

computes the instantiation of Y: (4,3,3,2,1).

Simple Example. Zip

$$\begin{aligned} \textit{zipstep} &:: (F_{op}, F(x, X), F(y, Y), F(Z)) \rightarrow \\ & (F_{op}, F(X), F(Y), F(Z, F_{op}(x, y))). \\ \textit{zipstep} &:: (_{\textit{-fun}}, F, F, z) \rightarrow z. \end{aligned}$$

$$zip :: (F_{op}, F(X), F(Y)) \to z \Leftarrow$$

 $nf(zipstep) :: (F_{op}, F(X), F(Y), F) \to z.$

Simple Example. Zip

$$\begin{aligned} \textit{zipstep} &:: (F_{op}, F(x, X), F(y, Y), F(Z)) \rightarrow \\ & (F_{op}, F(X), F(Y), F(Z, F_{op}(x, y))). \\ \textit{zipstep} &:: (_{-fun}, F, F, z) \rightarrow z. \\ \\ \textit{zip} &:: (F_{op}, F(X), F(Y)) \rightarrow z \Leftarrow \\ & nf(\textit{zipstep}) :: (F_{op}, F(X), F(Y), F) \rightarrow z. \end{aligned}$$

The query

$$zip :: (g, f(1, 2, 3), f(a, b, c)) \to z.$$

computes the instantiation of z: f(g(1,a),g(2,b),g(3,c)).

Simple Example. Substitution Application

 $applystep :: (x \mapsto y, C(x)) \to (x \mapsto y, C(y)).$ $apply :: (x_{subst}, y_{expr}) \to z_{instance} \Leftarrow f(applystep) :: (x_{subst}, y_{expr}) \to (_{-ind}, z_{instance}).$

Simple Example. Substitution Application

$$applystep :: (x \mapsto y, C(x)) \to (x \mapsto y, C(y)).$$

$$apply :: (x_{subst}, y_{expr}) \to z_{instance} \Leftarrow nf(applystep) :: (x_{subst}, y_{expr}) \to (\neg ind, z_{instance}).$$

The query

$$apply :: (v \mapsto f(a), f(v, g(b, v))) \rightarrow z.$$

computes the instantiation of z: f(f(a), g(b, f(a))).

Simple Example. Occurrence Check

 $occurs :: (x, _{-ctx}(x)) \to true.$

Simple Example. Occurrence Check

$$occurs :: (x, _{-ctx}(x)) \to true.$$

- ▶ The query $occurs :: (v, f(v, g(b, v))) \rightarrow true$ succeeds.
- ▶ The query $occurs :: (g(b, v), f(v, g(b, v))) \rightarrow true$ succeeds.
- ▶ The query $occurs :: (u, f(v, g(b, v))) \rightarrow true$ fails.

Example. First-Order Unification Rules

```
decomposition :: (\{F(X_1) \doteq F(X_2), X_{eas}\}, z_{subst}) \rightarrow
                           (\{Y_{eas}, X_{eas}\}, z_{subst}) \Leftarrow
       zip :: (\dot{=}, F(X_1), F(X_2)) \rightarrow F(Y_{eas}).
orient :: (\{x \doteq y, X_{egs}\}, z_{subst}) \rightarrow (\{y \doteq x, X_{egs}\}, z_{subst}) \Leftarrow
       variable :: u \rightarrow true.
       variable :: x \rightarrow true.
variable :: x \rightarrow true.
variable :: y \rightarrow true.
```

Example. First-Order Unification Rules

```
\begin{aligned} & elimination :: (\{x \doteq y, X_{eqs}\}, \{Z\}) \rightarrow (\{Y_{eqs}\}, \{U, x \mapsto y\}) \Leftarrow \\ & variable :: x \rightarrow true, \\ & occurs :: (x, y) \not\rightarrow true, \\ & apply :: (x \mapsto y, \{X_{eqs}\}) \rightarrow \{Y_{eqs}\}, \\ & apply :: (x \mapsto y, \{Z\}) \rightarrow \{U\}. \end{aligned}
```


Example. First-Order Unification Strategy

```
transform := \\ choice(decomposition, elimination, orient).
```

```
unify :: X_{eqs} \to U_{unifier} \Leftarrowfirst_{one}(nf(transform)) :: (\{X_{eqs}\}, \{\}) \to (\{\}, \{U_{unifier}\}).
```

Example. First-Order Unification Strategy

 $transform := \\ choice(decomposition, elimination, orient).$

$$unify :: X_{eqs} \to U_{unifier} \Leftarrow first_{one}(nf(transform)) :: (\{X_{eqs}\}, \{\}) \to (\{\}, \{U_{unifier}\}).$$

- ▶ Query: $unify :: (f(x) \doteq f(h(y)), g(x,x) \doteq g(z,h(a))) \rightarrow U$
- ▶ Answer: $U = (x \mapsto h(a), y \mapsto a, z \mapsto h(a))$

Example. First-Order Matching

- ▶ The same rules can be used for matching.
- ➤ To make it more efficient, we can replace the elimination rule with the new one:

```
elimination' :: (\{x \doteq y, X_{eqs}\}, \{Z\}) \rightarrow (\{Y_{eqs}\}, \{Z, x \mapsto y\}) \Leftarrow

variable :: x \rightarrow true,

apply :: (x \mapsto y, \{X_{eqs}\}) \rightarrow \{Y_{eqs}\}.
```

transform' := choice(decomposition, elimination', orient).

$$match :: X_{eqs} \to U_{matcher} \Leftarrow first_{one}(nf(transform')) :: (\{X_{eqs}\}, \{\}) \to (\{\}, \{U_{matcher}\}).$$

Potential Use in Web-Related Topics

Querying and transforming XML.

- A list of query operations that are desirable for an XML query and transformation language: selection, extraction, reduction, restructuring, and combination.
- ▶ We demonstrate, on the car dealer office example, how these operations can be expressed in ρ Log calculus.

Car Dealer Office Example

</list-manuf>

```
st-manuf>
                                 <list-vehicle>
 <manuf>
                                    <vehicle>
   <mn-name>Mercury</mn-name>
                                       <vendor>
   <year>1998
                                          Scott Thomason
  <model>
                                       </vendor>
    <mo-name>Sable LT</mo-name>
                                       <make>Mercury</make>
                                       <model>Sable LT</model>
    <front-rating>
       3.84
                                       <year>1999
    </front-rating>
                                       <color>
                                          metallic blue
    <side-rating>
       2.14
                                       </color>
    </side-rating>
                                       <price>26800</price>
    <rank>9</rank>
                                    </vehicle> ...
  </model> ...
                                 </list-vehicle>
 </manuf> ...
```


Select and Extract

Select and extract manuf elements where some model has rank ≤ 10 :

$$sel_and_extr :: list-manuf(_seq, C(rank(x)), _seq) \rightarrow C(rank(x)) \Leftarrow x \leq 10.$$

Reduction

- ► From the *manufacturer* elements, we want to drop those *model* sub-elements whose *rank* is greater than 10.
- ▶ We also want to elide the *front-rating* and *side-rating* elements from the remaining models.

Reduction

One-step reduction:

```
\begin{split} red\_step :: manuf(X_1, model(\_{seq}, rank(x)), X_2) &\rightarrow manuf(X_1, X_2) \Leftarrow \\ x &> 10. \\ red\_step :: manuf(X_1, model(y, \_{ind}, \_{ind}, rank(x)), X_2) &\rightarrow \\ manuf(X_1, model(y, rank(x)), X_2) &\leftarrow \\ x &\leq 10. \end{split}
```

Reduction: reduce each element of *list-manuf* (i.e., each *manuf*) by the *red_step* as much as possible.

```
reduce :: list\text{-}manuf(X_1) \rightarrow list\text{-}manuf(X_2) \Leftarrow map(nf(red\_step)) :: X_1 \rightarrow X_2.
```


Extended Rule Syntax

- ► Matching problems extended with membership constraints can be tailored in the atoms.
- ▶ $strategy :: h_1 \rightarrow h_2 \text{ where } \{v_1 \in L_1, \dots, v_n \in L_n\}.$
- Well-modedness extends to the corresponding rules and queries.
- Such rules can be used to validate documents against DTDs (for quite a large class of DTDs).

Incomplete Queries

- ▶ Often, a query author does not know or is not interested in the entire structure of a Web document.
- Queries are incomplete.
- ► Classification of incompleteness (Schaffert, 2004): in breadth, in depth, with respect to order, with respect to optional elements.
- ▶ Pretty easily expressed in the ρ Log calculus.

Incompleteness in Breadth

- hoLog does do not need any extra construct for incomplete queries in breadth.
- Anonymous sequence variables can be used as wildcards for arbitrary sequences of nodes.
- Named sequence variables can extract arbitrary sequences of nodes without knowing the exact structure.

Incompleteness in Depth

- ho Log does do not need any extra construct for incomplete queries in depth either.
- Anonymous context variables can be used to descend in arbitrary depth in terms to reach a query subterm, skipping the content in between.
- Named context variables can extract the entire context above the query subterm without knowing the structure of the context.

Incompleteness with Respect to Order

- ▶ It allows to specify neighboring nodes in a different order than the one in that they occur in the data tree.
- Can be incorporated into ρLog calculus with the help of equational matching modulo orderless theory.
- Without it, an extra line of code is required to get the same effect.

Incompleteness with Respect to Optional Elements

Since sequence variables can be instantiated with the empty hedge, such queries are trivially expressed in ρ Log.

Related Applications

- Logic-based XML querying and transformation in Xcerpt (Bry, Schaffert et al. 2002).
- ▶ XML processing in XDuce (Hosoya and Pierce, 2003).
- Rule-based verification of Web sites (Alpuente et al. 2006)
- ► Access control via strategic rewriting (Dougherty et al. 2007).

Summary

- Necessary ingredients for computing via strategic conditional hedge transformations:
 - Matching with context and sequence variables (solving): Basic mechanism for instantiating variables.
 - Resolution and identity factoring (proving): Inference mechanism.
 - Conditional hedge transformations (transforming):
 Computation via deduction.
- Separating control and transformations.
- Modeling nondeterministic computations.

