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Historical remarks (1)

• Computability: Turing machines etc.
Important results before computers existed!

• Processes: modelled by
• (various types of) automata,
• finite/abstract state machines,
• Petri nets,
• (labeled) transition systems,
• . . .
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Modeling data

• For basic results only the data type "natural numbers" was
necessary.

• For real life applications, advanced algorithms, . . .
richer data structures have to be specified.

• For modeling Abstract Data Types (ADTs) we need:
• Base sets (sorts of objects)
• Basic functions and predicates
• Constraints (axioms)

• Thesis: ADTs are (classes of) algebras
• Gave raise to "Algebraic Specification" (of ADTs).
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Algebraic Specification (of ADTs)

• 1972: First paper by Sir C.A.R: Hoare
• 1974-76: ADJ-group, Guttag/Horning, Liskov/Zilles, . . .
• 1983: B. Kutzler, F. Lichtenberger:

"Bibliography of Abstract Data Types"
More than 500 references!

• Several AlgSpec languages developed:
OBJ3, ASL, ACT ONE/TWO, Larch, . . .

• AlgSpec concepts used in CA-Systems: Scratchpad, Axiom,
Magma, (Reduce 4), . . .

• CoFI: Common Framework for Algebraic Specification and
Development, EU-Project, started 1995.

• 2003: CASL - Common Algebraic Specification Language
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Semantics of ADT specifications

Concepts from category theory are ubiquitous

• Loose, initial, final, . . . semantics
• Free algebras, galois connexion for (equational) definability
• Free functors, natural transformations for parametrized

specifications
• Pushout, pullback in parameter passing
• . . .
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Categories

Definition
A category C consists of

• a class of objects,
• a set of morphisms (arrows) between each of two objects,
• a composition of morphisms which is associative,
• an identity morphism for each object.

Remark
Many notions can be defined on this "categorical level", like
products and coproducts, mono-, epi-, isomorphisms, initial and
final objects, pullbacks and pushouts, limits and colimits, etc. etc.

These notions come "in pairs", i.e. are dual to each other.
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Initial and final objects

Definition

• An object 1 is called final in a category C, iff
for every object X there

exists a unique morphism X → 1

• An object 0 is called initial in a category C, iff
for every object X there

exists a unique morphism 0→ X

Remark
These notions are dual, i.e.
• initial is co-final
• final is co-initial
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The structure of Alg(Σ) and Alg(SP)

• The structure of Alg(Σ) and Alg(SP), Σ = (S,OP) a
signature, SP = (Σ,E) a specification

Σ-generated

Ju
nk

initial in Alg(Σ)

k

final in
non-trivial
subcategory

Alg(Σ) and
Alg(SP)

final in

trivial
{x}

non-trivial(TRUE6=FALSE)

Beval A

TΣ,E

TΣ
initial in Alg(SP)

Initial-algebra semantics: no junk, no confusion (Rod Burstall)
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Functors

Remark
A functor is a "Homomorphism between categories".

Definition
Let C and D categories.
A functor F : C → D is a pair of maps, i. e. it maps

• objects of C to objects of D, and

• morphisms f : X → X
′

(for X ,X
′
∈ C) to

morphisms F (f ) : F (X )→ F (X
′
) in D,

such that
F (g ◦ f ) = F (g) ◦ F (f )

and
F (idX ) = idF (X)
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The category SET

• We work in the category SET (objects are sets, morphisms are
(total) functions, usual composition of functions).

• We use the following operations on sets:
• Product:

X × Y = { (x , y) | x ∈ X , y ∈ Y }
• Coproduct (direct sum):

X + Y = { 〈0, x〉 | x ∈ X } ∪ { 〈1, y〉 | y ∈ Y }
• Powerset:

P(X) = {Y |Y ⊆ X }
• Function space:

X Y = { f | f : Y → X }

Remark
These operations are functorial, i.e., can be lifted from sets to
functions between sets, thus forming functors from SET to SET.
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Initial and final sets

We write 1 = {∗} for a singleton set (with typical elem. ∗).
There is exactly one function X → 1 for any set X .
Thus 1 is final (or terminal) in SET.

We write 0 for the empty set.
There is exactly one function 0→ X for any set X .
Thus 0 is initial in SET.



Towards Coalgebraic
Specification

Franz Lichtenberger

Motivation

Some categorical
prerequisites

Algebras of a functor

Coalgebras

Coalgebraic phenomena

Summary

Topics for discussion

Some useful isomorphisms in SET

X × Y ∼= Y × X

1× X ∼= X

X × (Y × Z ) ∼= (X × Y )× Z

X × 0 ∼= 0

X + Y ∼= Y + X

0 + X ∼= X

X + (Y + Z ) ∼= (X + Y ) + Z

X × (Y + Z ) ∼= (X × Y ) + (X × Z )
We shall usually work “up to” these isomorphisms, so we can
simply write for n-ary products:

X1 × X2 × · · · × Xn

without bothering about bracketing.
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Polynomial Functors (1)

Remark
We use two trivial functors as well:

1 id : SET→ SET (the identity functor)

2 For a constant set C we have the functorial operation X 7→ C;
a function f : X → X ′ is mapped to the identity function
idC : C → C.

We will often say things like: consider the functor

T (X ) = X + (C × X ),

i.e., we give the action only on sets, here

X 7→ X + (C × X ).
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Polynomial Functors (2)

Since all operations are functorial, the action on a function
f : X → X ′ is derived:

T (f ) : T (X )→ T (X ′)

explicitly, T (f ) in our example is

f + (idC × f ) : X + (C × X )→ X ′ + (C × X ′)

given by:

w 7→
{
〈0, f (x)〉 if w = 〈0, x〉
〈1, (c, f (x))〉 if w = 〈1, (c, x)〉

In the sequel we shall use only such polynomial functors built up
with constants, identity functor, products, coproducts, and -later-
also (finite) powersets and function spaces X A (for constant sets
A).
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Algebras of a functor

Example

Let T be the polynomial functor

T (X ) = 1 + X + (X × X ).

For a set U, a function a : T (U)→ U is a 3-cotuple [a1, a2, a3] of
maps
a1 : 1→ U,
a2 : U → U,
a3 : U × U → U.
The shape of the functor T determines a signature, here of a
group:
For a carrier set G and unit element e : 1→ G, inverse i : G→ G,
multiplication m : G ×G→ G,
we get by cotupelling an algebra of T :

(G, [e, i,m] : T (G)→ G).
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Example

Similarly, the algebras of the functor

T (X ) = 1 + X × X

have a monoid signature.
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Definition
Let T be a functor. An algebra of T (or T -algebra) is a pair
consisting of set U and a function a : T (U)→ U.
We call U the carrier set, a the algebra structure or operation of
the algebra.

Example

Natural numbers N

zero

0 : 1→ N
and successor functions

S : N→ N
form an algebra (N, [0,S] : 1 +N→ N) of the functor T (X ) = 1 + X .
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Example

A-labelled binary trees: Tree(A)

operations:
nil : 1→ Tree(A)

node : Tree(A)× A× Tree(A)→ Tree(A)

form an algebra of the polynomial functor

T (X ) = 1 + (X × A× X )

isomorphic to
T (X ) = 1 + A× X 2

Remark
This polynomial (functor) is a precise and very concise specification
of A-labelled binary trees. The semantics is the initial algebra of the
category of T - algebras and homomorphisms between T -algebras.
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Historical remarks (2)

Later developments in Algebraic Specification:
• Modules
• Objects and components
• Concurrency
• etc. etc. . . .

• Specification of entire software systems

DEAD END STREET!

because some of the phenomena are intrinsically non-algebraic
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Coalgebras

Definition
For a functor T , a coalgebra (or a T -coalgebra) is a pair (U, c)
consisting of a set U and a function c : U → T (U).

Like for algebras, we call U the carrier and c the structure or
operation of (U, c). U is often called the state space.

Compare:

algebra: T (U)→ U
operation into the carrier U, describes
construction of elements of U.

coalgebra: U → T (U)
operation out of the carrier U, describes
observations about elements of U.
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Coalgebraic phenomena (1)

Example (Black-box machine with one button and one light.)

• performs an action only if button is pressed
• light goes on only if the machine stops operating (i.e., has

reached a final state)

X - the (unknown) “state space”
Describe the machine by a function:

button : X → {∗} ∪ X ,

where ∗ 6∈ X is a new symbol.

• The pair (X , button : X → {∗} ∪ X ) is an example of a
coalgebra.

• Observable behavior: an element of N̄ := N ∪ {∞} describing
the number of times the button has to be pressed until the light
goes on.

• Mathematically, beh : X → N̄, turns out to be a final
coalgebra of the functor T (X ) = 1 + X .
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Coalgebraic phenomena (2)

Example (Similar machine with two buttons value and next)

Described by a coalgebra:

(X , 〈value, next〉 : X → A× X ),

where A is the set of observable values.

• Observable behavior: an infinite sequence

(a0, a1, a2, . . . ) ∈ AN,

where ai is the value after processing next i-times.
• Observing this behavior for every state s ∈ X gives a function

beh : X → AN

which is the final coalgebra of T (X ) = A× X .
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Coalgebraic phenomena (3)

Example (transition systems)

Machine with two buttons (second example)

〈value, next〉 : X → A× X

can be understood as deterministic transition system. We write

s a−→ s′ iff value(s) = a and next(s) = s′.

The trace Tr(s) of observations of state s ∈ X :

Tr(s) = (a1, a2, . . . ) where s
a1−→ s1

a2−→ s2 · · · ,

which is the observable behavior beh(s) ∈ AN.
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Example (transition systems)

A non deterministic transition system

(X ,A,→), where →⊆ X × A× X

can be described in coalgebra form as a function using a powerset:

α : X → P(A× X ),

where α(s) is the “successor set” of s ∈ X .

Remark
Finding the right domain for the observable behavior is non-trivial
here.
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Summing up the examples of coalgebras:

• We have a state space X about which we make no
assumptions.

• On X a function is defined (often consisting of different
components) which allows us

• to observe some aspect directly or
• move on to next states.

• We can describe just the behavior by making successive
observations.

• This behavior typically is the final coalgebra of a (polynomial)
functor.

• This also leads to the notion of bisimilarity, i.e., two states
(which need not be equal as elements of X ) cannot be
distinguished via the operations at our disposal, i.e., are “equal
as far as we can see.”

• Bisimilarity is an important and typically coalgebraic concept.
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Data and Processes

• Data are modeled by algebras
Semantics: initial algebra

• Processes are modeled by coalgebras
Semantics: final coalgebra

They are dual to each other:

• data are co-processes
• processes are co-data
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Bialgebraic Modeling

In practice, algebraic and coalgebraic aspects interact on different
hierarchical layers, for example

• start with algebraically specifying ones application domain
• describe dynamical systems (processes) as coalgebras, using

the algebras above as codomains of observer functions,
• such coalgebraic systems may exist in an algebra of

processes.

Remark
P. Padawitz (Dortmund) calls that "Swinging Types".
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Topics for discussion

From theoretical . . .

• Adjoint functors
• Monads/ strong monads/ comonads
• Kleisli categories
• Non-wellfounded sets
• equivalence in algebras vs bisimulation in coalgebras

• ’Added value’ of using coalgebras instead of, say, ASMs
• Monads and Kleisli Triples in functional programming
• Continuation Monad (and other monads)
• Final coalgebra semantics of specification languages
• Paper: "A Coalgebra as an Intrusion Detection System"
• Practical proof schemes for coinduction
• Proof by coinduction and bisimulation

. . . to practical
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