
The LogicGuard Project

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/15

LogicGuard

The Efficient Checking of Time-Quantified Logic Formulas with
Applications in Computer Security.

FFG BRIDGE Program
January 2012 – December 2013

Partners
RISC Institute (JKU Linz/Hagenberg)

Wolfgang Schreiner, Temur Kutsia
RISC Software GmbH (Hagenberg)

Michael Krieger, Stephan Leitner
SecureGUARD GmbH (Linz)

Helmut Otto, Martin Rummerstorfer.

Associated: George Rahonis (Thessaloniki)

http://www.risc.jku.at/projects/LogicGuard

Wolfgang Schreiner http://www.risc.jku.at 2/15

Topic

A special application of “runtime verification”.

Monitor network traffic for security breaches.
Traffic is an infinite stream of TCP/IP packets.

Specify safety property in a high-level declarative form.
A predicate logic formula interpreted over infinite streams with
quantification over stream positions.

Automatically translate specification into a monitor.
A program that surveils the traffic for violations of the property.

Advantage: no manual low-level coding of monitors required.
Tedious and error-prone, difficult to maintain.

Problem: time and space complexity of the monitor.
Must operate with limited time and memory resources.

Use predicate logic as the specification formalism for a runtime monitor.

Wolfgang Schreiner http://www.risc.jku.at 3/15

Network Traffic

Wolfgang Schreiner http://www.risc.jku.at 4/15

A Monitor

Monitor
Forward Package

(yes/no)?

Specification

Package

Block (or just report) every package that triggers a violation of the
specified safety property.

Wolfgang Schreiner http://www.risc.jku.at 5/15

Core Idea

Ψ0 → Ψ1 → Ψ2 → Ψ3 → Φ4 → . . .

∃i : Φi ∧ ∀j < i : Ψj

Monadic second order logic (MSO): the size of the automaton is
non-elimentary in the size of the formula.

Wolfgang Schreiner http://www.risc.jku.at 6/15

Current Work

Abstract Language
Syntax F and semantics [F]

[F] : (Pω × . . .)→ Bool
Translation T [F]

T [F] : Step[Bool]
Step[T] = (P × . . .)→ Answer [T]
Answer [T] = T + Step[T]

Concrete Language and System
Parsing and type checking.
Translation.
Runtime system.

Application Scenarios
Modeling of “interesting” properties.
Validation of language design.

Wolfgang Schreiner http://www.risc.jku.at 7/15

Application Scenario

Assume that stream parts consists of downloaded parts of files.

predicate files <=>
forall var now

let part = parts@now
with startFile(now, part)
let file = getFile(now, part) :

NOVIRUS(file)
files ⇔
∀now :

let part = parts@now :
startFile(now , part)⇒

let file = getFile(now , part):
NOVIRUS(file)

The combined files must not contain a virus.

Wolfgang Schreiner http://www.risc.jku.at 8/15

Application Scenario (Contd)

pos

now

function getFile(now, part) =
let set = combine[EMPTYSET, ADDPART, FILETIMEOUT]

var pos with now <= pos
let part0 = parts@pos
with SAMEFILE(part, part0)
resettimer
with COMPLETEPART(part0)
until COMPLETESET(this) :
part0 :

FILE(set)

Wolfgang Schreiner http://www.risc.jku.at 9/15

Application Scenario (Contd)

pos

now end

getFile(now , part) =
let set = C(now , part) :
FILE(set)

C(now , part) =
let end = min p ≥ now such that COMPLETESET (C(now , part, p)) :
C(now , part, end)

C(now , part, p) = combine[EMPTYSET ,ADDPART] {part0 |
now ≤ pos ≤ p ∧ part0 = parts@pos ∧
SAMEFILE(part, part0) ∧ COMPLETEPART (part0)}

Wolfgang Schreiner http://www.risc.jku.at 10/15

Stream Transformations

Actually, the input stream consists of TCP/IP packets, not file parts.

tcpip -> connections ---> http ---+--> downloads -> parts -> files
| | ^
| +--------+ |
| | |
v v |

ftprequests ----> ftp ---+

let connections = . . . tcpip . . . :
let http = . . . connections . . . :
let ftprequests = . . . connections . . . :
let ftp = . . . ftprequests . . . connections . . . :
let downloads = . . . http . . . ftp . . . :
let parts = . . . downloads . . . :
files

The stream has to be transformed to appropriate layers of abstraction.
Wolfgang Schreiner http://www.risc.jku.at 11/15

The Connection Layer

Wolfgang Schreiner http://www.risc.jku.at 12/15

Abstraction Layers

Packages are merged to connections.
A connection is a sequence of bytes flowing between two hosts.
Content is formed according to some protocol (FTP, HTTP, . . .).

From connections downloads are extracted.
A download is a range of bytes (XXX–YYY) from a file part.
Different downloads may use different protocols.
Some protocols (FTP) involve multiple connections for a download.

Downloads are combined to file parts.
A file part (file.zip.001) is part of a file located on a host.
Different parts of the same file may be on different hosts.

File parts are combined to files.
The content of a file (file.zip) can be monitored for a virus.

All these layers are described in predicate logic.

Wolfgang Schreiner http://www.risc.jku.at 13/15

Application Scenario (Contd)

start

pos
stream connections =

stream var start
let packet0 = tcpip@start
with startConnection(packet0) :
partial combine[EMPTYCONNECTION, ADDPACKET, CONNECTIONTIMEOUT]

var pos with start <= pos
let packet = tcpip@pos
with sameConnection(packet0, packet)
resettimer
with ~SKIP(packet)
until endConnection(packet0, packet) :
packet

Combine all packets from the start of a TCP/IP connection till its end;
the result is a stream of (partial) connections.

Wolfgang Schreiner http://www.risc.jku.at 14/15

Status

Start with a simple core language.
Abstract syntax, denotational semantics, translation.
Not yet adequate to cover desired scenarios.

Basis: 4-valued logic (true, false, ⊥, ?).
Modeling application scenarios in a revised and extended language.

Iterative process until language seems adequate.
Syntax, semantics, translation still to be defined.
Major issues: semantics of stream transformations and timeouts.

Prototype implementation.
Runtime system (C#): read stream from network or file.
Parser/type checker (C#): process specification and construct AST.
Monitor (F#): translate AST to monitor.

Theoretical analysis.
Time/space complexity of monitor depending on specification.

Still at an early/exploratory stage.
Wolfgang Schreiner http://www.risc.jku.at 15/15

