
Comparison between Boogie2 and Why3 for the verification of
MiniMaple programs

Muhammad Taimoor Khan

Formal Methods Seminar

January 25, 2012

M.T. Khan (DK10) 1 / 30

Outline

1 Introduction

2 Boogie2

3 Why3

4 My Work

5 Conclusions

M.T. Khan (DK10) 2 / 30

Introduction

Let’s say, we have
n programming languages and
m theorem provers

For program verification, we need
n × m translations to generate verification conditions

Better solution is to translate n programs
into a common intermediate (verification) language

common to m provers

requires n + m translations
benefits

automatically generate verification conditions
these conditions can be proved by the prover of one’s choice

M.T. Khan (DK10) 3 / 30

Introduction

Let’s say, we have
n programming languages and
m theorem provers

For program verification, we need
n × m translations to generate verification conditions

Better solution is to translate n programs
into a common intermediate (verification) language

common to m provers

requires n + m translations
benefits

automatically generate verification conditions
these conditions can be proved by the prover of one’s choice

M.T. Khan (DK10) 3 / 30

Introduction

Let’s say, we have
n programming languages and
m theorem provers

For program verification, we need
n × m translations to generate verification conditions

Better solution is to translate n programs
into a common intermediate (verification) language

common to m provers

requires n + m translations

benefits
automatically generate verification conditions
these conditions can be proved by the prover of one’s choice

M.T. Khan (DK10) 3 / 30

Introduction

Let’s say, we have
n programming languages and
m theorem provers

For program verification, we need
n × m translations to generate verification conditions

Better solution is to translate n programs
into a common intermediate (verification) language

common to m provers

requires n + m translations
benefits

automatically generate verification conditions
these conditions can be proved by the prover of one’s choice

M.T. Khan (DK10) 3 / 30

Intermediate Verification Languages

Boogie (by Microsoft 2006)
SPEC#
VCC
Dafny

Why (by LRI, France 2003)
Krakatoa
Caduceus
Frama-C

M.T. Khan (DK10) 4 / 30

Boogie2

 Static Program Verifier
 (Boogie)Z3

Spec#

Translator

Boogie PL

V.C. Generator

HOL

Inference Engine

File.xyz

MSIL etc.

C Dafny

M.T. Khan (DK10) 5 / 30

Elements of the Boogie Language

Mathematical components specify
types
constants
functions
axioms

Imperative components specify
global variables
procedure declarations
procedure implementations
also described respective constrained states by mathematical
components
sets of execution traces

e.g. in case of procedure, caller and callee traces

Expressions
typical logical, boolean, arithmetic etc.

M.T. Khan (DK10) 6 / 30

Features of the Boogie Language

Parametric polymorphism
function can take polymorphic type parameters

Partial ordering (<:)
for constants of the same type

Nondeterminism (havoc statements)
can assign arbitrary values to a set of variables

Flow-chart like language
non-imperative and only supports goto statements

M.T. Khan (DK10) 7 / 30

An Example Spec# Programs

M.T. Khan (DK10) 8 / 30

An Example Spec# to Boogie Translation

M.T. Khan (DK10) 9 / 30

Strengths and Weaknesses

Strengths
many front-end tools support Boogie

Spec# compiler

imperative style syntax
Weaknesses

no rich theory language
full verification is hard

only have very good supports of Z3

no sufficiently documented semantics definition

M.T. Khan (DK10) 10 / 30

Why3

WhyML
(V.C. Generation)

Why
(translation/transformation

+ run)

Coq Alt-Ergo Gappa Z3 etc.

File.why

File.mlw

M.T. Khan (DK10) 11 / 30

Simplicity and Collaborative Proofs

Generates simple verification conditions
no memory store
conditions about the contents of the data structures

Still captures sufficient details
termination and array bound checking etc.

Provides collaborative proofs
to handle unproved verification conditions with interactive provers
but provides as much proof automation as possible

Also WP-based semantics

M.T. Khan (DK10) 12 / 30

Some more features

Influenced by ML
Why3 supports

algebraic data types
pattern matching

WhyML supports
type inference
currying
abstract data types

M.T. Khan (DK10) 13 / 30

Theories and Modules

Built-in theories
e.g., List, Int etc.

Built-in modules
e.g., Ref etc.

Can be used directly or by cloning
(* Theory Definition *)
theory Orty

use import list.List

type orty
...

end

(* Module Definition *)
module MyModule

use import int.Int
use import module ref.Ref
use import Orty

...
end

M.T. Khan (DK10) 14 / 30

Abstract and Algebraic Data Types

(* Abstract Data Type *)
theory Orty

type orty
...

end

(* Algebraic Data Type *)
theory List

type list ’a = Nil | Cons ’a (list ’a)

end

M.T. Khan (DK10) 15 / 30

An Example Why3 Program - MaxAndSum

M.T. Khan (DK10) 16 / 30

Strengths and Weaknesses

Strengths
rich logic, readily usable in programs
support collaborative proofs by many beck-end provers
modularity and abstract data types
close to specification-based programming

Weaknesses
program and specification are tied together

even w.r.t. syntax
some data structures cannot be defined (but signatures)

e.g. mutable trees etc.

M.T. Khan (DK10) 17 / 30

My Work

Formal specification respectively verification of programs written
in (the most widely used) untyped computer algebra languages

Mathematica and Maple
Develop a tool to find errors by static analysis

for example type inconsistencies
and violations of methods preconditions

Also
to realize the gap between the example computer algebra algorithm
and its implementation
to formalize properties of computer algebra

Demonstration example
Maple package DifferenceDifferential developed by Christian Dönch

MiniMaple
A simple but substantial subset of Maple
Covers all syntactic domains of Maple but fewer expressions

M.T. Khan (DK10) 18 / 30

A MiniMaple Example Program

sumproc := proc(l: Or(integer, list(integer)))::integer;
local sum::integer:=0, el::list(integer), x::integer;
if type(l,integer) then

if l <> 0 then
sum := sum + l;

else
return sum;

end if;
elif type(l,list(integer)) then

for x from 1 by 1 to nops(l) do
el := l[x];
if el <> 0 then

sum:=sum+el;
else

return sum;
end if;

end do;
end if;
return sum;

end proc;

M.T. Khan (DK10) 19 / 30

Special features of the MiniMaple Type System

Uses only Maple type annotations
Maple uses them for dynamic type checking
MiniMaple uses them for static type checking

Context (global vs local)
global

may introduce new identifiers by assignments
types of identifiers may change arbitrarily by assignments

local
identifiers only introduced by declarations
types of identifiers can only be specialized

Type tests in Maple, i.e. type(I,T)
branches may have different type information for the same variable

track type information to allow satisfiable tests only
number of loop iterations might influence the type information

least fix point as an upper bound on the types of the variable
as a special case the declared type is the least fixed point

M.T. Khan (DK10) 20 / 30

Elements of the Specification Language

Mathematical theories
Types

User defined data-types
Abstract data types

Functions and predicates (declared/defined)
Axioms

Procedure specifications
Pre-post conditions
Exceptions
Global variables

Loop specifications
Invariants
Termination terms

Assertions
To constrain the state of execution

M.T. Khan (DK10) 21 / 30

Challenges of Specification Language for MiniMaple

Support of some non-standard types of objects
e.g. symbols, unevaluated expressions etc.

Additional functions and predicates
e.g. type test, type(I,T)

Specification of abstract mathematical concepts by an abstract
data type

Weaker support in current classical specification languages
e.g., ring, variables and ordering of a polynomial
ADDO as an abstract data type represented by list of tuples

Abstract Difference Differential Operator

M.T. Khan (DK10) 22 / 30

An example utility procedure of DifferenceDifferential

(*@
‘type/ADDO‘;
define(terms, terms(ad::ADDO)=...);
define(getTerm, getTerm(ad::ADDO,i::nat, j::nat)=...);
isADDO(d);
isADDOTerm(c,n,z,e);
...
assume(isADDO(d) equivalent forall(i::integer, 1<=i and i<=terms(d) implies

isADDOTerm(getTerm(d,i,1), getTerm(d,i,2), getTerm(d,i,3), getTerm(d,i,4]));
assume(isADDOTerm(c,n,z,e) equivalent inField(c) and isGenerator(e));

...
define(power, power(a::integer,0)=1, power(a::integer,b::integer)= mul(a,1...b));
define(maps, maps(d::DDO)=...);

@*)
global noauto, generators, ...;

...
(*@

requires 1 <= z and z <= power(2,length(noauto)) and
forall(i::integer, 1<=i and i<=terms(maps(a)) implies isGenerator(getTerm(maps(a),i,4))) and
forall(i::integer, 1<=i and i<=terms(maps(b)) implies isGenerator(getTerm(maps(b),i,4)));

global EMPTY;
ensures

(forall(j::integer, 1<=j and j<=nops(RESULT) implies isGenerator(RESULT[j][1],maps(a),maps(b)) and
RESULT[j][2] = isLT(maps(a),z) and RESULT[j][3] = isLT(maps(b),z)))

or
(nops(RESULT) = 0 and ...);

@*)

VGB := proc (z::integer, a::DDO, b::DDO)::list([symbol,list(symbol),list(symbol)]) ... return v; end proc;

M.T. Khan (DK10) 23 / 30

Why Why3?

Need to verify the implementation of some computer algebra algorithm
along-with reasonable proof/details about the algorithm itself

MiniMaple and its specification language
symbolic programs are close to algorithms

Arguments in favor of Why3
rich theory language
algebraic and abstract data types
inductive predicates
both automated and interactive proof

M.T. Khan (DK10) 24 / 30

Why Why3?

Need to verify the implementation of some computer algebra algorithm
along-with reasonable proof/details about the algorithm itself

MiniMaple and its specification language
symbolic programs are close to algorithms

Arguments in favor of Why3
rich theory language
algebraic and abstract data types
inductive predicates
both automated and interactive proof

M.T. Khan (DK10) 24 / 30

Why Why3?

Need to verify the implementation of some computer algebra algorithm
along-with reasonable proof/details about the algorithm itself

MiniMaple and its specification language
symbolic programs are close to algorithms

Arguments in favor of Why3
rich theory language
algebraic and abstract data types
inductive predicates
both automated and interactive proof

M.T. Khan (DK10) 24 / 30

My Current Work

Developing verification calculus for MiniMaple programs
to generate verification conditions
also to prove verification conditions

Translation to corresponding semantically equivalent Why3 constructs

M.T. Khan (DK10) 25 / 30

My Current Work

Developing verification calculus for MiniMaple programs
to generate verification conditions
also to prove verification conditions

Translation to corresponding semantically equivalent Why3 constructs

M.T. Khan (DK10) 25 / 30

My Current Work

Developing verification calculus for MiniMaple programs
to generate verification conditions
also to prove verification conditions

Translation to corresponding semantically equivalent Why3 constructs

M.T. Khan (DK10) 25 / 30

My Current Work

Developing verification calculus for MiniMaple programs
to generate verification conditions
also to prove verification conditions

Translation to corresponding semantically equivalent Why3 constructs

M.T. Khan (DK10) 25 / 30

An Example Translation (MiniMaple to Why3)

Union-type, i.e. Or(integer, list(integer))

Type-tests, i.e. type(l, integer) and type(l, list(integer))

Utility function to extract nth element of a list

M.T. Khan (DK10) 26 / 30

An Example Translation (MiniMaple to Why3)

Union-type, i.e. Or(integer, list(integer))

Type-tests, i.e. type(l, integer) and type(l, list(integer))

Utility function to extract nth element of a list

M.T. Khan (DK10) 26 / 30

An Example Translation (MiniMaple to Why3)

Union-type, i.e. Or(integer, list(integer))

Type-tests, i.e. type(l, integer) and type(l, list(integer))

Utility function to extract nth element of a list

M.T. Khan (DK10) 26 / 30

MiniMaple to Why3 - contd.

Procedure sumproc(l: Or(integer, list(integer)))::integer

M.T. Khan (DK10) 27 / 30

Complete Example Translation

M.T. Khan (DK10) 28 / 30

Experiments and Readings (so far)

MiniMaple (reasonably supported)

Types
integer, boolean, string, float etc. (supported)
list(T), {T}, [Tseq] (can be specified by the built-in list library)
uneval, symbol and union etc. (can also be axiomatized easily)

Expressions (also can be specified easily)
typical arithmetic and logical expressions
unevaluated
sequence

Special constructs (can be specified by pattern matching)
type-tests
sub-typing relations

Other constructs (supported by the corresponding constructs)
procedures, modules
for-loop variations
exception handling

M.T. Khan (DK10) 29 / 30

Experiments and Readings (so far)

MiniMaple (reasonably supported)
Types

integer, boolean, string, float etc. (supported)
list(T), {T}, [Tseq] (can be specified by the built-in list library)
uneval, symbol and union etc. (can also be axiomatized easily)

Expressions (also can be specified easily)
typical arithmetic and logical expressions
unevaluated
sequence

Special constructs (can be specified by pattern matching)
type-tests
sub-typing relations

Other constructs (supported by the corresponding constructs)
procedures, modules
for-loop variations
exception handling

M.T. Khan (DK10) 29 / 30

Experiments and Readings (so far)

MiniMaple (reasonably supported)
Types

integer, boolean, string, float etc. (supported)
list(T), {T}, [Tseq] (can be specified by the built-in list library)
uneval, symbol and union etc. (can also be axiomatized easily)

Expressions (also can be specified easily)
typical arithmetic and logical expressions
unevaluated
sequence

Special constructs (can be specified by pattern matching)
type-tests
sub-typing relations

Other constructs (supported by the corresponding constructs)
procedures, modules
for-loop variations
exception handling

M.T. Khan (DK10) 29 / 30

Experiments and Readings (so far)

MiniMaple (reasonably supported)
Types

integer, boolean, string, float etc. (supported)
list(T), {T}, [Tseq] (can be specified by the built-in list library)
uneval, symbol and union etc. (can also be axiomatized easily)

Expressions (also can be specified easily)
typical arithmetic and logical expressions
unevaluated
sequence

Special constructs (can be specified by pattern matching)
type-tests
sub-typing relations

Other constructs (supported by the corresponding constructs)
procedures, modules
for-loop variations
exception handling

M.T. Khan (DK10) 29 / 30

Experiments and Readings (so far)

MiniMaple (reasonably supported)
Types

integer, boolean, string, float etc. (supported)
list(T), {T}, [Tseq] (can be specified by the built-in list library)
uneval, symbol and union etc. (can also be axiomatized easily)

Expressions (also can be specified easily)
typical arithmetic and logical expressions
unevaluated
sequence

Special constructs (can be specified by pattern matching)
type-tests
sub-typing relations

Other constructs (supported by the corresponding constructs)
procedures, modules
for-loop variations
exception handling

M.T. Khan (DK10) 29 / 30

Experiments and Readings (so far) contd.

Specification language (almost directly supported)

Mathematical theories (supported by the corresponding constructs)
user-defined and abstract data types
functions and predicates
axioms

Procedure specifications (partially supported)
pre-post conditions
exceptions
global variables

Loop specifications (supported by invariants + variants)
invariants
termination term

Assertions (supported)
Other constructs (supported)

typed logical quantifiers

M.T. Khan (DK10) 30 / 30

Experiments and Readings (so far) contd.

Specification language (almost directly supported)
Mathematical theories (supported by the corresponding constructs)

user-defined and abstract data types
functions and predicates
axioms

Procedure specifications (partially supported)
pre-post conditions
exceptions
global variables

Loop specifications (supported by invariants + variants)
invariants
termination term

Assertions (supported)
Other constructs (supported)

typed logical quantifiers

M.T. Khan (DK10) 30 / 30

Experiments and Readings (so far) contd.

Specification language (almost directly supported)
Mathematical theories (supported by the corresponding constructs)

user-defined and abstract data types
functions and predicates
axioms

Procedure specifications (partially supported)
pre-post conditions
exceptions
global variables

Loop specifications (supported by invariants + variants)
invariants
termination term

Assertions (supported)
Other constructs (supported)

typed logical quantifiers

M.T. Khan (DK10) 30 / 30

Experiments and Readings (so far) contd.

Specification language (almost directly supported)
Mathematical theories (supported by the corresponding constructs)

user-defined and abstract data types
functions and predicates
axioms

Procedure specifications (partially supported)
pre-post conditions
exceptions
global variables

Loop specifications (supported by invariants + variants)
invariants
termination term

Assertions (supported)
Other constructs (supported)

typed logical quantifiers

M.T. Khan (DK10) 30 / 30

Experiments and Readings (so far) contd.

Specification language (almost directly supported)
Mathematical theories (supported by the corresponding constructs)

user-defined and abstract data types
functions and predicates
axioms

Procedure specifications (partially supported)
pre-post conditions
exceptions
global variables

Loop specifications (supported by invariants + variants)
invariants
termination term

Assertions (supported)

Other constructs (supported)
typed logical quantifiers

M.T. Khan (DK10) 30 / 30

Experiments and Readings (so far) contd.

Specification language (almost directly supported)
Mathematical theories (supported by the corresponding constructs)

user-defined and abstract data types
functions and predicates
axioms

Procedure specifications (partially supported)
pre-post conditions
exceptions
global variables

Loop specifications (supported by invariants + variants)
invariants
termination term

Assertions (supported)
Other constructs (supported)

typed logical quantifiers

M.T. Khan (DK10) 30 / 30

	Introduction
	Boogie2
	Why3
	My work
	Conclusions
	Introduction
	Boogie2
	Why3
	My Work
	Conclusions

