Comparison between Boogie2 and Why3 for the verification of

MiniMaple programs

Muhammad Taimoor Khan
Formal Methods Seminar

January 25, 2012

()
LIF Doctoral Program ¥\
Computational Mathematics e .
Der Wissenschaftsfonds Numerical Analysis and Symbolic Computation M.{

M.T. Khan (DK10) 1/30



0 Introduction
e Boogie2
© why3

O My work

e Conclusions

M.T. Khan (DK10) 2/30



Introduction

Let’s say, we have
@ n programming languages and
@ mtheorem provers

M.T. Khan (DK10) 3/30



Introduction

Let’s say, we have
@ n programming languages and
@ m theorem provers
For program verification, we need
@ n x mtranslations to generate verification conditions

M.T. Khan (DK10) 3/30



Introduction

Let’s say, we have
@ n programming languages and
@ m theorem provers
For program verification, we need
@ n x mtranslations to generate verification conditions

Better solution is to translate n programs
@ into a common intermediate (verification) language
@ commonto m provers

@ requires n+ m translations

M.T. Khan (DK10) 3/30



Introduction

Let’s say, we have

@ n programming languages and

@ m theorem provers
For program verification, we need

@ n x mtranslations to generate verification conditions
Better solution is to translate n programs

@ into a common intermediate (verification) language

@ commonto m provers
@ requires n+ m translations
@ benefits

e automatically generate verification conditions
e these conditions can be proved by the prover of one’s choice
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Intermediate Verification Languages

@ Boogie (by Microsoft 2006)
o SPEC#
e VCC
e Dafny

@ Why (by LRI, France 2003)
o Krakatoa
e Caduceus
e Frama-C
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Elements of the Boogie Language

@ Mathematical components specify
o types
e constants
e functions
e axioms
@ Imperative components specify
global variables
procedure declarations
procedure implementations
also described respective constrained states by mathematical

components
o sets of execution traces

@ e.g. in case of procedure, caller and callee traces
@ Expressions
e typical logical, boolean, arithmetic etc.
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Features of the Boogie Language

@ Parametric polymorphism
e function can take polymorphic type parameters
@ Partial ordering (<:)
e for constants of the same type
@ Nondeterminism (havoc statements)
@ can assign arbitrary values to a set of variables
@ Flow-chart like language
@ non-imperative and only supports goto statements
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An Example Spec# Programs

public class Ezample {
int T;
string! s;
invariant s.Length >= 12;
public Ezample(int y) requires y > 0: { ... }
public static void M (int n) {
Ezample e = new Ezample(100/n);
int k= e.s.Length;
for (int i=0: i < n; i++) { ex+=1; }
assert k == e.s.Length;
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An Example Spec# to Boogie Translation

const System.Object : name;

const Erample © mame;

axiom Erample <: System.Object;

function typeof(ab : ref) returns (class: name)

const allocated : name;
const Erample.r : name;
const Erample.s : name;

~var Heap : [ref, nameany;
function StringLength(s : ref) returns (len : int)

procedure Ezample..ctor(this : ref, u: int);
requires ... A v >0; modifies Heap: ensures

procedure Ezample.M(n - int),
requires ...; modifies Heap; ensures .

implementation Erample M(n : int)

var ¢ : ref where e =null v typeof(c) <: Erample;
var k: int, i: int, tmp: int. Preloopileap - [ref, name|any

Stare :
assert n # 0;
tmp == 100/m;
havoc e;
assume ¢ # null A typeof(c) = Example A Heaple, allocated] = false;
Hasple, allocated) := true
call Ezample. .ctor{e, tmp);

assert ¢ # null; k:= StringLength(cast(Heaple, Example 5], ref))
=

PreLoopHeap = Heap;

goto LoopHead.

LoopH ead :
goto LoopBody, AfterLoop

LoopBody
assume i < n
assert ¢ # null;
Heaple, Example.x] := cast(Heaple, Example.z], int) + i
P=it
goto LoopH cad;
AfterLoop
assume (i <

Sasart e  null; assrt & = SiringLenath(east(Heaple, Ezample.] el ):
return;
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Strengths and Weaknesses

@ Strengths
e many front-end tools support Boogie
@ Spec# compiler
e imperative style syntax
@ Weaknesses

@ no rich theory language
o full verification is hard

@ only have very good supports of Z3
@ no sufficiently documented semantics definition
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Simplicity and Collaborative Proofs

@ Generates simple verification conditions

@ no memory store
@ conditions about the contents of the data structures

@ Still captures sufficient details
e termination and array bound checking etc.
@ Provides collaborative proofs

e to handle unproved verification conditions with interactive provers
@ but provides as much proof automation as possible

@ Also WP-based semantics
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Some more features

Influenced by ML
@ Why3 supports

o algebraic data types
e pattern matching

@ WhyML supports

o type inference
@ currying
e abstract data types
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Theories and Modules

@ Built-in theories
e e.g, List, Int etc.
@ Built-in modules
e e.g., Ref etc.
@ Can be used directly or by cloning

(# Theory Definition )
theory Orty
use import list.List

type orty
end

(* Module Definition =)
module MyModule

use import int.Int
use import module ref.Ref
use import Orty

end
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Abstract and Algebraic Data Types

(» Abstract Data Type x)
theory Orty

type orty
end

(x Algebraic Data Type x)
theory List

type list 'a = Nil | Cons ’"a (list ’a)

end
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An Example Why3 Program - MaxAndSum

module MaxAndSum

use impert int.Int
use import module ref. Ref
use import module array. Array

let max_sum (a: array int) (n: int) =
{8 << n=length a /\ forall 1i:int. 8 <= 1 < n -> a[1] = 8 }
let sum = ref @ in
let max = ref @ in
for i= 8 toen - 1 deo
invariant { !sum €= 1 * Imax }

if !'max < a[i] then max := a[i];
sum = !sum + a[i]
dene;
{ 'sum, !'max)
{ let (sum, max) = result in sum <= n * max }

end
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Strengths and Weaknesses

@ Strengths
e rich logic, readily usable in programs
@ support collaborative proofs by many beck-end provers
e modularity and abstract data types
o close to specification-based programming
@ Weaknesses
e program and specification are tied together
@ even w.r.t. syntax
@ some data structures cannot be defined (but signatures)
@ e.g. mutable trees etc.
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My Work

@ Formal specification respectively verification of programs written
in (the most widely used) untyped computer algebra languages
o Mathematica and Maple
@ Develop a tool to find errors by static analysis

o for example type inconsistencies
e and violations of methods preconditions

@ Also

o to realize the gap between the example computer algebra algorithm
and its implementation
o to formalize properties of computer algebra

@ Demonstration example

e Maple package DifferenceDifferential developed by Christian Dénch
@ MiniMaple

e A simple but substantial subset of Maple

o Covers all syntactic domains of Maple but fewer expressions
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A MiniMaple Example Program

sumproc := proc(l: Or(integer, list(integer)))::integer;
local sum::integer:=0, el::list(integer), x::integer;
if type(l,integer) then
if | <> 0 then
sum :=sum + |;
else
return sum;
end if;
elif type(l,list(integer)) then
for x from 1 by 1 to nops(l) do
el = I[x];
if el <> 0 then
sum:=sum-+el;
else
return sum;
end if;
end do;
end if;
return sum;
end proc;
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Special features of the MiniMaple Type System

@ Uses only Maple type annotations
@ Maple uses them for dynamic type checking
e MiniMaple uses them for static type checking
@ Context (global vs local)
e global

@ may introduce new identifiers by assignments
@ types of identifiers may change arbitrarily by assignments

e local
@ identifiers only introduced by declarations
@ types of identifiers can only be specialized
@ Type tests in Maple, i.e. type(/,T)
@ branches may have different type information for the same variable
@ track type information to allow satisfiable tests only
e number of loop iterations might influence the type information

@ least fix point as an upper bound on the types of the variable
@ as a special case the declared type is the least fixed point
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Elements of the Specification Language

@ Mathematical theories
o Types

@ User defined data-types
@ Abstract data types

e Functions and predicates (declared/defined)
e Axioms
@ Procedure specifications

e Pre-post conditions
o Exceptions
o Global variables

@ Loop specifications

e Invariants
e Termination terms

@ Assertions
@ To constrain the state of execution
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Challenges of Specification Language for MiniMaple

@ Support of some non-standard types of objects
e e.g. symbols, unevaluated expressions etc.
@ Additional functions and predicates
e e.g. type test, type(/,7)
@ Specification of abstract mathematical concepts by an abstract
data type

o Weaker support in current classical specification languages
e e.g., ring, variables and ordering of a polynomial
o ADDO as an abstract data type represented by list of tuples

@ Abstract Difference Differential Operator
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An example utility procedure of DifferenceDifferential

@
‘type/ADDO’;
define(terms, terms(ad::ADDO)=...);
define(getTerm, getTerm(ad::ADDQ;i::nat, j::nat)=...);
isSADDO(d);
isADDOTerm(c,n,z,e);

assume(isADDO(d) equivalent forall(i::integer, 1<=i and i<=terms(d) implies
isADDOTerm(getTerm(d,i, 1), getTerm(d,i,2), getTerm(d,i,3), getTerm(d,i,4]));
assume(isADDOTerm(c,n,z,e) equivalent inField(c) and isGenerator(e));

-aefine(power, power(a:integer,0)=1, power(a::iinteger,b::iinteger)= mul(a,1...b));
define(maps, maps(d::DDO)=...);
@)

global noauto, generators, ...;

(@
requires 1 <=z and z <= power(2,length(noauto)) and
forall(i::integer, 1<=i and i<=terms(maps(a)) implies isGenerator(getTerm(maps(a),i,4))) and
forall(i:iinteger, 1<=i and i<=terms(maps(b)) implies isGenerator(getTerm(maps(b),i,4)));
global EMPTY;
ensures
( forall(j::iinteger, 1 <=j and j<=nops(RESULT) implies isGenerator(RESULTI[j][1],maps(a),maps(b)) and
RESULT[j][2] = isLT(maps(a),z) and RESULT[j][3] = isLT(maps(b),z)) )
or
(nops(RESULT) =0 and ...);

*

VGB := proc (z::integer, a::DDO, b::DDO)::list([symbol,list(symbol),list(symbol)]) ... return v; end proc;
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Why Why3?

Need to verify the implementation of some computer algebra algorithm
along-with reasonable proof/details about the algorithm itself
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Why Why3?

Need to verify the implementation of some computer algebra algorithm
along-with reasonable proof/details about the algorithm itself

@ MiniMaple and its specification language
e symbolic programs are close to algorithms
@ Arguments in favor of Why3

e rich theory language

algebraic and abstract data types
inductive predicates

both automated and interactive proof
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My Current Work

Developing verification calculus for MiniMaple programs
@ to generate verification conditions
@ also to prove verification conditions

Why3

s o P .
MiniMaple + Specification ——® Translation—— (V.C. Generation)

Translation to corresponding semantically equivalent Why3 constructs
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An Example Translation (MiniMaple to Why3)

@ Union-type, i.e. Or(integer, list(integer))
1I§ type my_or_type = My_or_integer int | My_or_list_integer (list ink)
14

15 Ffunction my_or_to_integer (t: my_or_type) : int
16 Function my_or_to_list_integer (k- my_or_type): list int
17
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type my_or_type = My_or_integer int | My_or_list_integer (list ink)

function my_or_to_integer (t: my_or_type) : int
function my_or_to_list_integer (t: my_or_type) : list ink

i.e. type(l, integer) and type(l, list(integer))

function is_type_of (t: my_or_type) (cons: int) : bool =

match twith

| My_or_integer int -> if cons = 0 then True else False

| My _or_list_integer (Nil) -> if cons = 1 then True else False

| My_or_list_integer (Cons __) ->ifcons =1 then True else False
end
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An Example Translation (MiniMaple to Why3)

@ Union-type, i.e. Or(integer, list(integer))

12
13 type my_or_type = My_or_integer ink | My_or_list_integer (list ink)
14

15 Ffunction my_or_to_integer (t: my_or_type) : int
16 Function my_or_to_list_integer (k- my_or_type): list int
17

@ Type-tests, i.e. type(l, integer) and type(l, list(integer))
17
18 functionis_type_of (t: my_or_type) (cons:int) : bool =
19 match twith
20 | My_or_integer int -> if cons = 0 then True else False
21 | My_or_list_integer (Nil) -> if cons = 1 then True else False

22 |My_or_list_integer (Cons __)->if cons = 1 then True else False
23 end

@ Utility function to extract nth element of a list

25 let get_nth (i: ink) (L: list ink) =
26 matchnthilwith

27 |None->absurd

28 |Somex->x

29 end
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MiniMaple to Why3 - contd.

@ Procedure sumproc(l: Or(integer, list(integer)))::integer

31 letsumproc(l: my_or_type):inkt =

32 letsum=ref0in

33 let continue =ref True in

34 ifis_type_oflothen

35 ifFmy_or_to_integer(l) <> 0 && !continue = True then
36 sum:=!sum+my or_to_integer(l)

37 else

38 continue:=False

39 else

40 ifis_type ofl1then

41  Fori=0to length(my_or_to_list_integer(l)) do

42 if get_nthi (my_or_to_list_integer(l)) <> 0 && !continue = True then

43 sum :=!sum + get_nthi(my_or_to_list_integer(l))
44 else

45 continue := False

46 done

47 else

48  sum :=lsum;

49 (!'sum)

50

ra lak amaia i1
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Complete Example Translation

3 module MyModule
a

5 useimportint.int
6 use import module ref.Ref
7 useimport list.List

ort list.Length

9 useimport list.NEh

10 useimport bool.Boo

11 useimport option.Option

13 type my_or_type = My_or_integer int | My_or_list_integer (list int)

1% runction my_or_to_integer (t: my_or_type) :
16 Function my_or_to_list_integer (t: my,or,type) s listint

18 Function is_type_of (t: my_or_type) (cons: int) : bool =
19 match twith

20 |My_or_integer int -> if cons = 0 then True else False

21 | My or_list_integer (Nil) ->IF cons = 1 then True else False

22 | My or_list_integer (Cons _) ->IF cons = 1 then True else False

4
25 let get_nth (i nt)(l list int) =

26 matchnthi lwi

27 |None-> Abeurd’

28 |Somex->x

29

30

31 lstsumpro( (l :my_or_type) :ink =
32 let
33 lst(ontnue,refnusm

34 ifis_type_of lOthe

35 iFmy_or _to mtegerm <>0 && Icontinue = True then

36 +my_or_to_integer(l)
37

36 “continue:=False

39 else

40 |F|s _type_of L1 thel
1 5 £ lengthimy_or_to_list_integer()) do
teger (D)) <> 0 && Icontinue =

42 iFgeL nthi(my_or_to_list_i
'

49 (tsum)”
51 let main () =

52 sumproc(My_or_integer(17))
53 end|
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@ list(T), {T}, [Tseq] (can be specified by the built-in list library)
@ uneval, symbol and union etc. (can also be axiomatized easily)
o Expressions (also can be specified easily)
@ typical arithmetic and logical expressions
@ unevaluated
@ sequence
@ Special constructs (can be specified by pattern matching)
o type-tests
@ sub-typing relations
e Other constructs (supported by the corresponding constructs)
@ procedures, modules
@ for-loop variations
@ exception handling
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Experiments and Readings (so far) contd.

@ Specification language (almost directly supported)
o Mathematical theories (supported by the corresponding constructs)
@ user-defined and abstract data types
@ functions and predicates
@ axioms
Procedure specifications (partially supported)
@ pre-post conditions
@ exceptions
@ global variables
Loop specifications (supported by invariants + variants)
@ invariants
@ termination term
Assertions (supported)
Other constructs (supported)
@ typed logical quantifiers
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