
The RISC ProgramExplorer

Third Status Report

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/9



Goals

An integrated program reasoning environment that provides insight into

the semantic essence of a program.

Is based on the concept of programs as state relations.
A program implements a relation on states.
A specification describes a relation on states.
The program relation must imply the specification relation.

Addresses various semantic questions.
Is a specification satisfiable and not trivial?
What is the state relation described by a command/method?
What state condition is known at a particular program point?
Are methods only called in states that satisfy the methods’ preconditions?
Does the method meet its specification (assuming that loop invariants hold and
termination terms are appropriate)?
Do the invariants indeed hold?
Are the termination terms indeed appropriate?

Provides a state-of-the-art graphical user interface.
Tight links between syntactic source code and semantic essence.
Helps to gain insight as much as possible.

Wolfgang Schreiner http://www.risc.jku.at 2/9



Program Calculus

Hoare Calculus: {x = a}x=x*x{x = a2}

Pair of state conditions “glued together” by a logical constant a.
Reasoning based on Hoare triples that mix program and logic.

Dynamic Logic: ∀a : x = a ⇒ [x=x*x]x = a2

Two state conditions separated by a modality [x=x*x].
Reasoning based on modal formulas that mix program and logic.

Relational Calculus: x=x*x: x′ = x
2

Single state relation x
′ = x

2.

Captures the (denotational) semantics of the command.

Reasoning based on classical logic.

The command is translated into a classical logical formula.
All further reasoning about the command is based on the formula.

Our approach is to use the relational calculus to give programmers insight.

Wolfgang Schreiner http://www.risc.jku.at 3/9



Illustration

if (n < 0)

s = -1; F1

else {

var i;

s = 0; F2

i = 1; F3

}

Fs

while (i <= n) {

s = s+i; F4

i = i+1; F5

}

Fb

}F ,T















Fw































Fv

}



















































Fe



































































Fc

F :⇔ 1 <= var i <= var n+1 and var s =
∑var i -1

j=1 j

T := var n - var i + 1

Fc ⇔ [if old n < 0 then var s = -1 else var s =
∑old n

j=1 j]{s}

Translation into a formula that captures the program’s semantic essence.
Wolfgang Schreiner http://www.risc.jku.at 4/9



Program and Specification Language

public static int fac(int n) /*@

requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;

ensures VALUE@NEXT = factorial(VAR n);

@*/

{

int i=1;

int p=1;

while (i <= n) /*@

invariant VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT

AND 1 <= VAR i AND VAR i <= VAR n+1

AND VAR p = factorial(VAR i -1);

decreases VAR n - VAR i + 1;

@*/

{

p = p*i;

i = i+1;

}

return p;

}

Wolfgang Schreiner http://www.risc.jku.at 5/9



Theory Language

theory Math

{

// an axiomatic specification of the factorial function

factorial: NAT -> NAT;

fac_ax1: AXIOM factorial(0) = 1;

fac_ax2: AXIOM FORALL(n: NAT): factorial(n+1) = (n+1)*factorial(n);

// somme auxiliary properties of factorial

fac_1: FORMULA factorial(1) = 1;

fac_2: FORMULA factorial(2) = 2;

fac_n: FORMULA

FORALL(n: NAT): n > 2 => factorial(n) > n;

fac_m1: FORMULA

FORALL(n: NAT, m: NAT): n >= m =>

factorial(n) >= factorial(m);

fac_m2: FORMULA

FORALL(n: NAT, m: NAT): n > m AND n >= 2 =>

factorial(n) > factorial(m);

// a property of multiplication

mult_gezero: AXIOM FORALL(n: NAT, m: NAT): n*m >= 0;

}
Wolfgang Schreiner http://www.risc.jku.at 6/9



The Software

Integrated environment built on top of the Eclipse SWT.

Provides graphical user interface and editing framework.

Analyze view.
Verification tasks.

Type checking conditions.
Specification validation.
Statement preconditions.
Loop invariants.
Method frame preservation.
Method termination.
Method postcondition.

Verify view.

Embeds the RISC ProofNavigator.

Details view.

Logic of a method body.
Pre/post-condition reasoning.

Wolfgang Schreiner http://www.risc.jku.at 7/9



Demonstration

Wolfgang Schreiner http://www.risc.jku.at 8/9



Current State and Further Work

Software in alpha3 status.

Almost functionality-complete.
Reasonably stable (tested with toy examples only).
Classes: ca. 120 ProgramExplorer, 100 ProofNavigator, 300 syntax.
Lines of code: about 130K with comments (perhaps 60-70K without).

Website and user manual.

Still presenting the alpha1 status (April 2010).

Current work:

Termination calculus (recursive method measures).

Functionality-complete prototype expected till May 2011.

Wolfgang Schreiner http://www.risc.jku.at 9/9


