Domain Theory |

Domain Theory |

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Domain Theory |

Semantics of Loops

B: Boolean-expression
C: Command

C:=...|whileBdoC|...

C[[while B do C]] —
As. B[[B]]s — C[[while B do CJJ(C[[C]]s) [| 5

Problem: meaning of a syntax phrase may be
defined only in terms of its proper subparts.

C[[while B do C]] = w
where w: Store, — Store|

w = As.B[B]]s — w(C[[C]]s) [] 5

Recursion in syntax exchanged for recursion
in function notation!

Wolfgang Schreiner 1

Domain Theory |

Recursive Function Definitions

e Function Definition
q = An.n equals zero — one [| ¢(n plus one)

e Possible Function Graphs:

— {(zero, one)}
= {(zero, one), (one, L), (two, L), ...}

— {(zero, one), (one, six), (two, six), ...}
— {(zero, one), (one, k), (two, k), ...}

Several functions satisfy specification; which
one shall we choose?

Wolfgang Schreiner 2

Domain Theory |

Least Fixed Point Semantics

Theory that establishes meaning of recursive
specifications:

1. Guarantees that every specification has a
function satisfying it.

2. Provides means for choosing the “best”
function out of the set of possibilities.

3. Ensures that the selectgd function ~cor-
responds to the conventional operational
treatment of recursion.

Argument is mapped to defined answer iff simplification
of the specification yields a result in a finite number of
recursive invocations.

Wolfgang Schreiner 3

Domain Theory |

The Factorial Function

fac(n) = n equals zero — one
[] n times (fac(n minus one))

Only one function satisfies specification:

graph(factorial) =
{(zero, one), (one, one),
(two, two), (three, six),

G,)

Wolfgang Schreiner

Domain Theory |

Simplification

fac(three)
— three equals zero
— one |[] three times fac(three minus one)
= three times fac(three minus one)
= three times fac(two)
— three times (two equals zero
— one [] two times fac(two minus one))
= three times (two times fac(one))
— three times (two times (one equals zero
— one [] one times fac(one minus one)))
= three times (two times one (times fac(zero)))
— three times (two times (one times (zero equals zero
— one [] zero times fac(zero minus one))))
= three times (two times one (times one))
= six

Wolfgang Schreiner

Domain Theory |

Partial Functions

e Answer is produced in a finite number of
unfolding steps.

e Idea: place limit on number of unfoldings
and investigate resulting graphs

— zero: {}

— one: {(zero, one)}
— two: {(zero, one), (one, one)}

— 1+ 1: {(zero, one), (one, one), ... (7, i)}
e Graph at stage ¢ defines function fac;.

— Consistency with each other:
graph(fac;) C graph(fac;;1)

— Consistency with ultimate solution:
graph(fac;) C graph(factorial)

— Consequently

2, graph(fac;) C graph(factorial)

Wolfgang Schreiner 6

Domain Theory |

Partial Functions

e Any result is computed in a finite number
of unfoldings.

(a,b) € graph(factorial)
— (a,b) € graph(fac;) (for some 1)

e Consequently
graph(factorial) C U, graph(fac;)

e [hus

graph(factorial) = U2, graph(fac;)

Factorial function can be totally understood
in terms of the finite subfunctions fac;!

Wolfgang Schreiner 7

Domain Theory |

Partial Functions

e Representations of sub-functions

faco = An. L
faci;11 = An. n equals zero — one
[| n times fac;(n minus one)

e Each definition is non-recursive

Recursive specification can be understood in terms of
a family of non-recursive ones.

e Common format can be extracted

“Functional” F
F: (Nat — Nat,) — (Nat — Nat,)
F = Af. An. n equals zero — one

[| n times f(n minus one)

Each subfunction is an instance of the func-
tional!

Wolfgang Schreiner 8

Domain Theory |

Functional and Fixed Point

e Partial functions

fac;,1 = F(fac;) = F'(L)
1 :=(An.1)

e Function graph
graph(factorial) = U, graph(F"(_L))
e Fixed point property
graph(F(factorial)) = graph(factorial)
F(factorial) = factorial
The function factorial is a fixed point of the
functional F!

Wolfgang Schreiner 9

Domain Theory |

g Function

) = A\g.\n.n equals zero
— one || q(n plus one)

QL) = (An.L)
graph(Q’(L)) = {}

QY(L) = M\n.n equals zero
— one || (An.L)(n plus one)
= An.n equals zero — one || L

graph(Q'(.L)) = {(zero, one)}

Q*(L) = Q(QY(L)) = An.n equals zero

— one || ((n plus one) equals zero — one || 1)

graph(Q%(L)) = {(zero, one)}

Wolfgang Schreiner

10

Domain Theory |

g Function

e Convergence has occured
graph(Q'(L)) = {(zero, one)}, i > 1
e Resulting graph
U graph(Q'(L)) = {(zero, one)}
e Fix point property
Q(glimit) = glimit
e Still many solutions possible

graph(ax) =
{ (zero, one), (one, k), ..., (i, k), ...}

e | east fixed point property

graph(qlimit) C graph(qx)
The function glimit is the least fixed point of
the functional Q!

Wolfgang Schreiner 11

Domain Theory |

Recursive Specifications

The meaning of a recursive specification f = F/(f) is
taken to be fix(F'), the least fixed point of the functional
denoted by F'.

graph(fix I') = U, graph(F"(L))

e The domain D of F' must be a pointed
Cpo
— partial ordering on D,
— every chain in D has a least upper bound in D,

— D has a least element.
e [’ must be continuous
Preserves limits of chains.

e Semantic domains are cpos and their oper-
ations are continuous.

Pointed cpos are created from primitive domains and
union domains by lifting.

Wolfgang Schreiner 12

Domain Theory |

Factorial Function

F=Af An. nequals zero — one
[] n times (f(n minus one))

Simplification rule
fix F = F(fix F)

(fix F)(three)
= (F (fix F))(three)
= (A f. A n. n equals zero — one
[] n times (f(n minus one))(fix F))(three)
= (A n. n equals zero — one
[] n times (fix F)(n minus one))(three)
= three equals zero — one
[] three times (fix F)(three minus one)
= three times (fix F)(two)
= three times (F (fix F))(two)

= three times (two times (fix F)(two))

Fixed point property justifies rec. unfolding!

Wolfgang Schreiner

13

Domain Theory |

Double Recursion

g = An. n equals zero — one
[] (g(n minus one) plus
g(n minus one)) minus one

graph(F°(1)) = {}
graph(F*(_L)) = {(zero, one)}
graph(F!(L)) = {(zero, one), (one, one)}
(F?(L)) = {(zero, one), (one, one), (two, one)}

graph(F"™1(L)) = {(zero, one), ..., (i, one)}
fix F = An. one

Stepwise construction of graph yields insight!

Wolfgang Schreiner 14

Domain Theory |

Simultaneous Definitions

f, g: Nat — Nat |
f = Ax. x equals zero — g(zero)
[] f(g(x minus one)) plus two
g = Ay. y equals zero — zero
[] y times f(y minus one)
T = Nat — Nat
F-(TxT)—(TxT)

F=Afg)(......)

F(L) = ({}, {})

FI(L) = ({}, {(zero, zero)})

F2(L) = ({(zero,zero)}, {(zero, zero)})

(J_) ({(zero,zero), (one, two), (two, two)},

{(zero, zero), (one, zero),
(two, four) (three, six)})
) =F(L),i>5

) = (f.g)

F(L
fix(F

Wolfgang Schreiner

15

Domain Theory |

While Loops

C|[while B do C]] =
fix(Af.As. B[[B]]s — f(C[[C]]s) [] s)

Function: Store | — Store |

Example:

C[[while A>0 do (A:=A-1; B:=B+1)]]
= fix F where
F = Af.\s. test s — f(adjust s) || s
test = B[[A > 0]]
adjust = C[[A:=A-1; B:=B+1]]

Partial function graphs:

e Each pair in graph shows store prior to loop
entry and after loop exit.

e Each graph F**1(L) contains those pairs
whose input stores finish processing in at
most ¢ Iterations.

Wolfgang Schreiner 16

Domain Theory |

Example

graph(F'(L))={}

graph(F'(L))={
({ ([[A]l.zero), ([[B]].zero0), ...},
{ ([[All.zero), ([[B]].zero0), ...}),

({ ([[A]l.zero), ([[B]].four), ...},
graph(F*(L))={

({ ([[A]l.zero), ([[B]].zero0), ...},

{ ([[All.zero), ([[B]].zero0), ... }),

{ ([Allzero), ([(B]]four), ...},
([[AT].zer0), ([[B]}four) ...}).

{ ([ATl.one), ([[B)zero). ...},
([[AT].zero), ([[BIL.one). ..}).

{(([IATLone), ([[B]Lfour), ...},

(
{
(
{

(
{

{ ([[A]],.zero), ([[B]].four), ...}), ...

[[Al],zero), ([[B]].five), ...}), ...

}

}

Wolfgang Schreiner

17

Domain Theory |

While Loops

Representation by finite subfunctions

C[[while B do C|| = 1{
As. L,
As.B[[B]]s — L[] s,
1-B{El: — (BN 1 CI)
As.B([B]]s — (B][[B]I(C[[C]]s) —
(BIBI(CICN(CICls)) — L
{ [CIICI(ClIC]ls)) [CliC]s) [T 5, -}
=U

Cl[diverge]],
C|[[if B then diverge else skip]],
C|[[if B then (C; if B then diverge else skip)
else skip]],
C|[[if B then (C; if B then
(C; if B then diverge else skip)
else skip) else skip]|, ...}

Loop iteration can be understood by sequence
of non-iterating programs.

Wolfgang Schreiner 18

Domain Theory |

Reasoning about Least Fixed Points

e Fixed Point Induction Principle:
To prove P(fix F'), it suffices to prove

1. P(1)
2. P(d) — P(F(d)), for arbitrary d € D
for pointed cpo D, continuous functional F' : D — D, and
inclusive predicate P : D — B.
e Inclusiveness of predicates
If predicate holds for every element of chain, it also
holds for its least upper bound.
e All universally quantified combinations of
conjunctions/disjunctions that use only C
over functional expressions are inclusive.

Mainly useful for showing equivalences of pro-
gram constructs.

Wolfgang Schreiner 19

Domain Theory |

Reasoning about Least Fixed Points

Cl[[repeat C until B]] = fix(\f.As.
et ' = C[[ClJs in B[B]ls' — ' | (/")

C[[C; while =B do C]] £ C[[repeat C until B]]

Proof: P(f,g) = V¥s.f(C[[C]]s) = (gs)
1. P(L, L) holds obviously.

2. Prove P(F(f),G(g))
F = (Af.As. B[[= B]]s — F(C[[C]]s) [] s)
G = (AfAs. let s = CJ[[C]]s in B[[B]]s
— ' [| (fs))

(a) F(f)(C[[C]]L) = L = G(g)(L).
(b) s # L:
. C[[Clls = L: F(f)(L)=L=(let &' = L in B[[B]]s’ —
s" [l (gs) = G(g)(L).
i. C[[Cls = so # L: F(f)(s0)=B[[~ Bllsp —
f(C[[Cl]so)llso = BI[B]lso — so [] f(C[[C]]s0) =
B[[B]]so — so0 [] f(gs0) = G(g)(s)

Wolfgang Schreiner 20

