Summer School Marktoberdorf (1970-2010)
Software and Systems Safety: Specification and Verification

Muhammad Taimoor Khan

Doktoratskolleg Computational Mathematics
Johannes Kepler University
Linz, Austria

October 20, 2010

1/18



Outline

» Introduction
» Lectures/Talks

» Issues of Adaptable Software for Open-World
Requirements by Carlo Ghezzi

18



Introduction

» History
» Marktoberdorf (100km south of Munich)
» Software Engineering Conference in Germany (1968)
» Tony Hoare and E.W. Dijkistra
» Introduction
» For two weeks (August 3-15, 2010)
» Academic Activities
> Lectures
» Tutorials
» Discussions
» Entertainment
> Visit to the Alps
> Visit to the Brewery
» A concert
> A barbecue night

18



Model-Driven Development of Reliable Services by
Manfred Broy

» Discrete Systems

» Interface

» Logical specification
» Architectures

» Composition

» Compositional reasoning
» Contracts

» Assumption/Promise

» Logical interpretation

» Safety and Liveness
» Architectures

» Design by assumption/promise
» Generalizations



Unifying Models of Data Flow by Tony Hoare

» Unifying
» Memory

» shared/private
» weakly/strongly consistent

» Communication

» synchronised/buffered
> reliable/unreliable

» Allocation

» dynamic/nested
» disposed/collected

» Concurrency

» threads/processes
» coarse/fine-grained

» Dynamic behavior of a resource

» Sequential trace as a Graph

» Relations, relation operators, relation properties
» Relational calculus as laballed graph

18



Model Checking by Doron Pelad

v

Modeling of software and hardware systems

Software specification using temporal logic and Buchi
Automata

Translation between logic and automata
Model Checking Algorithms

How to make it work in practice:
abstraction/reduction/BDDs

v

v

v

v

18



Issues of Adaptable Software for Open-World
Requirements by Carlo Ghezzi

» Introduction to Software Evolution and new challenges

» Software architectures and languages for adaptation and
evolution

» Formal methods and software adaptation and evolution



Software adaptation and evolution

» Pervasive Computing as future computing
» Context-aware applications/systems
» Software evolution needs to be supported
» Service oriented architectures as a solution
» Design for change (Parnas)
» interface (stable)
» body (volatile/modifiable)
» Components developed by independent organizations
» No control over components evolution
» Middleware provides binding mechanisms
» Adaptation is the ability of software to detect changes and
react to them in a self-managed manner
» Evolution requires the designer in the loop
» Challenges
» Can we support continuous adaptation and evolution
without compromising dependability?
» To identify the invariant properties that should be preserved
by changes and ensure that they hold

18



Adaptation and software architectures

» Logically global coordination space acts as a mediator for
composition
» Components remains decoupled (no explicit name binding)

» publish-subscribe model
» tuple-space model
» Publish-subscribe model
Event broadcasting to all registered components
No explicit naming of target component
Different kinds of guarantees possible
Easy integration strategies
Asynchronous communication
Problems with ordering of events
Understanding such a system and reasoning about its
correctness maybe hard

vV vV vV vV VY VY



SAVVY

» Service Analysis, Verification and Validation methodologY
for Web Services (SAVVY)
» Assumption-promise based approach
> A service integrator assumes that the external services used
in the composition satisfy their stated specification
» Under this assumption, the system is designed to promise a
certain service to its clients
» Since external services may deviate their specification
» A monitor does run-time verification
» Suitable reactions may be activated
» Supports verified composition of services
» Compositions are guaranteed to satisfy certain global
correctness properties
» External services as abstract services with assumed
behavior specification

10/18



Assertion Language for BPEL pRocess inTeractions
(ALBERT)

» ALBERT

>

>

>

vVVvYy VvV VvV VY

A linear temporal logic language
Variables correspond to BPEL variables
State a triple (V, |, t), where
V is a set of <var, val> pairs
| is a location in the workflow: set of labels
tis the time at which the state is generated
can express assumptions and promises
can be used for design-time (verification)
can be used for run-time (monitoring+run-time verification)
It predicates on variables
Classical boolean operators and quantifications
Future Temporal Operators
» Becomes, Until, Within
Functions
> elapsed, past, count, ...

11/18



Requirements Models for System Safety and Security
by Connie Heitmeyer

Modeling and formal specification of requirements
Consistency and completeness checking of requirements
Simulation of requirements to check their validity
Generating invariants from requirements specifications
Formal verification of requirements

vV vV vV v v Yy

Testing and automatic code generation based on an
operational requirements model

Modeling and analyzing systems for critical properties (e.g.
security and fault-tolerance)

v

12/18



Formal Methods and Argument-based Safety Cases
by John Rushby

v

Purposes of Formal Methods

» Verification
» Consistency and completeness checking
» Exploration, synthesis, test generation

Hazard and safety analysis (serious fault prevention)
Abstraction and automation required
Argument-based safety analysis

Tool support (BMC)

vV v v Y

13/18



Abstraction for System Verification by Susanne Graf

» Appropriate abstraction is the key for successful
verification of programs/systems

» General verification is of high complexity task (state
explosion)

» General framework for abstraction

» Using abstractions to (meaningfully) reason about large
composed systems

» General contract framework to prove stronger properties

» Proving properties with top-down design constraints and
bottom-up abstractions

14/18



Model-based Testing by Ed Brinksma

» Model-based testing (terminology and concepts)

» Derivation of functional tests from models in the form of
input/output transition systems

» Theory and tools can be extended to deal with real-time
behaviour in specifications, implementations and tests

» Test selection and coverage

15/18



From Concurrency Models to Numbers: Performance,
Dependability, Energy by Holger Hermanns

v

Compositional construction of probabilistic models

v

Modelling principles for concurrent systems based on
labelled transition systems (LTS)

Algorithmic aspects of model checking for probabilistic
extensions of CTL

» Extensions of the principal models with cost and reward
» Tool support for probabilistic model checking
» Selection of applications

v

16/18



Formal Verification by John Harrison

» Theorem Proving for Verification

» Propositional logic

» FOL and arithmetic theories

» Combining and certifying decision procedures
» Interactive theorem proving

17/18



Model-based Verification and Analysis for Real-Time
Systems by Kim Larsen

Introduction to Timed Automata
Decidablity and symbolic verification
Priced Timed Automata

Timed Games and Interfaces

Tool suppport (UPPAAL)

vV vVv.v.v Yy

18/18



