
Summer School Marktoberdorf (1970-2010)
Software and Systems Safety: Specification and Verification

Muhammad Taimoor Khan

Doktoratskolleg Computational Mathematics
Johannes Kepler University

Linz, Austria

October 20, 2010

1 / 18



Outline

I Introduction
I Lectures/Talks
I Issues of Adaptable Software for Open-World

Requirements by Carlo Ghezzi

2 / 18



Introduction

I History
I Marktoberdorf (100km south of Munich)
I Software Engineering Conference in Germany (1968)
I Tony Hoare and E.W. Dijkistra

I Introduction
I For two weeks (August 3-15, 2010)
I Academic Activities

I Lectures
I Tutorials
I Discussions

I Entertainment
I Visit to the Alps
I Visit to the Brewery
I A concert
I A barbecue night

3 / 18



Model-Driven Development of Reliable Services by
Manfred Broy

I Discrete Systems
I Interface
I Logical specification

I Architectures
I Composition
I Compositional reasoning

I Contracts
I Assumption/Promise
I Logical interpretation
I Safety and Liveness

I Architectures
I Design by assumption/promise
I Generalizations

4 / 18



Unifying Models of Data Flow by Tony Hoare
I Unifying

I Memory
I shared/private
I weakly/strongly consistent

I Communication
I synchronised/buffered
I reliable/unreliable

I Allocation
I dynamic/nested
I disposed/collected

I Concurrency
I threads/processes
I coarse/fine-grained

I Dynamic behavior of a resource
I Sequential trace as a Graph
I Relations, relation operators, relation properties
I Relational calculus as laballed graph

5 / 18



Model Checking by Doron Pelad

I Modeling of software and hardware systems
I Software specification using temporal logic and Buchi

Automata
I Translation between logic and automata
I Model Checking Algorithms
I How to make it work in practice:

abstraction/reduction/BDDs

6 / 18



Issues of Adaptable Software for Open-World
Requirements by Carlo Ghezzi

I Introduction to Software Evolution and new challenges
I Software architectures and languages for adaptation and

evolution
I Formal methods and software adaptation and evolution

7 / 18



Software adaptation and evolution
I Pervasive Computing as future computing

I Context-aware applications/systems
I Software evolution needs to be supported
I Service oriented architectures as a solution

I Design for change (Parnas)
I interface (stable)
I body (volatile/modifiable)

I Components developed by independent organizations
I No control over components evolution
I Middleware provides binding mechanisms

I Adaptation is the ability of software to detect changes and
react to them in a self-managed manner

I Evolution requires the designer in the loop
I Challenges

I Can we support continuous adaptation and evolution
without compromising dependability?

I To identify the invariant properties that should be preserved
by changes and ensure that they hold

8 / 18



Adaptation and software architectures

I Logically global coordination space acts as a mediator for
composition

I Components remains decoupled (no explicit name binding)

I publish-subscribe model
I tuple-space model

I Publish-subscribe model
I Event broadcasting to all registered components
I No explicit naming of target component
I Different kinds of guarantees possible
I Easy integration strategies
I Asynchronous communication
I Problems with ordering of events
I Understanding such a system and reasoning about its

correctness maybe hard

9 / 18



SAVVY

I Service Analysis, Verification and Validation methodologY
for Web Services (SAVVY)

I Assumption-promise based approach
I A service integrator assumes that the external services used

in the composition satisfy their stated specification
I Under this assumption, the system is designed to promise a

certain service to its clients
I Since external services may deviate their specification

I A monitor does run-time verification
I Suitable reactions may be activated

I Supports verified composition of services
I Compositions are guaranteed to satisfy certain global

correctness properties
I External services as abstract services with assumed

behavior specification

10 / 18



Assertion Language for BPEL pRocess inTeractions
(ALBERT)

I ALBERT
I A linear temporal logic language
I Variables correspond to BPEL variables
I State a triple (V, I, t), where

V is a set of <var, val> pairs
I is a location in the workflow: set of labels
t is the time at which the state is generated

I can express assumptions and promises
I can be used for design-time (verification)
I can be used for run-time (monitoring+run-time verification)
I It predicates on variables
I Classical boolean operators and quantifications
I Future Temporal Operators

I Becomes, Until, Within
I Functions

I elapsed, past, count, ...

11 / 18



Requirements Models for System Safety and Security
by Connie Heitmeyer

I Modeling and formal specification of requirements
I Consistency and completeness checking of requirements
I Simulation of requirements to check their validity
I Generating invariants from requirements specifications
I Formal verification of requirements
I Testing and automatic code generation based on an

operational requirements model
I Modeling and analyzing systems for critical properties (e.g.

security and fault-tolerance)

12 / 18



Formal Methods and Argument-based Safety Cases
by John Rushby

I Purposes of Formal Methods
I Verification
I Consistency and completeness checking
I Exploration, synthesis, test generation

I Hazard and safety analysis (serious fault prevention)
I Abstraction and automation required
I Argument-based safety analysis
I Tool support (BMC)

13 / 18



Abstraction for System Verification by Susanne Graf

I Appropriate abstraction is the key for successful
verification of programs/systems

I General verification is of high complexity task (state
explosion)

I General framework for abstraction
I Using abstractions to (meaningfully) reason about large

composed systems
I General contract framework to prove stronger properties
I Proving properties with top-down design constraints and

bottom-up abstractions

14 / 18



Model-based Testing by Ed Brinksma

I Model-based testing (terminology and concepts)
I Derivation of functional tests from models in the form of

input/output transition systems
I Theory and tools can be extended to deal with real-time

behaviour in specifications, implementations and tests
I Test selection and coverage

15 / 18



From Concurrency Models to Numbers: Performance,
Dependability, Energy by Holger Hermanns

I Compositional construction of probabilistic models
I Modelling principles for concurrent systems based on

labelled transition systems (LTS)
I Algorithmic aspects of model checking for probabilistic

extensions of CTL
I Extensions of the principal models with cost and reward
I Tool support for probabilistic model checking
I Selection of applications

16 / 18



Formal Verification by John Harrison

I Theorem Proving for Verification
I Propositional logic
I FOL and arithmetic theories
I Combining and certifying decision procedures
I Interactive theorem proving

17 / 18



Model-based Verification and Analysis for Real-Time
Systems by Kim Larsen

I Introduction to Timed Automata
I Decidablity and symbolic verification
I Priced Timed Automata
I Timed Games and Interfaces
I Tool suppport (UPPAAL)

18 / 18


