The RISC ProgramExplorer
Second Status Report

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

A,
N

Wolfgang Schreiner http://www.risc_jku.at 1/16

Goals <>

An integrated program reasoning environment that provides insight into
the semantic essence of a program.

Is based on the concept of programs as state relations.
A program implements a relation on states.
A specification describes a relation on states.
The program relation must imply the specification relation.
Addresses various semantic questions.
Is a specification satisfiable and not trivial?
What is the state relation described by a command/method?
What state condition is known at a particular program point?
Are methods only called in states that satisfy the methods' preconditions?
Does the method meet its specification (assuming that loop invariants hold and
termination terms are appropriate)?
Do the invariants indeed hold?
Are the termination terms indeed appropriate?
Provides a state-of-the-art graphical user interface.
Tight links between syntactic source code and semantic essence.
Helps to gain insight as much as possible.

Wolfgang Schreiner http://www.risc_jku.at 2/16

Program Calculus Ny

Hoare Calculus: {x = a}x=x*x{x = a°}
Pair of state conditions “glued together” by a logical constant a.

Reasoning based on Hoare triples that mix program and logic.

Dynamic Logic: Va:x = a = [x=x*x]x = a°

Two state conditions separated by a modality [x=x*x].

Reasoning based on modal formulas that mix program and logic.

Relational Calculus: x=x*x: x' = x2

Single state relation x' = x2.
Captures the (denotational) semantics of the command.
Reasoning based on classical logic.

The command is translated into a classical logical formula.
All further reasoning about the command is based on the formula.

Our approach is to use the relational calculus to give programmers insight.

Wolfgang Schreiner http://www.risc_jku.at 3/16

. .
Example
174
if (n < 0)
s = -1; F1
else {
var i;
s = 0; F>
i=1; £l Fe Fe
while (i <= n) { £ (Fe
s = s+i; Fa E Ak v
i= i+ Fsf b (™™
}F,T
}

F:=1<=vari<=varn+iandvars= Z‘,’alr"'lj
i
T:=varn-vari+1

F. < [ifold n < 0thenvars=-1elsevars= Z?:I‘lj "t

Translation into a formula that captures the program’s semantic essence.

Wolfgang Schreiner http://www.risc_jku.at 4/16

Abstract Framework W

Formal syntax and semantics of various languages.

An abstract imperative programming language.
Commands operating on states.
=, var, if, while, continue, break, return, throw, try.
Methods with results, (direct and indirect) recursion.
An abstract logic formula language.
Predicate logic formulas with functions and predicates on states.
A program specification language based on the formula language.

Assertions, loop invariants, termination terms.
Method specifications with preconditions, postconditions, frame
conditions, exception conditions, recursion measures.

The formal reasoning calculus was elaborated and its soundness was
proved within this framework.

Wolfgang Schreiner http://www.risc_jku.at 5/16

Concrete Programming Language 'E {.

A subset of Java (“MiniJava”) that can be mapped to the abstract
programming language in a rather straight-forward way.

Classes as modules with class variables and class methods.
Treatment as global variables and methods of the basic calculus.
Classes as types with object variables, constructors, object methods.
Object functions receive the this object as an additional argument
and return it as an additional result.
Value semantics for arrays and objects.
Type checker prevents aliasing (i.e. that different variables refer to
same object) and thus hides difference to reference semantics.
Assignment to variable only from a constructor call.
Return as function result only from locally owned object.
Passing as an argument only from a constructor call or from a local
variable that does not appear as another argument.
No (directly or indirectly) recursive class references.

Classes as modules and types, no inheritance, no reference semantics.
Wolfgang Schreiner http://www.risc_jku.at 6/16

Example W

class Record {
String key; int value;
Record(String k, int v) { key = k; value = v; }
boolean equals(String k) { boolean e = key.equals(k); return e; }

public static int search(Record[] a, String key) {

int n = a.length;

for (int i=0; i<n; i++) {
Record r = new Record(al[il].key, alil].value); // copy of a[il
boolean e = r.equals(key); // alil.equals(key) illegal
if (e) return i;

}

return -1;

}

public static void main() {
Record[] a = new Record[10];
for (int i=0; i<10; i++) al[i] = new Record("abc", i);
int i = search(a, "abc");
System.out.println(i);
}
}

Wolfgang Schreiner http://www.risc_jku.at 7/16

Concrete Specification Language

Typed higher-order predicate logic.
ProofNavigator syntax (inherited from CVS/PVS).
FORALL(i:INT): O <= i AND i < n => aO[i].key /= kO
Program variables.
x ~» 0LD x, x' ~ VAR x.
State types, constants functions, predicates.
STATE(T), NOW, NEXT, EXECUTES@s, VALUE@s, ...
Method specifications
requires ...assignable ...signals ...ensures ...decreases

Code annotations

Loops: invariant ...decreases...
Statements: assert ...

Tradition of JML et al, extended by an explicit notion of states.

Wolfgang Schreiner http://www.risc_jku.at 8/16

Example

public static int search(Record[] a, String key) /*@
requires var a /= Record.nullArray;
ensures
(LET result=VALUE@NEXT, aO=VAR a, n=Record.length(a0), kO=VAR key IN
IF result = -1 THEN
FORALL(i:INT): O <= i AND i < n => aO[i].key /= kO

ELSE
0 <= result AND result < n AND aO[result].key = kO
ENDIF);
Qx/
{

int n = a.length;

for (int i=0; i<n; i++)

{
Record r = new Record(al[i].key, al[il].value);
boolean e = r.equals(key);
if (e) return i;

¥

}

Wolfgang Schreiner http://www.risc_jku.at 9/16

Theories

Automatically generated theories.
theory Base
MiniJava types and operations.
class (~~ theory C.
Classes as records.
Named theories (user-defined).
File Theory.theory.
Abstract datatypes etc.
Local theories (user-defined).
/*@ theory { ...} @x/ class C
Local definitions inside a class.

Building blocks for specifications.

Wolfgang Schreiner http://www.risc_jku.at

10/16

Example

2\,
Ny

theory Record uses java.lang.String, Base { // generated from class Record

Record: TYPE = [#key: java.lang.String.String, value: Base.int#];
null: Record; nullArray: ARRAY Base.int OF Record;
length: (ARRAY Base.int OF Record) -> Base.nat;

}

theory Stack { // file Stack.theory
Elem: TYPE = INT; Stack: TYPE;
empty: Stack; cons: (Elem, Stack) -> Stack;
isempty: PREDICATE(Stack);
IE: AXIOM FORALL(s: Stack): isempty(s) <=> s=empty;
}

/*@
theory uses Record, java.lang.String { // file Record.java
Record: TYPE = Record.Record;
String: TYPE = java.lang.String.String;
notFound: PREDICATE(ARRAY INT OF Record, INT, STRING) =
PRED (a:ARRAY INT OF Record, i:INT, key: String):

(FORALL(i:INT): O <= i AND i < Record.length(a) => al[i].key /=

} ox/
class Record {...}
Wolfgang Schreiner http://www.risc_jku.at

key);

11/16

The Software .E s

Integrated environment built on top of the Eclipse SWT.
Provides graphical user interface and editing framework.

Analyze view.
Console.
Plain text output.
Source code editor.

Syntax highlighting, specification text folding, error annotations.
active identifiers.

Files/Symbols and Tasks/Open tasks.

Symbols and tasks linked to source.

Verify view.
Embeds the RISC ProofNavigator.
Details view.

State relations of method bodies.

Wolfgang Schreiner http://www.risc_jku.at 12/16

Internal Operation W

Constructs/maintains the internal model of the program/specification.

Annotated abstract syntax trees.

Nodes linked to source code positions. W ,
Identifiers linked to symbols. e
Terms linked to types.

State relations linked to commands.

Symbol tables.

Collections of symbols introduced in same scope.
Symbols linked to abstract syntax tree nodes.

Verification tasks.
Organized in nested folders, linked to abstract syntax tree nodes.
Currently: type-checking tasks, specification tasks, frame condition
tasks, postcondition tasks, invariant tasks.
Missing: precondition tasks, termination-related tasks.

Wolfgang Schreiner http://www.risc_jku.at 13/16

L) []
Task Management S
*
Framework for generation and maintenance of tasks.
Tasks organized in nested folders. ® Execite Task
) [, Print Task
Corresponding to source code structure. @ Print State Proving Problern
Linked to source Code pOSitiOnS. [Print Classical Proving Problem
i i [, Print ProofNavigator Proving Problem
Strategies may be associated to tasks. [6, Reset Task

Currently: automatic decision by CVCL and manual verification.

Tasks may be translated to proving problems.
E.g. postcondition task — state logic problem — classical logic
problem — RISC ProofNavigator problem.

Translation to logical problem on program variables/states,
translation of program variables to mathematical constants
considering the problem frame, translation to ProofNavigator format.

Proofs are persistent.
Stored in RISC ProofNavigator format.

Reused in new RISC ProgramExplorer invocations.

RISC ProofNavigator dependence control maintains trust status.
Wolfgang Schreiner http://www.risc_jku.at 14/16

Demonstration

RISC ProgramExpios

File Edit_Help

Details @ [Verify @ Analyze 3

3
3

S ProofNavigator
v Bjava

© Factorial
» > (ocal)
=m
=p
#mo
+p0
> & facqint)
» 9 facO(int)
> @ facl(int)
0 Record
> Base
> Factorial
&> Math
[factorial
@fac_1
@ fac 2
> Proving1
B Proving2
B> Record

[Al Tasks . Open Tasks|

_|[[IFactorialjava &[] Math.theory | i O]
4+/% [] g
10 public class Factorial
1
AN
12| s pooares el e craputes heraetarialiof o
14
15- pubuc static int fac(int n) /%
16| ol Lanite pegative ithel feaial teima darioed
17 requires VAR n »= 0;
16 anaures VALUEGNEXT = factordal (VAR n);
19
20
21
D it (he
24 invariant 1 <= VAR 1 AND VAR 1 <= VAR n+l
25 VAR p = factorial (VAR 1);
26 decreases VAR n - VAR i + 1;
27 e
28 {
29 P = p*i;
30 i=14;
31}
return p;
L1
& Console

» B class Array
v B class Factorial
~ B method fac
[Factorial fac] frame condition
% [Factorial fac] specification s s¢
@ [Factorial.fac] specification is n¢
[Factorial.fac] postcondition
= Binvariants
@ [Factorial.fac:thz] invariant

type checking conditions
» B method facO
» BB method facl
» B theory (local)
[type checking conditions
» B class Record
B3 package Proofavigator
> B package java
» Btheory Base
» Btheory Factorial

RISC Pro

http://uww.risc.jku.at/research/formal /software/ProgranExplorer

(C) 2008
This is
Exacute

granExplorer Varsion 0.3 (April 8, 2810) H

-, Rasearch Institute for Symbolic Computation (RISC)
free software distributed under the tarms of the GNU GPL.
“ProgranExplorer -h" to see tha options available.

class Fa
theory F

ctorial was processed with no errors
actorial was processed with no errors

B theory Math
[type checking conditions

» Etheory Provingl

» B theory Proving2

» B theory Record

Wolfgang Schreiner

http://www.risc.jku.at

15/16

Current State and Further Work N

Software in alpha2 status.

Reasonably stable (tested with toy examples only).
Classes: ca. 120 ProgramExplorer, 100 ProofNavigator, 300 syntax.
Lines of code: about 130K with comments (perhaps 60-70K without).

Website and user manual.
Still presenting the alphal status (April 2010).
Further work:

Precondition/assertion checking.

Forward/backward propagation of conditions.

Termination calculus.

Checking loop termination terms and recursive method measures.

First functionality-complete prototype expected by summer 2011.

Wolfgang Schreiner http://www.risc_jku.at 16/16

