
MPI
Course “Parallel Computing”

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

Message Passing Interface (MPI)

• An API for portable distributed memory programming.
◦ Set of library routines, no compiler support needed.

• Official bindings for C and Fortran.
◦ Inofficial bindings exist for various other languages.

• Various implementations.
◦ MPICH: initial implementation by Argonne National Lab.
◦ MVAPICH: MPICH derivative by Ohio State university.
◦ Open MPI: merger of various previous implementations.
◦ Commercial implementations by HP, Intel, Microsoft.
◦ Hardware support: SGI MPT with MPI offload engine.

• Maintained by the MPI Forum.
◦ Current Version: MPI 5.0 (June 5, 2025).

See http://mpi-forum.org/ for the official specification.

1/36

http://mpi-forum.org/

MPI Execution Model

program program

node 3

program

node 0 node 1

program

mpirun -np 4 program

MPI Communication Operations

node 2

SPMD: Single Program, Multiple Data.

2/36

Compiling and Executing MPI

• Paths (Default):
CPATH=...:/opt/sgi/mpt/mpt-2.04/include
LIBRARY_PATH=...:/opt/sgi/mpt/mpt-2.04/lib
LD_LIBRARY_PATH=...:/opt/sgi/mpt/mpt-2.04/lib

• Source:
#include <mpi.h>

• Intel Compiler:
module load intelcompiler/composer_xe_2015.1.133
icc -std=c99 -Wall -O3 -lmpi matmult.c -o matmult

• GCC:
module load GnuCC/7.2.0
gcc -Wall -O3 -lmpi matmult.c -o matmult

• Execution:
export MPI_DSM_CPULIST=32-47
mpirun -np 16 ./matmult 2048

3/36

A Sample MPI Program
#include <mpi.h>
int main(int argc, char *argv[]) {

char message[20];
int size, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("processor %d among %d processors\n", rank, size);
if (rank == 0) { /* code for process zero */

strncpy(message,"Hello, there", 19);
MPI_Send(message, 20, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}
else if (rank == 1) { /* code for process one */

MPI_Status status;
MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}
MPI_Finalize();
return 0;

}
4/36

Basic Operations

int MPI_Init(int *argc, char ***argv)

int MPI_Comm_size(MPI_Comm comm, int *size)
IN comm communicator (handle)
OUT size number of processes in the group of comm (integer)

int MPI_Comm_rank(MPI_Comm comm, int *rank)
IN comm communicator (handle)
OUT rank rank of the calling process in group of comm (integer)

int MPI_Finalize(void)

int MPI_Abort(MPI_Comm comm, int errorcode)
IN comm communicator of tasks to abort
IN errorcode error code to return to invoking environment

Starting a computation, determining its scope, terminating it.

5/36

Blocking Send

int MPI_Send(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)

Returns when message buffer may be used again; may (but
need not) block, if no matching receive statement was issued.

6/36

Blocking Receive

int MPI_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative integer)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (Status)

Blocks until a matching message could be received; if more
than one message matches, the first one sent is received.

7/36

Example: Computing Pi by Throwing Darts
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

double dboard (int darts);
#define DARTS 50000 /* number of throws */
#define ROUNDS 100 /* number of iterations */
#define MASTER 0 /* task ID of master task */

int main (int argc, char *argv[]) {
double homepi, pi, avepi, pirecv, pisum;
int taskid, numtasks, source, mtype, i, n;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
printf ("MPI task %d has started...\n", taskid);

srandom (taskid);
avepi = 0;
for (i = 0; i < ROUNDS; i++) {

homepi = dboard(DARTS);
if (taskid != MASTER) {

mtype = i;
MPI_Send(&homepi, 1, MPI_DOUBLE,

MASTER, mtype, MPI_COMM_WORLD);

else {
/* Master receives messages from all workers */
/* - Message type set to the iteration count */
/* - Message source set to wildcard DONTCARE: */
mtype = i;
pisum = 0;
for (n = 1; n < numtasks; n++) {

MPI_Recv(&pirecv, 1, MPI_DOUBLE,
MPI_ANY_SOURCE, mtype, MPI_COMM_WORLD,
&status);

/* keep running total of pi */
pisum = pisum + pirecv;
}

/* Average value of pi for this iteration */
pi = (pisum + homepi)/numtasks;
/* Average value of pi over all iterations */
avepi = ((avepi * i) + pi)/(i + 1);
printf(" After %8d throws, pi = %10.8f\n",

(DARTS * (i + 1)),avepi);
}

}

if (taskid == MASTER)
printf ("\nReal value of PI: 3.1415926535897 \n");

MPI_Finalize();
return 0;
}

8/36

Example: Computing Pi by Throwing Darts

#define sqr(x) ((x)*(x))

double dboard(int darts) {

/* number of hits */
int score = 0;

/* throw darts at board */
for (int n = 1; n <= darts; n++) {

/* random coordinates in interval [-1,+1] */
double r = (double)random()/RAND_MAX;
double x_coord = (2.0 * r) - 1.0;
r = (double)random()/RAND_MAX;
double y_coord = (2.0 * r) - 1.0;

/* if dart lands in circle, increment score */
if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)

score++;
}

/* calculate pi = 4*(pi*r^2)/(4*r^2) */
double pi = 4.0 * (double)score/(double)darts;
return(pi);

}

From MPI tutorial at https://computing.llnl.gov/tutorials/mpi.

9/36

Datatype Constants

MPI_Datatype MPI_CHAR char
MPI_Datatype MPI_INT signed int
MPI_Datatype MPI_LONG signed long int
MPI_Datatype MPI_FLOAT float
MPI_Datatype MPI_DOUBLE double
MPI_Datatype MPI_LONG_DOUBLE long double
...

Also for all other builtin types.

10/36

Derived Datatypes
int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)
IN count replication count (non-negative integer)
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[],
const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

IN count number of blocks (non-negative integer)
IN array_of_blocklength number of elements in each block

(array of non-negative integer)
IN array_of_displacements byte displacement of each block

(array of integer)
IN array_of_types type of elements in each block

(array of handles to datatype objects)
OUT newtype new datatype (handle)

int MPI_Type_commit(MPI_Datatype *datatype)
INOUT datatype datatype that is committed (handle)

Arrays and records; also various other derived types. 11/36

Example

double array[1024];

MPI_Datatype array_type;
MPI_Type_contiguous(1024, MPI_DOUBLE, &array_type);
MPI_Type_commit(&array_type);

MPI_Send(array, 1, array_type, ...);

struct R { int i ; double d; } record;

MPI_Datatype record_type;
int ab[] = { 1, 1 };
MPI_Aint ad[] = { offsetof(struct R, i), offsetof(struct R, d) };
MPI_Datatype at[] = { MPI_INT, MPI_DOUBLE };
MPI_Type_create_struct(2, ab, ad, at, &record_type);
MPI_Type_commit(&record_type);

MPI_Send(&record, 1, record_type, ...);

12/36

Blocking Test

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (Status)

Blocks until a matching message is available (without yet
receiving it).

13/36

The Return Status
typedef struct _MPI_Status {

int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;
...

} MPI_Status;

int MPI_Get_count(const MPI_Status *status,
MPI_Datatype datatype, int *count)

IN status return status of receive operation (Status)
IN datatype datatype of each receive buffer entry (handle)
OUT count number of received entries (integer)

Query the sender, tag, and size of a message (to be) received.

14/36

Receiving with Incomplete Information

MPI_Comm comm = ... ; MPI_Status status = ... ;

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

int source = status.MPI_SOURCE;
int tag = status.MPI_TAG;
MPI_Get_count(status, MPI_INT, &count);

int* buf = malloc(count*sizeof(int));
MPI_Recv(buf, count, MPI_INT, source, tag, comm, &status);

Determine the sender, tag, and size of message received.

15/36

Controlling Message Buffers

int MPI_Buffer_attach(void* buffer, int size)
IN buffer initial buffer address (choice)
IN size buffer size, in bytes (non-negative integer)

int MPI_Buffer_detach(void* buffer_addr, int* size)
OUT buffer initial buffer address (choice)
OUT size buffer size, in bytes (non-negative integer)

Control buffer to be used for outgoing messages; send
operation (typically) only blocks, if buffer is full.

16/36

Collective Communication

A0 A0

A0

A0

A0

one-to-all broadcast

MPI_BCAST

data
processes

A0 A1 A2 A3 A0

A1

A2

A3

one-to-all scatter

MPI_SCATTER

A0 A1 A2 A3A0

A1

A2

A3

one-to-all gather

MPI_GATHER

More compact and more efficient programs by the use of
collective communication operations.

17/36

Broadcast

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

INOUT buffer starting address of buffer (choice)
IN count number of entries in buffer (non-negative integer)
IN datatype data type of buffer (handle)
IN root rank of broadcast root (integer)
IN comm communicator (handle)

Sender (root) and receivers perform the same operation.

18/36

Gather

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcount number of elements for any single receive

(non-negative integer, significant only at root)
IN recvtype data type of recv buffer elements

(significant only at root) (handle)
IN root rank of receiving process (integer)
IN comm communicator (handle)

Receiver (root) and senders perform the same operation; also
the root is one of the senders.

19/36

Gather-to-all

int MPI_Allgather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any process

(non-negative integer)
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

Every process serves both as a sender and a receiver.

20/36

Scatter

int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice, significant only at root)
IN sendcount number of elements sent to each process

(non-negative integer, significant only at root)
IN sendtype data type of send buffer elements

(significant only at root) (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements in receive buffer (non-negative integer)
IN recvtype data type of receive buffer elements (handle)
IN root rank of sending process (integer)
IN comm communicator (handle)

Sender (root) and receivers perform the same operation; also
the root is one of the receivers.

21/36

Example: Matrix Multiplication
int main(int argc, char* argv[]) {

MPI_Comm comm = MPI_COMM_WORLD;
int size, rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);

int n;
if (rank == 0) {

if (argc != 2) MPI_Abort(comm, -1);
n = atoi(argv[1]);
if (n == 0) MPI_Abort(comm, -1);

}
MPI_Bcast(&n, 1, MPI_INT, 0, comm);

// row number n of A is extended to size*n0
int n0 = n%size == 0 ? n/size : 1+n/size;
double *A;
if (rank == 0) {

A = malloc(size*n0*n*sizeof(double));
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)
A[i*n+j] = rand()%10;

}
double* A0 = malloc(n0*n*sizeof(double));
MPI_Scatter(A, n0*n, MPI_DOUBLE,

A0, n0*n, MPI_DOUBLE, 0, comm);

double* B = malloc(n*n*sizeof(double));
if (rank == 0) {

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)

B[i*n+j] = rand()%10;
}
MPI_Bcast(B, n*n, MPI_DOUBLE, 0, comm);

double* C0 = malloc(n0*n*sizeof(double));
for (int i=0; i<n0; i++) {

for (int j=0; j<n; j++) {
C0[i*n+j] = 0;
for (int k=0; k<n; k++)

C0[i*n+j] += A0[i*n+k]*B[k*n+j];
}

}

double* C;
if (rank == 0)

C = malloc(size*n0*n*sizeof(double));
MPI_Gather(C0, n0*n, MPI_DOUBLE,

C, n0*n, MPI_DOUBLE, 0, comm);
if (rank == 0) { print(C, n, n); }
MPI_Finalize();

}

22/36

Reduction Operations

1316

0 2

0 2 0 2 0 2 0 2

- - - - - -

- - - - - -

MPI_REDUCE with MPI_SUM, root = 1 :

MPI_ALLREDUCE with MPI_MIN:

MPI_REDUCE with MPI_MIN, root = 0 :

2 4 5 7 6 20 3

0 1 2 3

Initial

Data :

Processes . . .

More compact and more efficient programs by the use of
reduction operations.

23/36

Reduce

int MPI_Reduce(const void* sendbuf,
void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN count number of elements in send buffer (non-negative integer)
IN datatype data type of elements of send buffer (handle)
IN op reduce operation (handle)
IN root rank of root process (integer)
IN comm communicator (handle)

Receiver (root) and senders perform the same operation; also
the root is one of the senders.

24/36

Predefined Reduction Operations

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical exclusive or (xor)
MPI_BXOR bit-wise exclusive or (xor)
MPI_MAXLOC max value and location
MPI_MINLOC min value and location

Commutative and associative operations; thus the order of
reduction does not matter.

25/36

User-Defined Reduction Operations

int MPI_Op_create(MPI_User_function* user_fn, int commute, MPI_Op* op)

IN user_fn user defined function (function)
IN commute true if commutative; false otherwise.
OUT op operation (handle)

Turn user-defined function to a reduction operation; must be
associative but not necessarily commutative.

26/36

Example: Computing Pi by Throwing Darts

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

double dboard (int darts);
#define DARTS 50000 /* number of throws */
#define ROUNDS 100 /* number of iterations */
#define MASTER 0 /* task ID of master task */

int main (int argc, char *argv[])
{

double homepi, pisum, pi, avepi;
int taskid, numtasks, i;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
printf ("MPI task %d has started...\n", taskid);

/* Set seed for random number generator */
srandom (taskid);

avepi = 0;
for (i = 0; i < ROUNDS; i++) {

/* All tasks calculate pi */
homepi = dboard(DARTS);

/* sum values of homepi across all tasks */
MPI_Reduce(&homepi, &pisum, 1, MPI_DOUBLE,

MPI_SUM, MASTER, MPI_COMM_WORLD);

if (taskid == MASTER) {
pi = pisum/numtasks;
avepi = ((avepi * i) + pi)/(i + 1);
printf(" After %8d throws, pi = %10.8f\n",

(DARTS * (i + 1)),avepi);
}

}
if (taskid == MASTER)

printf ("\nReal PI: 3.1415926535897 \n");
MPI_Finalize();
return 0;
}

27/36

All-Reduce

int MPI_Allreduce(const void* sendbuf,
void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

IN sendbuf address of send buffer (choice)
OUT recvbuf address of receive buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype data type of elements of send buffer (handle)
IN op reduce operation (handle)
IN comm communicator (handle)

Every process serves both as a sender and a receiver.

28/36

Example: Finite Difference Problem
int main(int argc, char *argv[]) {

...
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_WORLD, &np);
MPI_Comm_rank(MPI_WORLD, &me);

// read work size and work at process 0
int size; float* work;
if (me == 0) {

size = read_work_size();
work = malloc(size*sizeof(float));
read_array(work, size);

}

// distribute work size to every process
MPI_Bcast(&size, 1, MPI_INT, 0, MPI_WORLD);

// allocate space for local work in every process
if (size%np != 0) MPI_Abort(MPI_WORLD, -1);
int lsize = size/np;
float* lwork = malloc((lsize+2)*sizeof(float));

// distribute work to all processes
MPI_Scatter(work, lsize, MPI_FLOAT,

lwork+1, lsize, MPI_FLOAT, 0, MPI_WORLD);

// determine neighbors in ring
int lnbr = (me+np-1)%np;
int rnbr = (me+1)%np;

// iterate until convergence
float globalerr = 99999.0;
while (globalerr > 0.1) {

// exchange boundary values with neighbors
MPI_Send(lwork+1, 1, MPI_FLOAT,

lnbr, 10, MPI_WORLD);
MPI_Recv(lwork+lsize+1, 1, MPI_FLOAT,

rnbr, 10, MPI_WORLD, &status);
MPI_Send(lwork+lsize, 1, MPI_FLOAT,

rnbr, 20, MPI_WORLD);
MPI_Recv(lwork, 1, MPI_FLOAT,

lnbr, 20, MPI_WORLD, &status);

// perform local work
compute(lwork, lsize);

// determine maximum error among all processes
float localerr = error(lwork, lsize);
MPI_Allreduce(&localerr, &globalerr,

1, MPI_FLOAT, MPI_MAX, MPI_WORLD);
}

// collect results at process 0
MPI_Gather(local+1, lsize, MPI_FLOAT,

work, lsize, MPI_Float, 0, MPI_WORLD);
if (me == 0) { write_array(work, size); }
MPI_Finalize();

}

29/36

Example: Finite Difference Problem

lwork

work

lsize

size

me rnbrlnbr

MPI_BCAST

MPI_SCATTER

MPI_SEND/RECV

MPI_REDUCEALL

MPI_GATHER

0 1 2

(1)

(2)

(3)

(4)

(5)

Processes

Handle boundaries by “ghost cells”.

30/36

Non-Blocking Communication

int MPI_Iprobe(int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT flag (logical)
OUT status status object (Status)

Sets flag to “true” if a matching message is pending to be
received; otherwise sets flag to “false”.

31/36

Example: Managing a Shared Data Structure
int READ = 1; int WRITE = 2; int VALUE = 3;
int main(int argc, char *argv[]) {

MPI_Init(&argc, &argv);
int *data = ...;
while (true)
{

// check for pending request and process it
int flag, MPI_Status status;
MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &flag, &status);
if (flag) {

flag = process(status, data);
if (flag) continue;

}

// perform own work generating requests
int server; int address; int value;
...
MPI_Send(&address, 1, MPI_INT,

server, READ, MPI_WORLD);
MPI_Receive(&value, 1, MPI_INT,

server, VALUE, MPI_WORLD, &status);
...
int[2] write; write[0] = address; write[1] = value;
MPI_Send(write, 2, MPI_INT,

server, WRITE, MPI_WORLD);
}
MPI_Finalize();

}

int process(MPI_Status status, int* data) {
int client = status.MPI_SOURCE;
int address; int[2] write;
switch (status.MPI_TAG) {

case READ:
MPI_Recv(&address, 1, MPI_INT,

client, READ, MPI_WORLD, &status);
MPI_Send(&data[address], 1, MPI_INT,

client, VALUE, MPI_WORLD);
return true;

case WRITE:
MPI_Recv(write, 2, MPI_INT, client,

WRITE, MPI_WORLD, &status);
data[write[0]] = write[1];
return true;

default:
return false;

}
}

32/36

Modularity of Program Design
• Sequential composition:

◦ Message intended for a subsequent phase must not be
received by a previous phase.

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)
IN comm communicator (handle)
OUT newcomm copy of comm (handle)

MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD, &comm);
library_fun(comm);

New context for specific phase of program.
33/36

Modularity of Program Design
• Parallel composition:

◦ Message intended for one parallel computation must not
interfer with those of another parallel computation.

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
IN comm communicator (handle)
IN color control of subset assignment (integer)
IN key control of rank assigment (integer)
OUT newcomm new communicator (handle)

MPI_Comm_split(MPI_COMM_WORLD,
myid%3, myid, &comm);

switch (myid%3) {
case 0: fun0(comm); break;
case 1: fun1(comm); break;
case 2: fun2(comm); break;

}

0 1 2 3 4 5 6 7

0 1 2 0 1 2 0 1

Multiple new contexts for concurrent program phases.
34/36

Communicating Between Groups
int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,

MPI_Comm peer_comm, int remote_leader, int tag, MPI_Comm *newintercomm)
IN local_comm local intra-communicator (handle)
IN local_leader rank of local group leader in local_comm (integer)
IN peer_comm "peer" communicator;

significant only at the local_leader (handle)
IN remote_leader rank of remote group leader in peer_comm;

significant only at the local_leader (integer)
IN tag tag (integer)
OUT newintercomm new inter-communicator (handle)
MPI_Comm_split(MPI_COMM_WORLD, myid%2, myid, &comm);
MPI_Comm_rank(comm, &newid);
if (myid%2 == 0) {

MPI_Intercomm_create(comm, 0, MPI_COMM_WORLD,
1, 99, &intercomm);

MPI_Send(message, 1, MPI_INT, newid,
0, intercomm, &status);

}
else {

MPI_Intercomm_create(comm, 0, MPI_COMM_WORLD,
0, 99, &intercomm);

MPI_Receive(message, 1, MPI_INT, newid,
0, intercomm, &status);

}

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

35/36

Further MPI Features

• Additional collective operations.
◦ All-to-all communication, gathering/scattering with varying

data count.

• Specialized communication operations.
◦ Forced synchronous, buffered, and nonblocking

communication.

• One-sided communications.

• Virtual topologies.

• Dynamic processes.

• Environmental management.

• Parallel input/output.

Mainly added in MPI versions 2 and 3.

36/36

