PARALLEL PROGRAM DESIGN

Course “Parallel Computing”

4

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc. jku.at
http://www.risc. jku.at

J z U JOHANNES KEPLER E.{

UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

Designing Parallel Programs

lan Foster: “Designing and Building Parallel Programs”.

e First consider machine-independent (algorithmic) issues.

o Concurrency.
o Scalability.

o Later deal with machine-specific (performance) aspects.

o Locality.
o Placement.

A methodological approach in multiple stages.

1/31

The PCAM Approach

e Partitioning.

o Decompose computation and data.
o Exhibit opportunities for parallelism wf

by creating many small tasks.

communicate,

e Communication. 508 o~
o Analyze data dependencies. .

agglomerate
o Determine structure of ~
commmunication and coordination.
e Agglomeration. =

o Combine tasks to bigger tasks.
o Improve performance of execution
on real computers.

e Mapping.
o Assign tasks to processors.

o Maximize utilization and minimize
communication.

2/31

Partitioning

Expose opportunities for parallelism.

e Construct fine-grained decomposition of problem.
o Domain/data decomposition:
= Partition data, associate computation to data.
o Functional/task decomposition:
= Partition computation, associate data to computation.
o Complementary approaches.

o Should be both considered.
o Can lead to alternative algorithms.
o Can be applied to different parts of problem.

¢ Avoid replication of computation or data.

o May be introduced later to reduce communication overhead
and to increase the granularity of tasks.

3/31

Domain Decomposition

Focus on the decomposition of the data.

f—; p & /'7777‘/
L9
g
4 1
1-D 2-D 3-D

e Divide data into small pieces and associate computation.
o If computation requires several, associate to “main” piece.
o Communication is required for access to the other pieces.
e Resulting tasks should be of roughly the same size.
o Otherwise load balancing may become difficult.
e Prefer finer decomposition over coarse ones.
o Small tasks may be agglomerated in later stage.

Typical for problems with large central data structures.
4/31

Functional Decomposition

Focus on the decomposition of the computation.

Atmospheric Model

D b

Hydrology
Model Ocean

Model
Land Surface Model

e Decompose according to the algorithmic structure.
o Independent computational blocks.
o Independent loop iterations.
o Independent (recursive) function invocations.

e Determine data requirements of each task.

o If requirements overlap, communication is required.

Typical for problems without central data structures.

5/31

Partitioning Design Checklist

e |s number of tasks large enough?

o Order of magnitude larger than processor number.
o Keeps flexibility for further stages.

Does number of tasks scale with problem size?

o Larger problems can be solved with more processors.

Are the tasks of comparable size?
o Otherwise load balancing may become difficult.
Are redundant computations and data avoided?
o Otherwise scalability may suffer.

Have alternative partitions been considered?
o Try both domain and functional decomposition.

Do we have sufficient concurrency?

6/31

Communication

Specify flow of information between tasks.

e Describe communication structure by “channels”.
o Connections between those tasks that produce data and
those that consume them.
o Typically easy to determine for functional decomposition
from data flow between tasks.
o May be complex to determine for domain decomposition
due to data dependencies.

e Analyze the usage of channels.

o Number and sizes of messages flowing through channels.
o Temporal relationship/dependencies between messages
flowing through different channels.

Also a healthy exercise for shared memory programs.

7/31

Types of Communication

Local versus global:

o Communication with a small set of tasks (“neighbors”) or
with many other tasks.

Structured versus unstructured:

o Communication forms a regular structure (tree, grid, ...) or
an arbitrary graph.

Static versus dynamic:

o ldentity of communication partners is known in advance and
does not change or depends on runtime data and may vary.

Synchronous versus asynchronous:

o Producers and consumers cooperate in data transfer or
consumer may acquire data without producer cooperation.

8/31

Local Communication

Example: Jacobi finite differences method.

o O (u ()

(R (n] o o

Xt = g (4X0 + X0+ X+ X+ X)

for t=0 to T-1 do
send X(i,j) to each neighbor
receive X(i-1,j), X(i+1,j), X(i,j-1), X(i,j+1) from neighbors
update X(i,j)

end

9/31

Global Communication

Example: parallel reduction operation.

S=)X;
=0

®
M) (4M)
ST e

e Cenftralized algorithm:

o Single task becomes bottleneck of communication and
computation.

e Sequential algorithm:
o Additions are performed one after each other.

10/31

Global Communication

Example: parallel reduction operation.

n n
2{: X, =)Kﬁ + :g:: X;
1=j

i—j+1
7 7 7 7 7 7
S WD WD WD WD WA

e Decentralized algorithm:
o Communication/computation are distributed among tasks.

e But still a sequential algorithm.

11/31

Global Communication

Example: parallel reduction operation.

jt+k J+1k/2] j+k
YXi=() x)+(Y X))
i=j i=j i=j+|k/2]+1

' ®\@
N N
Ty M
GRoNCRNCRONCR:
e Decentralized and parallel algorithm:

o Up to k/2 additions can be performed in parallel.
12/31

Unstructured/Dynamic Communication

Example: finite element method.

‘sﬁ‘!ﬁ!

\
SN b
SN2

2

IA
S

Nz

e Mesh of points representing a physical object.
o Simulation of, e.g., the impact of force on the object.
o Shape of the mesh is modified by the impact.
e Domain decomposition.
o Unstructured communication: mesh is irregular.
o Dynamic communication: mesh changes.

13/31

Asynchronous Communication

Example: management of a shared data structure.

O © © ©

i read(1) / redd(?) write(5)

o A set of “data tasks” manages a shared data structure.
o Data structure is distributed among tasks.
e A set of “computing tasks” produce and consume data.
o Exchange of messages between computing tasks and data
tasks for reading and writing the data structure.

Consumption of data decoupled from their production.

14/31

Communication Design Checklist

Do all tasks perform the same amount of communication?

Does each task communicate only with a few neighbors?

Can the communication operations proceed concurrently?

Can the computation operations proceed concurrently?

Do we have the potential for scalability?

15/31

Agglomeration

In the previous phases we have developed a parallel algorithm.

e Algorithm not efficiently executable.

LP/
o Large number of small tasks.
o Large amount of communication. %
’
O,

(@)

(b)

e Combine tasks to larger tasks.
o Increase the granularity of tasks.
m Granularity: the ratio of o o of T
computation to communication.

o Still retain design flexibility. ©
@ & 5%_»m

= Sufficiently many tasks for
scalability and mapping flexibility.
o Reduce engineering costs.

= Avoid effort of parallelization
where it does not pay off.

16/31

Increasing Granularity: Surface to Volume

e Before: granularity 1/4 = 0.25.

o 1 local computation operation. 0 &
o 4 data items sent.

e After: granularity 16/16 = 1.

o 16 local computation operations.
o 16 data items sent.

e Surface to Volume Effect ®

o Typical for domain decomposition.
o Communication proportional to
“surface” of subdomain.
o Computation proportional to
“volume” of subdomain.
o Surface grows slower than volume.
m Square: S/V = 4a/a® = 4/a.
Decreasing surface-to-volume ratio increases granularity.

17/31

Increasing Granularity:
Replicating Computation

Communication may be decreased by replicating computation.

Example: two algorithms computing a global sum in N tasks.

0@ > O~™®

A A

Time 2(N — 1) resp. 2log, N for performing N — 1 additions.

18/31

Increasing Granularity:
Replicating Computation

A replicating algorithm computing a global sum in N tasks.

Time logy, N for performing N log N additions.

19/31

Increasing Granularity:
Avoiding Communication

Agglomerate tasks that cannot execute concurrently.

€]
& o T o0
2y

Q) 2) @
"'
[Pl =i}
e s P Py
OEoRozoRacoROL0

Only N agglomerated tasks are needed. /
20/31

Retaining Design Flexibility

Do not “over-agglomerate”.

e Goal is not a fixed number of tasks.

o Task number should grow with problem and machine size.
o Algorithm should remain scalable.

e Goal is not one task per processor.

o There shold be still multiple tasks per processor.
o If one task is blocked, another one may execute and keep
the processor busy.

Agglomeration should not “hardwire” the algorithm to a fixed
problem and machine size.

21/31

Reducing Engineering Costs

e Try to avoid extensive code changes.

o One partitioning/agglomeration may be much more difficult
to implement than another.

e Try to avoid extensive data structure changes.

o Conversions from/to data structures given by the context of
the parallel application may be cumbersome.

Consider also the costs of development in relation to the
expected performance gains.

22/31

Agglomeration Design Checklist

e Has communication been reduced (granularity increased)?
e Does computation replication outweigh its costs?

e Does data replication not limit scalability?

e Have tasks still similiar sizes?

e |s there still sufficient concurrency?

e Does the number of tasks still scale with problem size?

e Can task number be reduced without limiting flexibility?

e Are the engineering costs reasonable?

Do we have sufficient execution efficiency?

23/31

Mapping

We need a strategy for mapping tasks to processors (cores).

e Only a problem for systems with distributed memory or
shared memory with non-uniform memory access.
o On multi-core processors and SMP systems, the automatic
placement of tasks to cores by the OS suffices.
e Conflicting goals:
o Place tasks that are able to execute concurrently on
different processors.
o Place tasks that communicate frequently on the same
processor.

The mapping problem is NP-complete, so we can in general
only hope for good heuristics.

24/31

Types of Mapping

e Static mappings:
o A fixed number of permanent tasks is mapped at program
start to processors; this mapping does not change.

SRR
S

e Load balancing algorithms:
o The assignment of permanent tasks to processors is
adapted at runtime to keep processors equally busy.
e Task scheduling algorithms:
o Many short-living tasks are created at runtime; a scheduler
maps tasks to processors where they run until termination.

Static mapping is usually only sufficent for domain

decomposition with structured communication.
25/31

Static Mappings: Recursive Bisection

Recursively divide domain into partitions with equal costs.

e Recursive coordinate bisection:

o Recursively cut multi-dimensional grid at longest dimension.
e Unbalanced recursive bisection:

o Choose among partitions the one with lowest aspect ratio.
e Recursive graph bisection:

o Decompose graph according to distance from extremities.

26/31

Load Balancing: Local Algorithms

Compare load with that neighbor processors; transfer load if
difference gets too big.

Use only local information and that of neighbor processors.

27/31

Load Balancing:
Probabilistic/Cyclic Mapping

¢ Probabilistic mapping:
o Map tasks to randomly selected processors.
o If task number is much larger than processor number, every
processor receives about the same amount of computation.
o Generally leads to high communication.
e Cyclic mapping:
o Map tasks to processors in a cyclic (scattered) mapping.
o Each of P processors receives every P-th task in turn.
o Similar to probabilistic mapping but more regular structure.
CH - -
i
335000000000
i
pivi
i e e e s e e e e
CHO OO OO

28/31

Task Scheduling

Maintain pool of tasks to which all new tasks are added.

O) O)
®\\ »//®

manager
e Manager/worker scheme:
o Manager controls pool; idle workers ask manager for tasks.
e Hierarchical manager/worker scheme:
o Subsets of workers with own submanagers and subpools.
o Submanagers interact with manager (and each other).
e Decentralized schemes:
o Each worker maintains its own task pool.
o Idle workers request tasks from other workers.

Termination detection may become an issue. 29/31

Mapping Design Checklist

¢ If considering a program where tasks are only created at
startup, have you also considered task scheduling?

¢ If considering task scheduling, have you also considered a
program where tasks are only created at startup?

¢ If considering load-balancing, have you evaluated simpler
alternatives such as probabilistic or cyclic mappings?

e If considering probabilistic or cyclic mappings, have you
verified that task number is large enough to balance load?

e If considering task scheduling, have you verified that the
manager does not become a bottleneck?

Do we have sufficient processor utilization?

30/31

General Recommendations

e Be sure to parallelize the actual hotspots of a program.

o First you must understand where computation time is spent.
Consider alternatives.

o Do not just implement the first scheme that comes to mind.
Remember scalability.

o You may get more cores available than originally thought.
But also consider the coding effort.

o A simple solution may be sufficient as a starting point.
And do not forget the application context.

o The parallel code must be integrated into a bigger system.

Ultimately, determining the most efficient parallelization
strategy for a given problem may require multiple iterations of
performance debugging and optimizing/rewriting the code.

31/31

