CONCURRENCY IN JAVA

Course “Parallel Computing”

4

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc. jku.at
http://www.risc. jku.at

JOHANNES KEPLER
J z UNIVERSITY LINZ E.{

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

Java on a NUMA Architecture

e Loading Java 21 (default is Java 6):

zusie> module avail

zusie> module load jdk/21.0.2

Module for jdk 21.0.2 loaded.

zZusie> java

Picked up _JAVA_OPTIONS: -XX:+UseParallelGC -XX:ParallelGCThreads=4

e Advanced Runtime Options:

-XX:+UseParallelGC
Enables the use of the parallel scavenge garbage collector
(also known as the throughput collector) to improve the performance
of your application by leveraging multiple processors. ...

-XX:ParallelGCThreads=N
Sets the number of threads used for parallel garbage collection in
the young and old generations.

-XX:+UseNUMA
Enables performance optimization of an application on a machine
with nonuniform memory architecture (NUMA) by increasing the
application’s use of lower latency memory.

Additional threads are created for garbage collection. 1/20

Java on a NUMA Architecture

¢ Pinning threads to cores:

zusie> man 1 dplace

Dplace is used to bind a related set of processes to specific
cpus or nodes to prevent process migrations. In some cases,
this will improve performance since a higher percentage of
memory accesses will be to the local node.

OPTIONS

-c Cpu numbers. Specified as a list of cpus, optionally
strided cpu ranges, or a striding pattern. Example:
"_¢ 1"’ "_c 2_4ll’ "_¢c 1,4—8,3", "_¢c 2—8:3",

In some cases, version 2 of numatools will give better
performance than version 1. ... In version 2, this
memory is usually allocated local to the task’s node.

e Pin Java threads to physical cores in current CPU set:
zusie> dplace -c 16-31 java ... // all threads on second blade
2/20

Java on a NUMA Architecture

e Control NUMA policy for processes or shared memory:

zusie> man 1 numactl

numactl runs processes with a specific NUMA scheduling
or memory placement policy. ...
OPTIONS

-physcpubind=cpus, -C cpus
Only execute process on cpus. ... Physical cpus may be
specified as N,N,N or N-N or N,N-N or N-N,N-N and so
forth. Relative cpus may be specifed as +N,N,N or +N-N
or +N,N-N and so forth. The + indicates that the cpu

numbers are relative to the process’ set of allowed

cpus in its current cpuset. ...

e Place Java threads on physical cores in current CPU set:

zusie> numactl -C +16-31 java ... // all threads on second blade

e No pinning: threads may migrate among cores.

3/20

Java on a NUMA Architecture

top -H -u login:press f j <ENTER>

top - 08:17:23 up 8 days, 17:01, 12 users,

Tasks: 16842 total,

Cpu(s): 0.8%us,

Mem: 2051061M total,
262143M total,

Swap:

PID USER
331708 k313270
331467 k313270
331468 k313270
331633 k313270
331634 k313270
331709 k313270
331710 k313270
331711 k313270
331712 k313270
331713 k313270
331714 k313270
331715 k313270

0.0%sy,

PR
20
20
20
20
20
20
20
20
20
20
20
20

=
H

O 000000 OO0 o0 O O

1 running, 16840 sleeping, 1 stopped,
0.0%ni, 99.2%id, 0.0%wa, 0.0%hi,
1958678M used, 92382M free,
OM used, 262143M free,
VIRT RES SHR S /CPU JMEM TIME+
62444 15m 1972 R 20 0.0 0:08.14
106m 2536 1476 S 0 0.0 0:00.02
55824 5704 2776 S 0 0.0 0:00.10
106m 2536 1476 S 0 0.0 0:00.02
55824 5724 2796 S 0 0.0 0:00.10
32.8g 116m 12m S 0 0.0 0:00.01
32.8g 116m 12m S 0 0.0 0:00.29
32.8g 116m 12m S 0 0.0 0:00.00
32.8g 116m 12m S 0 0.0 0:00.00
32.8g 116m 12m S 0 0.0 0:00.00
32.8g 116m 12m S 0 0.0 0:00.00
32.8g 116m 12m S 0 0.0 0:00.00

load average: 2.34, 0.53, 0.18

0 zombie

0.0%si,

0.0%st

OM buffers
1952269M cached

529
513

513
580
64
65
66
67
68
69
70

Column “P”: the core executing the thread.

COMMAND
top
sshd
bash
sshd
bash
java
java
java
java
java
java
java

4/20

Multi-Threading in Java

public class HelloRunnable public class HelloThread
implements Runnable { extends Thread {
public void run() { public void run() {
System.out.println("Hello!"); System.out.println("Hello!");
} }
} }
public static public static
void main(String args[]) { void main(String args[]) {
Thread t = Thread t =
new Thread(new HelloRunnable()); new HelloThread();
t.start(); t.start;
try { t.join() } try { t.join() }
catch(InterruptedException e) { } catch(InterruptedException e) { }
} }

Creating threads and waiting for their termination.

5/20

Example: Matrix Multiplication

public class MatMultThreads { private static void multiply() {
int n = N/T;
private static int Nj Thread[] thread = new MultThread[T];
private static int T; for (int i = 0; i < T; i++) {
private static double[][] 4; thread[i] =
private static double[][] B; new MultThread(i*n, Math.min((i+1)*n,N));
private static double[][] C; thread[i] .start();
}
private static final class MultThread try {
extends Thread { for (int i = 0; i < T; i++)
private int begin; private int end; thread[i].join(Q);
public MultThread(int begin, int end) { }
this.begin = begin; this.end = end; catch(InterruptedException e) { }
} }
public void run() { public static void main(String[] args) {
for (int i = begin; i < end; i++)
{ try {
for (int j = 0; j < N; j++) { N = Integer.parselnt(args[0]);
clil[jl = o; T = Integer.parselnt(args[1]);
for (int k = 0; k < N; k++) }
Clil[j] += A[il [k1*B[k][j]; catch(NumberFormatException e) { return; }
3 A = new double[N][N];
3} B = new double[N][N];
} C = new double[N][N];
} multiply();
}
¥

6/20

Synchronization of Threads

e Synchronized methods:

public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() { c++; }
public synchronized int value() { return c; }

}
e Synchronized statements:

public static void push(List<String> list, String name) {
synchronized(list) { list.add(name); }

}
public static void pop(List<String> list) {
synchronized(list) { list.remove(list.size()-1); }

}

The executions of two synchronized methods/statements on the
same lock object do not overlap.

7/20

Example: Dynamic Task Scheduling

public class MatMultWorkers {

private
private
private
private
private
private

private

static int N;

static int T;

static double[][] A;
static double[][] B;
static double[][] C;
static int rows;

static final class MultWorker

extends Thread {
public void run() {
while (true) {
int i;

synchronized (C) {

}

i = rows;

rows++;

if (i >= N) return;
for (int j = 0; j < N; j++) {

clilfjl = o;
for (int k = 0; k < N; k++)
C[il[j] += A[i][x]*B[k][j];

private static void multiply() {
Thread[] thread = new MultWorker[T];
for (int i = 0; i < T; i++)
{
thread[i] = new MultWorker();
thread[i].start();

try
{
for (int i = 0; i < T; i++)
thread[il.join();
}
catch(InterruptedException e) { }
}
public static void main(String[] args) {
try {
N = Integer.parselnt(args[0]);
T = Integer.parselnt(args[1]);
}
catch(NumberFormatException e) { return; }
A = new double[N][N];
B = new double[N][N];
C = new double[N][N];
rows = 0;
multiply();

8/20

Memory Consistency Properties

Be careful: the effect of a write action by one thread is only
guaranteed to be seen by the read action of another thread, if
the actions are in the (transitive) happens-before relationship:

e Each action in a thread happens-before every later action (in
program order) in the same thread.

e A synchronized method or statement exit happens-before every
subsequent synchronized entry on the same lock object.

e A write to a volatile field happens-before every read to the
same field.

e The start of a thread happens-before all actions of the thread.

e All actions of a thread happen-before every join of the thread.

The constructs synchronized, volatile, start and join define
the happens-before relationship of a program.

9/20

The High-Level Concurrency API

Package java.util.concurrent.

e Lock objects

o Package java.util.concurrent.locks
Executors

o Executor interfaces, thread pools, the Fork/Join framework.
Concurrent collections

o Interfaces BlockingQueue, ConcurrentMap,

ConcurrentNavigableMap.
Atomic variables
o Package java.util.concurrent.atomic
Pseudorandom numbers from multiple threads.
o Class ThreadLocalRandom

We will investigate the “executors” in more detail.

10/20

Executors

e Core idea: separate “tasks” from “threads”.

o Tasks: computations to be performed.

o Threads: the unit of execution mapped to a processor core.
e Executors: an object that executes tasks.

o Receives tasks and schedules them on a pool of threads.
e Tasks may or may not return a result:

o interface Executor:

void execute(Runnable command)
interface Runnable { void run(); }
o interface ExecutorService:

<T> Future<T> submit(Callable<T> task)
Future<?> submit(Runnable task)

interface Callable<T> { T call(); ... }

interface Future<T> { T get(); ... }

11/20

Thread Pools

e Factory methods of class Executors:

static ExecutorService newFixedThreadPool(int nThreads)
Creates a thread pool that reuses a fixed number of threads operating
off a shared unbounded queue.
static ExecutorService newSingleThreadExecutor ()
Creates an Executor that uses a single worker thread
operating off an unbounded queue.
static ExecutorService newWorkStealingPool(int parallelism)
Creates a thread pool that maintains enough threads to support given

parallelism level, and may use multiple queues to reduce contention.

e Manual creation of a ThreadPoolExecutor:
ThreadPoolExecutor (int corePoolSize, int maximumPoolSize,
long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue)
Creates a new ThreadPoolExecutor with the given initial parameters

and default thread factory and rejected execution handler.
Creation may be also parameterized by a “thread factory”.

12/20

Example: Tasks without Results

import java.util.x;
import java.util.concurrent.x*;

public class MatMultPool {

private static int N;
private static int T;
private static double[][] 4;
private static double[][] B;
private static double[][] C;

private static final class MultTask
implements Runnable {
private int ij;
public MultTask(int i) {
this.i = i;
s
public void run() {
for (int j = 0; j < N; j++) {
Clil (3] = 0
for (int k = 0; k < N; k++)
CLil [+= A[i][k1*B[k][j];

}

private static void multiply() {
ExecutorService pool =
Executors.newFixedThreadPool(T) ;
Vector<Future<?> > result =
new Vector<Future<?> >(N);
for (int i = 0; i < Nj i++)
result.add(pool.submit(new MultTask(i)));
try {
for (int i = 0; i < N; i++)
result.get(i).get();
¥
catch (InterruptedException e) { }
catch (ExecutionException e) { }
pool.shutdown() ;
}
public static void main(String[] args) {

N = Integer.parselnt(args[0]);
T = Integer.parselnt(args[1]);

catch(NumberFormatException e) { return; }
A = new double[N][N];
B = new double[N][N];
C = new double[N][N];
multiply();
¥

13/20

Example: Tasks with Results

import java.util.*; private static void multiply() {
import java.util.concurrent.x*; ExecutorService pool =
Executors.newFixedThreadPool(T) ;
public class MatMultFuture { Vector<Future<double[]> > result =
new Vector<Future<double[]> >(N);
private static int N; for (int i = 0; i < N; i++)
private static int T; result.add(pool.submit (new MultResult(i)));
private static double[][] 4; try {
private static double[][] B; for (int i = 0; i < N; i++)
private static double[][] C; C[i] = result.get(i).get();
¥
private static final class MultResult catch(InterruptedException e) { }
implements Callable<double[]> { catch(ExecutionException e) { }
private int ij; pool.shutdown() ;
public MultResult(int i) { }
this.i = i; public static void main(String[] args) {
s ..
public double[] call() throws Exception try
{ {
double[] C = new double[N]; N = Integer.parselnt(args[0]);
for (int j = 0; j < Nj; j++) T = Integer.parselnt(args[1]);
{ }
cljl = 0; catch(NumberFormatException e) { return; }
for (int k = 0; k < N; k++) A = new double[N][N];
C[31 += A[i] [x]*B[k][j]; B = new double[N][N];
b C = new double[N][];
return C; multiply();
¥ ¥
}

14/20

The Fork/Join Framework
A framework for recursive tasks.

e Class ForkJoinPool

ForkJoinPool(int parallelism)
<T> ForkJoinTask<T> submit(ForkJoinTask<T> task)

e Abstract class ForkJoinTask<T>:

ForkJoinTask<T> fork()
public final T join()
static void invokeAll(ForkJoinTask<?>... tasks)

o Abstract subclass RecursiveAction:

protected abstract void compute()

o Abstract subclass RecursiveTask<T>:
protected abstract T compute()

Applies work stealing: when one thread runs out of tasks, it
steals tasks created by another thread.

15/20

Example: Recursive Tasks

import java.util.x;
import java.util.concurrent.x*;
public class MatMultRec {
private static int N;
private static int T;
private static double[][] A;
private static double[][] B;
private static double[][] C;
private static final class MultRec
extends RecursiveAction {
private int begin; private int end;
public MultRec(int begin, int end) {
this.begin = begin; this.end = end;
}
public void compute() {
if (begin == end-1) {
int i = begin;
for (int j = 0; j < N; j++) {
CLil[j1 = 05
for (int k = 0; k < Nj k++)
Cli1[j] += ALi][kI*B[k][j];
s
}
else if (begin < end) {
int mid = (begin+end)/2;

private static void multiply() {
ForkJoinPool pool = new ForkJoinPool(T);
ForkJoinTask<Void> task =
pool.submit(new MultRec(0,N));
task.join();
pool.shutdown();
}
public static void main(String[] args) {
try {
N = Integer.parselnt(args[0]);
T = Integer.parselnt(args[1]);
}
catch(NumberFormatException e) { return; }
A = new double[N][N];
B = new double[N][N];
C = new double[N][N];
multiply();
}

invokeAll(new MultRec(begin, mid), new MultRec(mid, end));

}

16/20

Java 21: Virtual Threads

Light-weight threads assigned by JVM to a pool of OS threads.

// may also run "java -Djdk.virtualThreadScheduler.parallelism=16"
System.setProperty("jdk.virtualThreadScheduler.parallelism", "16");

// direct creation of virtual threads

Runnable task = () -> { System.out.println("running"); };
Thread thread = Thread.startVirtualThread(task);

thread. join(); System.out.println("Thread terminated");

// executor creates a virtual thread for every task submitted to the pool
ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor();
Future<?> future = executor.submit(task);

future.get(); System.out.println("Task completed");

Whenever a virtual thread is blocked, it releases its OS thread to
which the JVM then assigns another virtual thread (main
purpose are high-throughput concurrent applications).

17/20

Distributed Memory Programming

o Use networking API for “message passing” programming.
o TCP-based sockets for transfering streams of bytes.
e On a remote node a server process has to be started.
o For instance, by “secure shell”.
o Process waits on some port for connection requests.
o By accepting a request, server receives socket to client.
e Client processes may request connections to the server.
o Server identified by IP address and port number.
o Upon acceptance, client receives socket to server.
e Sockets provide conventional input/output streams.
o Standard I/O operations may be used for communication.
o Output has to be (explicitly/automatically) flushed.

Low-level approach; there also exist high level alternatives, e.g.,
Java Remote Method Invocation (RMI).

18/20

Example: A Client/Server Program

import java.io.*; private static void multiply() {
import java.net.*; int n = N/T;
Thread[] thread = new MultThread[T];
public class MatMultNet { for (int i = 0; i < T; i++) {
thread[i] =
private final static String URL = "localhost"; new MultThread(i*n, Math.min((i+1)*n,N));
private final static int port = 9999; thread[i] .start();
private static int N; }
private static int T; try {
private static double[][] 4; for (int i = 0; i < T; i++)
private static double[][] B; thread[i].join();
private static double[][] C; ¥
catch(InterruptedException e) { }
private static final class MultThread ¥
extends Thread { public static void main(String[] args)
private int begin; private int end; {
public MultThread(int begin, int end) {
this.begin = begin; this.end = end; if (args[0].equals("-client"))
} client();
public void run() { else
for (int i = begin; i < end; i++) { server();
for (int j = 0; j < N; j++) { }
Cli1[j] = 0

for (int k = 0; k < N; k++)
ClLil[j] += A[i] [K)*BIK] [j];

b 19/20

Example: A Client/Server Program

public static void server() {
try {
ServerSocket server =
while (true) {
Socket socket =

new ServerSocket (port);

server.accept();
BufferedReader in =
new BufferedReader (new InputStreamReader
(socket.getInputStream()));
PrintWriter out =
new PrintWriter(new OutputStreamWriter
(socket.getOutputStream()), true);
= in.readLine();
null) return;

String line

if (line ==

try {
N =
T =

s

catch(NumberFormatException e) { ... }

A = new double[N][N]; s

B = new double[N][N]; }

C = new double[N][N];

long t1 = System.currentTimeMillis(); }

multiply(); }

long t2 = System.currentTimeMillis();

out.println((t2-t1) + " ms");

Integer.parselnt (args[0]);
Integer.parselnt(args[1]);

}
catch(I0Exception e) { System.exit(-1); }
}

static void client() {
try {
BufferedReader console =

new BufferedReader (new InputStreamReader
(System.in));

while (true) {

String line = console.readLine();
if (line == null) return;
Socket socket = new Socket(URL, port);
BufferedReader in =
new BufferedReader (new InputStreamReader
(socket.getInputStream()));
PrintWriter out =
new PrintWriter (new OutputStreamWriter
(socket.getOutputStream()), true);
out.println(line);
String answer = in.readLine();
if (answer == null) return;
System.out.println(answer);

catch(IOException e) { System.exit(-1); }

20/20

