

Formal Methods in Software Development

Sample Exam

Wolfgang Schreiner

Wolfgang.Schreiner@risc.jku.at

January 14, 2026

Last Name:

First Name:

Matrikelnummer:

Studienkennzahl:

100 points total

1. (25P)

a) (12P) Write a RISCAL specification (pre/post-condition) of a procedure

```
val N:Nat; type int = Int[-N,N]; type array = Array[N,int];  
proc fill(a:array, p:int, n:int, e:int): array { ... }
```

which returns a copy of a where, starting from position p , n elements have been set to e ; do not forget to specify suitable preconditions for p and n that restrict their range to reasonable limits.

b) (13P) Write a *heavy-weight* JML specification for the following method of the Java library (the specification shall be as expressive as possible).

```
public static void fill(int[] a, int fromIndex, int toIndex, int val)
```

Assigns the specified int value to each element of the specified range of the specified array of ints. The range to be filled extends from index `fromIndex`, inclusive, to index `toIndex`, exclusive. (If `fromIndex==toIndex`, the range to be filled is empty.)

Parameters:

`a` - the array to be filled
`fromIndex` - the index of the first element (inclusive) to be filled with the specified value
`toIndex` - the index of the last element (exclusive) to be filled with the specified value
`val` - the value to be stored in all elements of the array

Throws:

`IllegalArgumentException` - if `fromIndex > toIndex`
`ArrayIndexOutOfBoundsException` - if `fromIndex < 0` or `toIndex > a.length`

The stated exceptions are runtime exceptions and thus not declared in the header of the method; nevertheless, specify the situations where they are thrown.

2. (25P)

a) (13P) Derive the weakest precondition of the command c

```
if (i < 10) {  
    a[i] = a[i]+3;  
    i = i+1;  
}
```

for postcondition $a[2] = 5$ (ignoring ‘index out of bound’ violations). Simplify the derived precondition as far as possible.

b) (12P) Derive the strongest postcondition of above command for precondition $a[2] = 5$ and simplify it as far as possible.

Remember (for both parts) that an array assignment $a[i] := b$ is just an abbreviation for the scalar assignment $a := a[i \mapsto b]$.

3. (25P) Take the following program which is supposed to compute for given $n \in \mathbb{N}$ the result $s := n^2$:

```

{n = oldn}

s = 0; i = 1;
while (i <= n)
{
    s = s+2*i-1;
    i = i+1;
}

```

$\{s = n^2 \wedge n = oldn\}$

- a) (13P) Assume you are given a suitable loop invariant I and termination term T ; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t/x]$ for a substitution of term t for variable x in I and analogously $T[t/x]$).
- b) (12P) Construct for input $n = 10$ a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how from your choice of I it can be concluded that the invariant is preserved (sketch the proof of the corresponding verification condition).

4. (25P) Take the following asynchronous composition of two processes operating on shared variables x, y, i, j where the first process cycles among program counters $P_1 \rightarrow P_2 \rightarrow P_1 \rightarrow \dots$ and the second process among counters $Q_1 \rightarrow Q_2 \rightarrow Q_3 \rightarrow Q_1 \rightarrow \dots$.

```

initially x = y = i = 0, j = 1
loop          ||  loop
  P1: x = x+j;    ||    Q1: wait i > 0;
  P2: i = 1-i;    ||    Q2: y = y+i;
                     ||    Q3: j = 1-j;

```

a) (8P) Give a formal model of the system (using the interleaving assumption for asynchronous composition) as a *labeled* transition system with five transitions labeled P_1, P_2, Q_1, Q_2 , and Q_3 ; do not forget the definition of the state space.

b) (7P) Formalize in LTL the properties

- “ i becomes greater than zero before y becomes greater than zero (which is eventually the case)”
- “if at any time i becomes greater than zero, then eventually also y will become greater than zero”.

c) (10P) Which of these properties are true without fairness requirements (if a property is not true, show a violating system run)? Which do become true, if we assume weak fairness for all transitions? Which do become true, if we assume strong fairness for all transitions? Explain your answers.