Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ


mailto:Wolfgang.Schreiner@risc.jku.at

How to decide T |= F for unquantified formula F and decidable theory 77

So far: convert F into a disjunctive normal form Cy v ...V C,.
F is T-satisfiable if and only if some C; is T-satisfiable.
Problem: the number n of clauses may be exponential in the size of F.
Better: combine the decision procedure for T with a SAT solver.
The SAT solver is applied to the propositional skeleton F.
Every atomic formula A in F is abstracted to a propositional variable A.
If F is unsatisfiable, F is unsatisfiable and we are done.
Otherwise, the SAT solver produces a satisfying assignment represented by a
conjunction Ly A ... A L, of propositional literals.
The decision procedure is applied to the T-formula Ly A ... A Ly,.
Propositional variable L; is expanded into the atomic formula L; it represents.
If the formula is satisfiable, F is satisfiable and we are done.
Otherwise, the decision procedure determines a minimal unsatisfiable subformula C
of L1 A ... A L, and we repeat the process with F A =C.

Each formula —=C produced represents a “lemma” deduced from F. 1/10



E-satisfiability of F:eox=yA((y =zAx#2) Vx=2).

First iteration:
Propositional skeleton: a A ((b A =¢) V ¢)
Satisfying assignment: a A b A =¢
Unsatisfiable concretization: x = yAy=zAx #z
Strengthened formula: FA-(x=yAy=zAx #2)
Second iteration:
Propositional Skeleton: a A ((b A =c) V) A=(aAbA=c)
Satisfying assignment: a Ab A ¢
Satisfiable concretization: x =yAy=zAx=z2

Formula F is E-satisfiable.
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function SMT(F) > decides T-satisfiability of formula F
F := ABSTRACT(F)
loop
(sat, Ls) := SAT(F) > decides satisfiability of propositional skeleton of F
if —sat return false
Ls := CONCRETIZE(Ls)
(sat,C) := SMT(Ls) > decides T-satisfiability of literal set Ls
if sat return true
F := F A ABSTRACT(-C)
end loop
end function

This basic approach can be further optimized, e.g., by integrating the interaction
with the decision procedure directly into a DPLL-based SAT solver (“lazy encoding”).
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How to decide a conjunction of atomic formulas with operations from different
decidable theories such as LRA and ?

YzaAx-z22y)Az0) A& - /()# /()

Theory combination problem: decide Ty U T; |= F for formula F and theories Ty, Ts.

Problem: even if T} and T, are decidable, T; U T, may be undecidable.

Definition: a theory T is stably infinite, if for every quantifier-free formula F that is
T-satisfiable, there exists an infinite domain that satisfies F.

Theories LRA and EUF are stably infinite.

The theory {x = a v x = b} with constants a, b is not stably infinite (why?).
Theorem: let Ty and T, be stably infinite theories for which the quantifier-free fragment
is decidable and that have no common constants, functions, or predicates (except
for “="). Then the quantifier-free fragment of T; U T; is decidable.

For stably infinite theories, the theory combination problem is indeed solvable.
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Before proceeding, let us tidy the formula a bit.

Purification: ensure that every atom is from only one theory.

Repeatedly replace in the formula each “alien” subexpression E by a fresh
variable vg and add the constraint vg = E.
The transformation preserves the satisfiability of the formula.

Example: (f(x,0)22)A(f(3,0) <2 Ax=2YA (Y <x)A(z— f(x,0)>1).

ViZ22DAW <DAX2AG<)A(z=vi=21)A

vi = f(x,v3) Ava = f(y,v3) Ava =0

A preparatory step for theory combination.
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Greg Nelson and Derek C. Oppen (1979).
> decides 71 U ... U T,-satisfiability of literal conjunction F

function NELSONOPPEN(F)
> for convex theories 71, ..., T,

Fi,...,F, := PURIFY(F)
loop
if 3i. -SMT,;(F;) return false > decide T;-satisfiability of F;

if -3x,y, j. INFERRED;(x, y) return true
choose x, y, j with INFERRED(x,y) » infer variable equality x = y not present in theory T;
Fj:=Fju{x=y} > propagate inferred variable equality to 7;

end loop
end function
INFERRED; (x,y) :& 3i. (SHARED(F;, Fj, {x,y})) A INFER;(F;, (x = y)) A =INFER;(F}, (x = ¥)))
SHARED(F;, Fj, {x, y}): variables x, y are shared by formulas F; and F;.
INFER;(F;, (x = y)): variable equality (x = y) can be inferred from F; in theory T;.
F; = x = yis T;-valid (F; A —=(x = y) is T;-unsatisfiable).

The iterative propagation of inferred variable equalities between theories.  6/10



[0z A0 s)Ax2ZY) A 2) A= f(x,0)21)

Purified formula:

iz A02e<)DAE2)AGZX)A(z=vi>21)A

vi = f(x,v3) Ava = f(y,v3) Avz =0

Equality propagation:

F1(LRA) F2(EUF)
Vi > 2 vi = f(x,v3)
vo <z ve = f(y,v3)
X2y

yzx

z-vy >1

vy =0

xX=y - Xx=Yy

V1 =Va — V1 = Vg
Vi=2

unsat
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Yz)Ax=z2y)Azz20)Af(f) = F() # f(2)

Purified formula:

Equality propagation:

z)Ax=-z2y)AZ20)A(f(v1) # f(2) A

vi=va-v3Avy=f(x)Av3=f(y)

F1(LRA) F2(EUF)

y=zx fn) # f(z)

X-z2y va = f(x)

220 vz = f(y)

V1 = V2 — V3

z=0

xX=y - Xx=Yy

Vo = V3 — Vg =v3

V1:0

Vi=2 - v1=2z
unsat
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Definition: Theory T is convex, if for every formula F := Ly A ... A L, with literals
Ly,...,L, the following holds (for variables x1,...,x, and y1,...,y,):
fT=EF=x1=y1V...Vx, =y,, thenT |= (F = x; = y;) forsomei € {1,...,n}.
If F implies in T a disjunction of equalities, it already implies one of these equalities.
Thus F cannot express “real” disjunctions and it suffices to infer plain equalities.

Examples:
LRA is convex: a “real” disjunction corresponds to a finite set of n > 2 geometric points;
however, by a conjunction of linear inequalities (which represents an intersection of
half-planes), we can only define a point set that is empty, singleton, or infinite.
EUF isconvex:if F=>x1=y1V...Vx, =y, then FAx1 #y1 A ... Ax, £y, iS
unsatisfiable. The congruence closure algorithm shows this by demonstrating for some i
that F A x; # y; is unsatisfiable, i.e., that F = x; = y; is valid.
LIA (linear integer arithmetic) is not convex: take F :& 1 <xAx<2Ay=1Az=2;then F
implies x = y v x = z but neither x = y nor x = z.
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How to combine with a non-convex theory 7;?

We may infer in 7; from formula F; only a disjunction x; = y; V... Vx, = y,.
But not any equality x; = y; of this disjunction.
However, this disjunction can be made minimal (strongest).

Start with the disjunction of all possible variable equalities.
If it cannot be inferred, no smaller disjunction can be inferred either.
Otherwise, strip every x; = y; if this keeps the disjunction inferred.

For each remaining x; = y;, recursively call NELSONOPPEN(F A x; = ;).
Return “true” if any call returns “true” and “false”, otherwise.

Thus the Nelson-Oppen method is also applicable to non-convex theories (but with
generally much greater complexity).
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