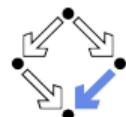


SMT SOLVING: COMBINING DECISION PROCEDURES

Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at



Lemmas on Demand

How to decide $T \models F$ for unquantified formula F and decidable theory T ?

- **So far:** convert F into a disjunctive normal form $C_1 \vee \dots \vee C_n$.
 - F is T -satisfiable if and only if some C_i is T -satisfiable.
 - Problem: the number n of clauses may be exponential in the size of F .
- **Better:** combine the decision procedure for T with a *SAT solver*.
 - The SAT solver is applied to the **propositional skeleton** \overline{F} .
 - Every atomic formula A in F is abstracted to a propositional variable \overline{A} .
 - If \overline{F} is unsatisfiable, F is unsatisfiable and we are done.
 - Otherwise, the SAT solver produces a satisfying assignment represented by a conjunction $\overline{L_1} \wedge \dots \wedge \overline{L_m}$ of propositional literals.
 - The decision procedure is applied to the T -formula $L_1 \wedge \dots \wedge L_m$.
 - Propositional variable $\overline{L_i}$ is expanded into the atomic formula L_i it represents.
 - If the formula is satisfiable, F is satisfiable and we are done.
 - Otherwise, the decision procedure determines a minimal unsatisfiable subformula C of $L_1 \wedge \dots \wedge L_m$ and we repeat the process with $F \wedge \neg C$.

Each formula $\neg C$ produced represents a “lemma” deduced from F .

Example

E -satisfiability of $F : \Leftrightarrow x = y \wedge ((y = z \wedge x \neq z) \vee x = z)$.

- First iteration:

- Propositional skeleton: $a \wedge ((b \wedge \neg c) \vee c)$
- Satisfying assignment: $a \wedge b \wedge \neg c$
- Unsatisfiable concretization: $x = y \wedge y = z \wedge x \neq z$
- Strengthened formula: $F \wedge \neg(x = y \wedge y = z \wedge x \neq z)$

- Second iteration:

- Propositional Skeleton: $a \wedge ((b \wedge \neg c) \vee c) \wedge \neg(a \wedge b \wedge \neg c)$
- Satisfying assignment: $a \wedge b \wedge c$
- Satisfiable concretization: $x = y \wedge y = z \wedge x = z$

Formula F is E -satisfiable.

Algorithm

```
function SMT( $F$ )                                ▷ decides  $T$ -satisfiability of formula  $F$ 
   $\overline{F}$  := ABSTRACT( $F$ )
  loop
    ( $sat, \overline{Ls}$ ) := SAT( $\overline{F}$ )           ▷ decides satisfiability of propositional skeleton of  $F$ 
    if  $\neg sat$  return false
     $Ls$  := CONCRETIZE( $\overline{Ls}$ )
    ( $sat, C$ ) := SMT( $Ls$ )                     ▷ decides  $T$ -satisfiability of literal set  $Ls$ 
    if  $sat$  return true
     $\overline{F}$  :=  $\overline{F} \wedge$  ABSTRACT( $\neg C$ )
  end loop
end function
```

This basic approach can be further optimized, e.g., by integrating the interaction with the decision procedure directly into a DPLL-based SAT solver (“lazy encoding”).

Combining Decision Procedures

How to decide a conjunction of atomic formulas with operations from different decidable theories such as **LRA** and **EUF**?

$$(y \geq z) \wedge (x - z \geq y) \wedge (z \geq 0) \wedge (f(f(x) - f(y)) \neq f(z))$$

- **Theory combination problem:** decide $T_1 \cup T_2 \models F$ for formula F and theories T_1, T_2 .
 - Problem: even if T_1 and T_2 are decidable, $T_1 \cup T_2$ may be undecidable.
- **Definition:** a theory T is **stably infinite**, if for every quantifier-free formula F that is T -satisfiable, there exists an infinite domain that satisfies F .
 - Theories *LRA* and *EUF* are stably infinite.
 - The theory $\{x = a \vee x = b\}$ with constants a, b is not stably infinite (why?).
- **Theorem:** let T_1 and T_2 be stably infinite theories for which the quantifier-free fragment is decidable and that have no common constants, functions, or predicates (except for “ $=$ ”). Then the quantifier-free fragment of $T_1 \cup T_2$ is decidable.

For stably infinite theories, the theory combination problem is indeed solvable.

Formula Purification

Before proceeding, let us tidy the formula a bit.

- **Purification:** ensure that every atom is from only one theory.
 - Repeatedly replace in the formula each “alien” subexpression E by a fresh variable v_E and add the constraint $v_E = E$.
 - The transformation preserves the satisfiability of the formula.
- **Example:** $(f(x, 0) \geq z) \wedge (f(y, 0) \leq z) \wedge (x \geq y) \wedge (y \leq x) \wedge (z - f(x, 0) \geq 1)$.

$$(v_1 \geq z) \wedge (v_2 \leq z) \wedge (x \geq y) \wedge (y \leq x) \wedge (z - v_1 \geq 1) \wedge \\ v_1 = f(x, v_3) \wedge v_2 = f(y, v_3) \wedge v_3 = 0$$

A preparatory step for theory combination.

The Nelson-Oppen Method (for Convex Theories)

Greg Nelson and Derek C. Oppen (1979).

```
function NELSONOPPEN( $F$ )
   $F_1, \dots, F_n := \text{PURIFY}(F)$                                 ▷ decides  $T_1 \cup \dots \cup T_n$ -satisfiability of literal conjunction  $F$ 
  loop
    if  $\exists i. \neg \text{SMT}_i(F_i)$  return false                      ▷ for convex theories  $T_1, \dots, T_n$ 
    if  $\neg \exists x, y, j. \text{INFERRED}_j(x, y)$  return true
    choose  $x, y, j$  with  $\text{INFERRED}_j(x, y)$     ▷ infer variable equality  $x = y$  not present in theory  $T_j$ 
     $F_j := F_j \cup \{x = y\}$                                          ▷ propagate inferred variable equality to  $T_j$ 
  end loop
end function
```

$\text{INFERRED}_j(x, y) : \Leftrightarrow \exists i. (\text{SHARED}(F_i, F_j, \{x, y\})) \wedge \text{INFER}_i(F_i, (x = y)) \wedge \neg \text{INFER}_j(F_j, (x = y))$

- $\text{SHARED}(F_i, F_j, \{x, y\})$: variables x, y are shared by formulas F_i and F_j .
- $\text{INFER}_i(F_i, (x = y))$: variable equality $(x = y)$ can be inferred from F_i in theory T_i .
 - $F_i \Rightarrow x = y$ is T_i -valid ($F_i \wedge \neg(x = y)$ is T_i -unsatisfiable).

The iterative propagation of inferred variable equalities between theories.

Example

$$(f(x, 0) \geq z) \wedge (f(y, 0) \leq z) \wedge (x \geq y) \wedge (y \geq x) \wedge (z - f(x, 0) \geq 1)$$

- Purified formula:

$$\begin{aligned} & (v_1 \geq z) \wedge (v_2 \leq z) \wedge (x \geq y) \wedge (y \geq x) \wedge (z - v_1 \geq 1) \wedge \\ & v_1 = f(x, v_3) \wedge v_2 = f(y, v_3) \wedge v_3 = 0 \end{aligned}$$

- Equality propagation:

$$\begin{array}{c} \begin{array}{cc} \hline F_1(LRA) & F_2(EUF) \\ \hline v_1 \geq z & v_1 = f(x, v_3) \\ v_2 \leq z & v_2 = f(y, v_3) \\ x \geq y & \\ y \geq x & \\ z - v_1 \geq 1 & \\ v_3 = 0 & \hline \end{array} \\ \begin{array}{ccc} \frac{x = y}{v_1 = v_2} & \rightarrow & x = y \\ & \leftarrow & \frac{v_1 = v_2}{v_1 = z} \\ & & \hline \end{array} \\ \text{unsat} \end{array}$$

Example

$$(y \geq x) \wedge (x - z \geq y) \wedge (z \geq 0) \wedge (f(f(x) - f(y)) \neq f(z))$$

- Purified formula:

$$(y \geq x) \wedge (x - z \geq y) \wedge (z \geq 0) \wedge (f(v_1) \neq f(z)) \wedge \\ v_1 = v_2 - v_3 \wedge v_2 = f(x) \wedge v_3 = f(y)$$

- Equality propagation:

$$\begin{array}{c} \begin{array}{cc} \hline F_1(LRA) & F_2(EUF) \\ \hline y \geq x & f(v_1) \neq f(z) \\ x - z \geq y & v_2 = f(x) \\ z \geq 0 & v_3 = f(y) \\ \hline v_1 = v_2 - v_3 & \\ \hline z = 0 & \\ \hline x = y & \rightarrow \quad x = y \\ v_2 = v_3 & \leftarrow \quad \underline{v_2 = v_3} \\ v_1 = 0 & \\ \hline \underline{v_1 = z} & \rightarrow \quad v_1 = z \\ & \text{unsat} \end{array} \end{array}$$

Convex Theories

- **Definition:** Theory T is **convex**, if for every formula $F := L_1 \wedge \dots \wedge L_m$ with literals L_1, \dots, L_m the following holds (for variables x_1, \dots, x_n and y_1, \dots, y_n):
 - If $T \models F \Rightarrow x_1 = y_1 \vee \dots \vee x_n = y_n$, then $T \models (F \Rightarrow x_i = y_i)$ for some $i \in \{1, \dots, n\}$.
 - If F implies in T a disjunction of equalities, it already implies one of these equalities.
 - Thus F cannot express “real” disjunctions and it suffices to infer plain equalities.
- **Examples:**
 - **LRA is convex:** a “real” disjunction corresponds to a finite set of $n \geq 2$ geometric points; however, by a conjunction of linear inequalities (which represents an intersection of half-planes), we can only define a point set that is empty, singleton, or infinite.
 - **EUF is convex:** if $F \Rightarrow x_1 = y_1 \vee \dots \vee x_n = y_n$, then $F \wedge x_1 \neq y_1 \wedge \dots \wedge x_n \neq y_n$ is unsatisfiable. The congruence closure algorithm shows this by demonstrating for some i that $F \wedge x_i \neq y_i$ is unsatisfiable, i.e., that $F \Rightarrow x_i = y_i$ is valid.
 - **LIA (linear integer arithmetic) is not convex:** take $F : \Leftrightarrow 1 \leq x \wedge x \leq 2 \wedge y = 1 \wedge z = 2$; then F implies $x = y \vee x = z$ but neither $x = y$ nor $x = z$.

Non-Convex Theories

How to combine with a non-convex theory T_i ?

- We may infer in T_i from formula F_i only a disjunction $x_1 = y_1 \vee \dots \vee x_n = y_n$.
 - But not any equality $x_i = y_i$ of this disjunction.
- However, this disjunction can be made minimal (strongest).
 - Start with the disjunction of all possible variable equalities.
 - If it cannot be inferred, no smaller disjunction can be inferred either.
 - Otherwise, strip every $x_i = y_i$ if this keeps the disjunction inferred.
- For each remaining $x_i = y_i$, recursively call `NELSONOPPEN($F \wedge x_i = y_i$)`.
 - Return “true” if any call returns “true” and “false”, otherwise.

Thus the Nelson-Oppen method is also applicable to non-convex theories (but with generally much greater complexity).