Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at

A theory T is a set of first-order sentences (closed formulas) that is closed
under logical consequence:

T = F ifand only if F € T, for every first-order formula F.

T may be defined as the set Th(M) = {F | YM € M. M [F} of all sentences
that hold in (every element of) some class M of structures.
Notation Th(N,0, 1, +, -, <): the theory where 0, 1, +, -, < are interpreted as the
usual natural number constants, functions, predicates.
T may be also defined as the set Cn(A) .= {F | A | F'} of consequences of
some recursively enumerable set A of first-order formulas called axioms.
A set is recursively enumerable if a machine can produce a list of its elements.
If T = Cn(A) for some (finite) set A, then T is (finitely) axiomatizable.
Undefinability theorem (Gddel/Tarski): Th(N,0, 1, +, -, <) is not axiomatizable.

A theory describes a “domain of interest”.
1/25

Theories give rise to two related decision problems.

The problem of Validity Modulo Theories:

Given: a first-order formula F and a first-order theory T.
Decide: does T E F hold, i.e., is F is a logical consequence of T?

The problem of Satisfiability Modulo Theories (SMT):

Given: a first-order formula F and a first-order theory T.
Decide: is T U {F} satisfiable?

Duality: T E F if and only if T U {=F} is not satisfiable.

An SMT solver is a decision procedure for the SMT problem (with respect to some
theory or combination of theories); thus it also decides the dual validity problem.

2/25

For certain classes of formulas/theories, the satisfiability problem is decidable.

Prenex normal form V3™ (validity) or 3"V (satisfiability) (“AE/EA fragment”).
Formulas without functions and with only unary predicates (“monadic fragment”).
Every theory with only finite models (e.g., the theory of fixed-size bit vectors).
Quantifier-free theory of equality with uninterpreted functions (“equational logic”).
Theory of arrays, theory of recursive data structures.

Linear arithmetic over integers (“Presburger arithmetic”), natural numbers, reals.
Theory of reals (“elementary algebra”), complex numbers, algebraically closed fields.
Logical consequences of equalities over groups, rings, fields (“word problems”).

As we will see later, also any combination of decidable theories is decidable.

3/25

http://smt-1ib.org

A library of theories/logics of practical relevance.
A common input language for SMT solvers.

A repository of benchmarks.
The basis of the yearly SMT-COMP competition.

https://smt-comp.github.io

Many automated/interactive reasoners and program verifiers are equipped with
SMT-LIB interfaces to external SMT solvers.

4/25

http://smt-lib.org
https://smt-comp.github.io

QF_UF: Unquantified formulas built over a signature of uninterpreted (i.e., free) sort
and function symbols.

QF_LIA: Unquantified linear integer arithmetic. In essence, Boolean combinations of
inequations between linear polynomials over integer variables.

Not every logic is decidable, e.g., NIA (non-linear integer arithmetic). 5/25

Software: https://github.com/Z3Prover
Tutorial: https://microsoft.github.io/z3guide

An SMT solver developed since 2007 at Microsoft Research.
Nikolaj Bjgrner and Leonardo de Moura.
Open source since 2015 under the MIT License.
Highly efficient and versatile.
Frequent winner of various divisions of the SMT-COMP series.
Backend of various software verification systems (e.g., Microsoft Boogie).
Uses the SMT-LIB language and supports various SMT-LIB logics.
Uninterpreted functions, linear arithmetic, fixed-size bit-vectors, algebraic
datatypes, arrays, polynomial arithmetic, . ..
Also supports quantification.
However, when using quantifiers, the solver is generally incomplete.

Z3 gradually evolves into a full-fledged automated theorem prover. 6/25

https://github.com/Z3Prover
https://microsoft.github.io/z3guide

; file examplel.smt2: Integer arithmetic
(set-logic QF_LIA)

(declare-const x Int)

(declare-const y Int)

(assert (= (- x y) (+ x (- y) 1))
(check-sat)

(exit)

debian10!1> z3 examplel.smt
unsat

; file example2.smt2: Getting values or models

(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)

(assert (= (+ x (x 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)

(get-value (x y))

(get-model)

(exit)

debian10!1> z3 example2.smt2
sat
((x 8) (y 6))
(model
(define-fun y () Int 6)
(define-fun x () Int 8)

7/25

; file example3.smt2: sat

; Modeling sequential code in SSA form (((x 0) 2)
; Buggy swap: int x, y; int t = x; x =y; y=x; ((y 0) 3)
(set-logic QF_UFLIA) ((x 1) 3)
((y 1) 3))
(declare-fun x (Int) Int) (model
(declare-fun y (Int) Int) (define-fun y ((x!1 Int)) Int
(declare-fun t (Int) Int) (ite (= x!'1 0) 3
(assert (= (t 0) (x 0))) (ite (= x!'1 1) 3
(assert (= (x 1) (y 0))) 3))
(assert (= (y 1) (x 1))) (define-fun t ((x!'1 Int)) Int
(assert (not (ite (= x!'1 0) 2
(and (= (x 1) (y 0)) 2))
(= (G 1 0N (define-fun x ((x!1 Int)) Int
(ite (= x!'1 0) 2
(check-sat) (ite (= x!'1 1) 3
(get-value ((x 0) (y 0) (x 1) (y 1)) 2)))
(get-model))
(exit)

8/25

We can reduce the verification of programs to deciding the satisfiability of formulas.

Verification of program with respect to pre- and post-condition:
{al0] =x Aa[1l] =y Aa[2] =z}

i=0; m=alil;
i+1; if (afil < m) m = alil;
i+1; if (alil < m) m = a[il;
{m<xAm<yAm<zAm=xVm=yVm=z)}

i

i

Satisfiability of formula:
al0]=xAall]l=yAa[2]=zA
io =0Amg =alig] A
i1 =ip+ 1A (ifali1] < mgothenmy = ali1] else my =mg) A
io =i1 + 1A (if aliz] < mq then my = aliz] else mo =my) A

a(mg <xAme < yAmg <zA(me=xVme=yVmy=2))

The unsatisfiability of the formula establishes the correctness of the program with
respect to its specification; a satisfying valuation determines a violating progra@ggun.

; file minimum.smt2:
(set-logic QF_UFLIA)

(declare-fun a (Int) Int)

(declare-const x Int) (declare-const y Int) (declare-const z Int)
(declare-const i0 Int) (declare-const il Int) (declare-const i2 Int)
(declare-const mO Int) (declare-const ml Int) (declare-const m2 Int)

(assert (= (a 0) x)) (assert (= (a 1) y)) (assert (= (a 2) z))
(assert (= i0 0)) (assert (= mO (a i0)))
(assert (= il (+ i0 1))) (assert (ite (< (a i1) m0) (= ml (a i1)) (= ml m0)))
(assert (= i2 (+ i1l 1))) (assert (ite (< (a i2) ml) (= m2 (a i2)) (= m2 ml1)))
(assert (not
(and (and (and (<= m2 x) (<= m2 y)) (<= m2 z))
(or (or (= m2x) (= m2y)) (= m2 z)))))

(check-sat) (exit)

debian10!1> z3 minimum.smt2

unsat 10/25

; file minimum2.smt2:

; BUG: ">" rather than "<"
(assert (ite (> (a i2) m1) (= m2 (a i2)) (= m2 ml)))

(check-sat) (get-value (x y z i0 mO il ml i2 m2)) (get-model) (exit)

alan!89> z3 minimum2.smt2
sat
(x1) (y0) (z2) (0 0) (m0 1) (i1 1) (m1 0) (i2 2) (m2 2))
(model
(define-fun mO () Int 1) (define-fun il () Int 1) (define-fun m2 () Int 2)
(define-fun y () Int 0) (define-fun ml () Int O0) (define-fun i2 () Int 2)
(define-fun i0 () Int 0) (define-fun z () Int 2) (define-fun x () Int 1)
(define-fun a ((x!1 Int)) Int (ite (= x!1 0) 1 (ite (= x!1 1) 0 (ite (= x!1 2) 2 1)))))

The assignments of a buggy program with an inverted test operation.

11/25

Essentially the SMT-LIB logic QF _LRA.

LRA is a quantifier-free first-order theory.
Interpretation over the domain R of real numbers.
Only atomic formulas are inequalties a < b with polynomials a, b.
Integer and rational constants, functions + and -, predicate <.
Also —, <,>, >,=are allowed: a — b can be reduced to a + (-1) - b; {<,>} can be
reduced to {=, <, >}; = can be reduced to {<, >}; > can be reduced to <.
Linear: in every multiplication a - b, @ must be a constant.
LRA-Satisfiability of formula F:
Convert F into its disjunctive normal form C; v ...V C,.
F is LRA-satisfiable if and only if some C; is LRA-satisfiable.

To decide the LR A-Satisfiability of F, it suffices to decide the satisfiability of a
conjunction of (possibly negated) inequalities a < b with linear polynomials «a, b (in
the following, we only consider conjunctions of unnegated inequalities). 1225

Joseph Fourier (1826), Theodore Motzkin (1936).

function FOURIERMOTZKIN(F) > F is a conjunction of inequalities a < b with linear polynomials a, b
while F contains a variable do

Choose some variable x in F
Arithmetically transform every inequality in which x occurs into the forma < xorx < b
Let A be the set of all a where a < x is an inequality in F.
Let B be the set of all b where x < b is an inequality in F.
Remove from F all inequalities of form a < x and x < b.
Add to F a (possibly simplified version of the) inequality a < b for every pair (a,b) € Ax B
end while
if F contains a constraint ¢; < c¢o with constant ¢; greater than constant ¢, then
return false
else
return true
end if
end function

> unsatisfiabile

> satisfiable

13/25

LRA-Satisfiability of formula F :& (z <x—-y)A(x+2-y<H5)A(y<4-z-2-x)

Eliminate x:
Transform: (z+y <x)A(x<5-2-y)A(x<2-z-1.y)
Eliminate: (z+y <5-2-y)A(z+y<2-2-3-Y)
Simplify: (z<5-3-y) A(3-y <2)
Eliminate z:
Transform: (2-y<z)A(z<5-3-y)
Eliminate: (3 -y <5-3-y)
Simplify: (3 -y < 5)
Eliminate y:
Transform: (y <)
Eliminate: T

F is LRA-satisfiable (by, e.g., y := 0 € [—o0, 2],z :=0 € [0,5],x := 0 € [0,0]).
14/25

LRA-Satisfiability of formula F :& (x < y)VA G <2)A(y+2-2<x)A (1 <x)

Eliminate x:
Transform: (y+2 - z<x)A(1<x)A(x <Y)A(x<2)
Eliminate: (y+2 - z<y)A(y+2-z2<2)A(1<y)A(1<2)
Simplify: (z<0)A(y+z<0OA(L<y)A(1<L2)
Eliminate z:
Transform: (1 <2)A(z<0)A(z<-y)A(1<Yy)
Eliminate: (1 <0)A(1<-y)A(1<Yy)
Simplify: (1 <0)A(y<-1)A(1<Yy)
Eliminate y:
Transform: (1 < y)A(y < -1)A (1 <0)
Eliminate: (1 < -1) A (1 <0)

F is LRA-unsatisfiable.
15/25

Essentially the SMT-LIB logic QF _UF.

EUF is a quantifier-free first-order theory with only predicate “=".
Syntax: an arbitrary propositional combination of equalities.
Semantics: the fixed interpretation of “=” as “equality”.

EUF is sufficient to also deal with arbitrary other predicates in a formula F:
Introduce a fresh constant T and a fresh function f,, for every other predicate p.
Transform every atomic formula p(...) into an equality f,(...) =T.

Formula F is satisfiable if and only if its transformed version is EUF -satisfiable.

EUF-satisfiability of formula F:

Convert F into its disjunctive normal form C; v ...V C,.
F is EUF-satisfiable if and only if some C; is EUF-satisfiable.

It suffices to decide the satisfiability of a conjunction of (negated) equalities.

16/25

Greg Nelson and Derek C. Oppen (1980).

R C S x Sis a congruence relation if it is an equivalence relation
R is reflexive, symmetric, and transitive
that satisfies for every n-ary function f the congruence condition of f:
Vi,u € S". (V1 <i <n. R(tr,u;)) = R(f(2), f(u))
The congruence closure R¢ is the smallest congruence relation covering R:
R¢ is a congruence relation with R € R¢
VR’. (R’ is a congruence relation with R € R’) = (R C R’)
EBUF-satisfiablity of formula F :& (AL ti = ui) A (NI tj # uj):
Let R be the relation {(#;,u;) | 1 <i < n} on the set S of subterms of F.
Fis EUF-satisfiable if and only if Vn +1 < j < n+m. ~R°(tj,u;).

To decide the FUF-satisfiability of F, it suffices to compute the congruence closure
of the term equalities in F and check that it is compatible with the term inequalities.
17/25

We compute the congruence closure by partitioning S into classes of congruent terms.

Partition S/R¢ := {[t]ge | t € S}.
Congruence class [t]gec: RC(t,u) if and only if [t]ge = [u]ge.
Given F with equations t1 = uy,...,t, = u,, compute partitions Pg, P1,...,P, = S/R€.
Py: every element of S represents a separate congruence class.
P;.1: determined from P; by merging [#;+1] and [u;11], i.e., by forming their union
and propagating new congruences that arise within this union.

Example: satisfiability of F :< f(a,b) =a A f(f(a,b),b) #a
Set S :={a,b, f(a,b), f(f(a,b),b)}, single equation f(a,b) = a.
Po = {{a}, {b}. {f(a.b)},{f(f(a,b),D)}}
P1:={{b}.{a, f(a,b), f(f(a,b),b)}}
Union of [f(a,b)] and [a]: {{b},{a, f(a,b)},{f(f(a,b),b)}}
Propagation: [f(a,b)] = [a] implies [f(f(a,D),b)] = [f(a,b)]
F is EUF-unsatisfiable: [f(f(a, b),b)] = [a].

18/25

function CONGRUENCECLOSURE(S, R)
P:={{t} |t eS} »compute partition P := S/(R)
for (t,u) € Rdo
P := MERGE(S, P, t,u)
end for > return relation determined by P
return {(z,u) € Sx S | FIND(P,t) = FIND(P,u)}
end function

function CONGRUENT(P, t, u)

ifrand u are f(t1,...,t) and f(ui,...,u,) then
return V1 < i < n. FIND(P,#;) = FIND(P, u;)
else
return false
end if

end function

P can be represented by a “disjoint-set” data
structure with efficient merge/find algorithms.

function MERGE(S, P, t, u) >merge [7] and [u]
Pt> pu := FIND(P,t), FIND(P, u)
if p; = p,, return P
P = (P\{p+, pu}) U {p: U pu}
for (r1,22) € S x S do
p1,p2 = FIND(P, 1), FIND(P, 12)
if p1 # po A CONGRUENT(P, 11, t2) then
P := MERGE(P, 1, 1t2)
end if
end for
return P
end function

function FIND(P, t) » find congruence class [¢] € P
choose p € Pwithre p
return p

end function

19/25

Example: satisfiability of F := f(f(f(a)))=a A f(f(f(f(f(a)))) =aA f(a) # a.
Py = {{a}. {f (@} { 2@} {3 (@} A S @)} {2 (@)}}
Py :={{a, f3(@)}. {f(a), fH(a)}. {f%(a), 5 (a)}}}
Union of [f3(a)] and [a]: {{a. f3(@)}. {f(@)}. {2 (@)}, {f*(@)}. {f?(a)}}
Propagation: [f3(a)] = [a] implies [f*(a)] = [f(a)] and [f®(a)] = [f*(a)].
Py = {{a, f(a), f2(a), f3(a), f*(a), f5(a)}}
Union of [f®(a)] and [a]: {{a, f2(a). f3(a), f3(a)}. {f(a), fH(a)}}
Propagation: [f2(a)] = [a] implies [f3(a)] = [f(a)].
F is EUF-unsatisfiable: [f(a)] = [a].

Example: satisfiability of F :& f(x) =y Ax # f(y).
Po = {{x5L {yL{/EL{FOD}}
Py={{xh {». fLAFO}}
Union of [f(x)] and [y]: {{x}, {y, f()},{f()}}

No more propagation.

F is EUF-satisfiable: [x] # [f(y)]-
20/25

let congruent eqv (s,t) = (*x Test whether subterms are congruent under an equivalence. *)
match (s,t) with
Fn(f,al) ,Fn(g,a2) -> f = g & forall2 (equivalent eqv) al a2
| _ -> false;;
let rec emerge (s,t) (eqv,pfn) = (* Merging of terms, with congruence closure. *)
let s’ = canonize eqv s and t’ = canonize eqv t in
if s’ = t’ then (eqv,pfn) else
let sp = tryapplyl pfn s’ and tp = tryapplyl pfn t’ in
let eqv’ = equate (s,t) eqv in
let st’ = canonize eqv’ s’ in
let pfn’ = (st’ |-> union sp tp) pfn in
itlist (fun (u,v) (eqv,pfn) ->
if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
else eqv,pfn)
(allpairs (fun u v -> (u,v)) sp tp) (eqv’,pfn’);;

21/25

let predecessors t pfn =
match t with

Fn(f,a) -> itlist (fun s f -> (s |-> insert t (tryapplyl f s)) f) (setify a) pfn
_ -> pfn;;

let ccsatisfiable fms = (* Satisfiability of conjunction of ground equations and inequations.

let
let
let
let
let

pos,neg = partition positive fms in

eqps = map dest_eq pos and eqns = map (dest_eq ** negate) neg in
1lrs = map fst eqps @ map snd eqps @ map fst eqns @ map snd egns in
pfn = itlist predecessors (unions(map subterms lrs)) undefined in
eqv,_ = itlist emerge eqps (unequal,pfn) in

forall (fun (1,r) -> not(equivalent eqv 1 r)) eqns;;

let ccvalid fm = (* Validity checking a universal formula. *)

let
not

ccvalid <<f(f(£(£(£(c))))) =c /\ £(£(£f(c))) = ¢

fms = simpdnf (askolemize(Not(generalize fm))) in
(exists ccsatisfiable fms);;

- : bool = true
ccvalid <<f(£(£(£(c)))) = ¢ /\ £(£(c)) = c ==> £(c) = c>>;;
- : bool = true

==> f(c) = ¢ \/ £(g(c)) = g(£(c))>>;;

22/25

*)

EUF without uninterpreted functions (i.e., only with constants).

Decision of E-satisfiability:
Computation of congruence closure without the need to propagate congruences:

function MERGE(S, P, t, u)

Pt»Pu = FIND(P,7), FIND(P, u)

return (P\{p;, pu}) U {p: U pu} »equals P, if p; = py
end function

Ackermann’s Reduction: transformation of an EUF-formula into an E-formula.
Replace every function application f(z1,...,t,) by a fresh constant f;,, ...
For every pair of applications f(t4,...,t,) and f(uy,...,u,), add the constraint

(t1=u1/\-'~/\tn=un):ftl tn=fu1 Un

The result is E-satisfiable if and only if the original formula is FUF -satisfiable.

The theory E needs larger formulas but has a simpler decision algorithm than EUF'.
23/25

EUF-satisfiability of formula F :© x2 = x3 A f(x1) = f(x3) A f(x1) # f(x2)

Ackermann’s reduction to E-formula F’:
x2=x3Afi=fanf1# faA
(x1=x2> fi=f)Ax1=x3= fi=f3) A(xa=x3 = fa=f3)
Disjunctive normal form of F’:
(x2=x3ANfi=faAfi# foAx1 £x2 AX1#X3AX2 #X3) V
(x2=x3Afi=fanfi# faAx1#x2Ax1 #x3A f2=f3)V
(x2=x3ANfi=fasnfi#forxi £x2Afi=fsAxg#x3)V
(xe=x3Afi=fanfiztforAxi#xaAfi=f3Afa=[f3)V
(x2=x3ANfi=faANfi# fonfi=foAx1 #x3Ax2#x3)V
(2=x3ANfi=fsnfitohfi=foAx1#x3A fa=f3)V
(2=x3Afi=f3sAfi#foAfi=foANfi=[fzAx2#x3)V
(a=x3sANfi=fsnfitohfi=foNfi=fsAfa=13) 24/95

E-satisfiability of DNF of F’: only two clauses do not have conflicting literals.

Satisfiability of (XQ =x3sANfi=f3AN1#E foAXxI #X2AXL £X3A fo= f;)
Po = {{x1}, {x2}, {3 b {ah {2} {31}
Py = {{x1) {x, xsh { i) { e} {fs})
Py = {{x1}, {x2, x3}, {f1, f}, { f2}}
P3 = {{x1}, {x2, x3}, {f1, f2, f3}}
[f1] = [f2]: clause is E-unsatisfiable.
Sa“SflabI“ty of ()CQ =xsANfi=fANAELAxXIEFX2ANfi=f3Afo= fg):
Po = {{x1}, {x2}, {xs}, { i}, {2} {31
Py = {{x1}, {xo, x3}, {fik {2 {3}
Py = {{x1}, {x2, x3}, { f1, f3}. { fo}}
P3 = {{x1}, {x2, x3}, {1, fo, f3}}

[f1] = [f2]: clause is E-unsatisfiable.

DNF of F’ is E-unsatisfiable, thus F is EUF-unsatisfiable. 25/25

