Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at

So far, the binary predicate symbol “=" has played no special role; however, due to
its central role in mathematics, it deserves particular attention.

Standard: First-Order Logic with Equality
Most important logic in general practice.
First-order logic where “=" has the fixed interpretation “equality”.
Normal model: a structure where = is interpreted as “equality”.
Simple approach: add explicit equality axioms to every proving problem.
More comprehensive: extend first-order proof calculus by rules for equality.
Alternative: Equational Logic
A restricted subset of predicate logic.
The only predicate is “=” (other predicates simulated as functions into Bool).
Implement special (semi-)decision procedure for this logic.

We will now sketch these alternatives in turn.

1/29

Equality is the equivalence relation that is a congruence for every predicate/function.

Vx.x=x (1)
Vx,y.x=y=y=x (2)
VX, y,2.X=yAy=z7=x=2 (3)
VXTy ey Xns Voo s Y- X1 =V1IA . AXp =Y = f(x1, .., Xn) = fF(V1s- 25 Vn) (4)
VX1s oo s Xy Voo s Y- X1 =Y1 A oo AXn =V = p(X1,....x0) © p(Y1s--->Vn) (5)

Axioms (1-3): = is reflexive, symmetric, transitive, i.e., = an equivalence relation.

Axiom schemes (4-5): = is a function/predicate congruence.
One instance of the schemes for every function symbol f and every predicate symbol p.

Theorem: Let A be a set of formulas and eq(A) be the equivalence relation axioms together with
the instances of the congruence schemes for every function/predicate in A. Then A is satisfiable
by a normal model (valid in all normal models) if and only if A U eq(A) is satisfiable (valid).

Proof sketch: Any model of A U eq(A) can be lifted to a normal model of A by partitioning the domain
into equivalence classes according to the interpretation of =. 2/29

let function_congruence (f,n) = ... ;;
let predicate_congruence (p,n) = ... ;;

let equivalence_axioms =

[<<forall x. x = x>>; <<forall x y z. x =y /\ x =z ==>y = 2>>];;

let equalitize fm =
let allpreds = predicates fm in
if not (mem ("=",2) allpreds) then fm else
let preds = subtract allpreds ["=",2] and funcs = functions fm in
let axioms = itlist (union ** function_congruence) funcs
(itlist (union ** predicate_congruence) preds
equivalence_axioms) in
Imp(end_itlist mk_and axioms,fm);;

A special version of transitivity that also implies symmetry.

3/29

let ewd = equalitize

<<(forall x. f(x) ==> g(x)) /\ (exists x. £(x)) /\ (forall x y. g(x) /\ g(y) ==> x

==> forall y. g(y) ==> f£(y)>>;;
val ewd : fol formula =

<<(forall x.
(forall x1
(forall x1
(forall
(exists
(forall

splittab ewd
Searching with

Searching with
- : int list =

Simple approach but not very effective in more complex examples.

x=%x) /\ (forall x yz. x =y /\ x =2 ==>y =2z) /\
yl. x1 = y1 ==> £(x1) ==> £(y1)) /\
yl. x1 = y1 ==> g(x1) ==> g(yl)) ==>

x. £(x) ==> gx)) /\
x. £(x)) /\ (forall x y. g(x) /\ g(y) ==> x = y) ==>
y. gly) ==> £(y))>>

3

depth limit O

depth limit 9
[9]

=y

4/29

We may extend the sequent calculus by the “core” of the equality axioms.

INx=y=F[x] © F[y]+rA It=t+A
I'rA (SUBST) A

(REFL)

Rule (SUBST) represents Leibnitz’s law (the principle of substitutivity):
Formula F[y] is identical to F[x] except that any (not necessarily all) free occurrences of x
may be replaced by y (which must remain free in F).
Rule (SUBST) is equivalent to the more special congruence rules:
Toti=ur Ao Aty =upy = f(t1,..., tn) = f(ui,..., Up) FA

ACH (CONGF)
Toti =t A Aty = iy = 1;(11’&-”’") S Pl un) FA - oGP

From rules (SUBST) and (REFL), also symmetry and transitivity can be derived.

The extended calculus is sound and complete (with respect to normal models) but

very inefficient to implement automatically. 12

The method of firder-order tableaux extended by the following rules:

Replacement: If a branch contains the equality = u and the formula F[¢] with an occurrence of
term ¢ that is not in the scope of any quantifier, the branch can be extended by F[u] which is a
duplicate of F[z] except that the occurrence of 7 in F[¢] has been replaced by term u in F[u].

Reflexivity: We may add to any branch the equality ¢ = ¢ for an arbitrary term ¢.

The extended calculus is sound and complete: if a closed tableau can be derived,
its root formula is not satisfiable by any normal model, and vice versa.
6/29

Proof of Vx. Vy.Vz.x =yAy=z=x =2z Proof of Vx. Vy.x =y = y = x:

1. —Vx.Vy.Vz.x=yAy=z=x=2 1 -Vx.Vy.x=y=>y=x
2. —Vy.Vz.c=yAc=z=c=z (1) 2. —Vy.c=y>y=c (1)
3. -Vz.c=dAd=z=>c=z (2) 3. —(c=d=>d=c) (2)
4, —(c=dArd=e=>c=e) (3) 4. c=d (3)
5. c=dAd=e (4) 5. =(d=c¢) (3)
6. -(c=e) (4) 6. -(d=d) (4,5)
7. c=d (5) 7. d=d
8. d=e (5) (6,7)
9. c=e (7,8)

(6,9)

7/29

The method of free-variable tableaux extended by the following rules:

t=u
F[!']
Flu] xX=x fx1,.0xn) = f(x1,...,x)

MGU Replacement: if = u and F[¢’] occur in the same branch of tableau T and ¢ is a most
general unifier of r and ¢/, then we may replace tableau T by 7’o where T’ is identical to T
except that F[u] has been added to the branch.

Reflexivity: We may add to every branch the equality x = x where x is a fresh variable.
Function Reflexivity: We may add to every branch the equality f(x1,...,xn) = f(x1,...,xn)
where f is an n-ary function symbol and x1, ..., x, are fresh variables.

The extended calculus is sound and complete: if a closed tableau can be derived,
its root formula is not satisfiable by any normal model, and vice versa.
8/29

Proof of Vx. Ay. (y = f(x) AVz. (z= f(x) = y=2)):

1. =Vx. 3y. = f(x) AVz. (z=f(x) = y=2))
2. -3y (y=f()AVz. (z= f(c) = y=12) (1)
3. ~(y1=fle)AVz. (2= fle) = y1=2) (2

4. Vo (z=f(0)=flo)=2) (
5. =(d=f(c) = f(c)=d) (
6. d=f(c) (
7. =(f0)=d) (
4. =(1=f()) 8. =(f(0)=f(0) (
5 ya=y 9. y3=y3

(4,5) (8,9)

Tableau closed with o = [y1 — f(c),y2 — f(c),y3 — f(c)].

9/29

An extension of first-order resolution (George Robinson and Lawrence Wos, 1969).

CU{L[t]} e F DU{s=u}€F oismguoftands
CU{L[t]} and D U {s = u} have no common variables FU{CouUDo U{L[u]o}}+
Fa (PARA)

The paramodulation rule (PARA):
Literal L[] with an occurrence of term ¢ that is replaced by term u in L[u].
Clause Co U Do U {L[u]c} is the paramodulant of CU {L[¢]} and D U {s = u}.
The paramodulation calculus consists of rules (AX), (RES), (REN), (FACT), (PARA).
Soundness: if F U feq(F) + can be derived, F is not satisfiable by a normal model.
Completeness: if F is not satisf. by a normal model, F U feq(F) + can be derived.
feq(F) consists of the reflexivity axiom x = x and one function reflexivity axiom
f(x1,...,x0) = f(x1,...,x,) for every n-ary function symbol f in F.
In most proofs, function reflexivity axioms are not needed; thus many
implementations only use the reflexity axiom.

A much more restricted form of the application of equalities. 10/29

We show the unsatisfiability of
{{a(c)}. {=q(c), f(x) =x}. {p(x), p(f ()}, {=p(x), ~p(f (X)) }}

by the following refutation (here reflexivity is not needed):
{a(e)} {=q(c), f(x) =x} {P(x), p(f(e))} {=p(x),~p(f(x))}

\ / {p(fl(c))} /
\

0 =x} PN}
\

{=p(f ()}

{}

3 resolution steps, 1 paramodulation step, 1 factorization step.

11/29

let rec overlapl (1,r) fm rfn = (* Find paramodulations with 1 = r inside a literal fm.

match fm with
Atom(R(f,args)) -> listcases (overlaps (1,r))
(fun i a -> rfn i (Atom(R(f,a)))) args []
| Not(p) -> overlapl (1,r) p (fun i p -> rfn i (Not(p)))
| _ -> failwith "overlapl: not a literal";;

(* Now find paramodulations within a clause. *)
let overlapc (1,r) cl rfn acc = listcases (overlapl (1,r)) rfn cl acc;;

(* Overall paramodulation of ocl by equations in pcl. *)
let paramodulate pcl ocl =
itlist (fun eq -> let pcl’ = subtract pcl [eq] in
let (1,r) = dest_eq eq
and rfn i ocl’ = image (subst i) (pcl’ @ ocl’) in
overlapc (1,r) ocl rfn ** overlapc (r,l) ocl rfn)
(filter is_eq pcl) [1;;

*)

12/29

let para_clauses clsl cls2 =
let clsl’ = rename "x" clsl and cls2’ = rename "y" cls2 in
paramodulate clsl’ cls2’ @ paramodulate cls2’ clsl’;;

let rec paraloop (used,unused) = (* Incorporation into resolution loop.

match unused with
[1 -> failwith "No proof found"

| cls::ros ->

print_string(string_of_int(length used) ~ " used; "~
string_of_int(length unused) ~ " unused.");
print_newline();
let used’ = insert cls used in
let news =
itlist (@) (mapfilter (resolve_clauses cls) used’)
(itlist (@) (mapfilter (para_clauses cls) used’) []) in

if mem [] news then true else

paraloop(used’,itlist (incorporate cls) news ros);;

*)

13/29

let pure_paramodulation fm =
paraloop([], [mk_eq (Var "x") (Var "x")]::simpcnf(specialize(pnf fm)));;

let paramodulation fm =
let fml = askolemize(Not(generalize fm)) in
map (pure_paramodulation ** list_conj) (simpdnf fml);;

paramodulation
<<(forall x. f(£f(x))
==> forall x. f(x)

0 used; 4 unused.

£(x)) /\ (forall x. exists y. f(y) = x)
x>>3;

10 used; 108 unused.
11 used; 125 unused.
- : bool list = [truel]

The naive application of paramodulation leads to huge proof search spaces; in

practice, strong restrictions and sophisticated strategies are implemented. e

Let A be a set of equations of form ¢ = u which are implicitly universally quantified.

(s=1) €A Ars=t
~—— —— (AXIOM ———————— (INST
Ars=t () A!—(s:z)[u/x]()
Aru=t Art=s Ars=u
— (REFL YM TRANS
Al—t=t() Art:u(s) Art=u ()
Arti=ur ... Avrty=1uy

CONG
A+ f(t1,..., th) = f(ug,..., Un) ()

Judgement A+t =u
Interpreted as “every normal model of A satisfies r = u”.
Equivalent to: A £t = u holds in first-order logic with equality.
Birkhoff’s Theorem (Garrett Birkhoff, 1935):
If A+ s =ris derivable by above inference rules (the “Birkhoff rules”), then every
normal model of A satisfies r = u, and vice versa.

Birkhoff’s rules denote a sound and complete inference calculus for equational logic;
like first-order logic, however, equational logic is undecidable. 15/29

Let set A consist of the following equations:

g(x,c)=x ()
g(x. f(y) = f(g(x,y)) 2
h(x,c)=c (3)
h(x, f(y)) =g(x, h(x,y)) (4)

How to prove A | 2(f(f(c)), f(f(c))) = g(h(f(c), f(c)), fF(f(f(e)))?
FFE) FF©)) D g(FFE)hFFE). F(e) D g(F(F(0)).8(f(F(©)).h(F(F())ec))
© e (s g(F (£ @) Y g(r (e £ (£ D FlgF (£ F(e)))
@ .o Y FrEEEe))
g(h(£(0). £ FFF))) Y g(g(F(0). h(F(e). N FF) D gla(F(e)c) FF(F(e)))
G er @1 e 2 fer @ £ F E Fff©). F(0)

D ririrerenon L ruuue))

By a sequence of equality substitutions in the left term and a sequence of equality substitutions in the

right term the same term can be derived; thus the left term and the right term are equal.
16/29

We have just performed a strategy of “simplifying calculations”.
Set A described some arithmetic axioms:
x+0=x
x+(y) = (x+y)
x-0=0
x-()=x+(x-y)
We have proved A = (0”) - (0”) = ((0”) - (0")) + (0"") (i.e.,2-2=1+3):
©)) F)+ (0 () F)+ () + (") - 0))

(2) (0//)+ ((O”)+O) (;) (O//) +(01/) (3) ((011) +(01))I

£ ()

(0 +0)” o

(g) ((0/)+0) +(O///)

@

(0 - () + (") L () + (') - 0) + (0"
6y @ () + ("))

OH//

(0/) + (0///)

()

((0") +(0))”
@ (') +0)”
When can this strategy be performed?

17/29

Consider the elements of A not as equations but as (left-to-right) rewrite rules.

Abstract reduction system (S, —): a set S and a binary relation — on S.
Xy x—>yory —x.
x =" yand x <" y: the reflexive transitive closure of — and <.

Term rewriting system: an abstract reduction system induced by A.
S is the set of terms and — is the “term rewriting relation” generated by A when
considering every equation ¢ = u as a (left-to-right) rewrite rule.

Theorem: Let — be the term rewriting relation induced by A. Then we have

AEt=uifandonly if t &F u.
Proof sketch: If A [t = u, by Birkhoff’s theorem A + ¢ = u is derivable. One can show by
induction on the Birkhoff rules that this implies t <* u. Conversely, by the semantics of
substitution + — u implies A = ¢ = u; from this one can show by induction that also ¢t &* u
implies A =t = u.

To show A E ¢ = u it suffices to show 1 «* u. -

Some fundamental notions and properties of an abstract reduction system (S, —).

Element x € S is a normal form: there is no y € S such that x — y.

— is terminating (Noetherian): there are no infinite reduction sequences

X0 — x1 — ---, i.€., every reduction sequence ends with a normal form x,, € S.

— has the Church-Rosser property: if x <* y, then x —* zand y —* z for some z € S.
Lemma: If — has the Church-Rosser property, then for every x € S there exists at most
one normal form x” € S such that x —* x’.

— is canonical: — is terminating and also has the Church rosser property.
Lemma: If — is canonical, then for every x € S there exists exactly one normal form x” € §
such that x —* x’.

Theorem (Trevor Evans, 1951): If — is canonical, then x «* y if and only if x —»* x” and

y ="y’ with x” = y’ for normal forms x’ € S and y’ € S.

If A induces a canonical term rewriting system, we can decide A ¢t = u by rewriting
terms t and « to normal forms ¢ and »” and comparing ¢ with u’. 1929

let rec rewritel eqs t = (* Rewriting at the top level with first of list of equations.

match eqgs with
Atom(R("=",[1;r]))::0eqs ->
(try tsubst (term_match undefined [1,t]) r
with Failure -> rewritel oeqgs t)

| _ -> failwith "rewritel";;

let rec rewrite egs tm = (* Rewriting repeatedly and at depth (top-down). *)
try rewrite eqs (rewritel eqs tm) with Failure _ ->
match tm with
Var x -> tm
| Fn(f,args) -> let tm’ = Fn(f,map (rewrite egs) args) in
if tm’ = tm then tm else rewrite egs tm’;;

rewrite [<<0 + x = x>>; <<8(x) +y = S(x + y)>>;
<O * x = 0>>; <<S8(x) *y =y + x *x y>>]
<<|8(S(8(0))) * S(S(0)) + S(8(S(s5(0))))I>>;;

-t term = <<|S(S(S(S(S(S(S(S(S(SC0I)NIININMI>>

*)

20/29

Not Terminating:
X+y=y+x (1)

c+d—>d+c—c+d—---

No Church-Rosser Property:
x-(y+z)=x-y+x-z (1)
(x+y)-z=x-z+y-z @)
@+b)-(c+d) D a-(c+d)+b-(c+d)

(iz(a~c+a~d)+b~(c+d)<—1>)(a-c+a-d)+(b-c+b~d)
(@+b)-(c+d) S (@+b)-c+(a+bh)-d
(2—2(a-c+b-c)+(a+b)-d(—2>)(a-c+b-c)+(a-d+b-d)

If a term rewriting system is not canonical, rewriting fails as a decision strategy.
21/29

It is generally undecidable whether a term rewriting system is terminating.
Term rewriting systems can perform arbitrary computations.
The problem whether computing machines halt is undecidable (Alan Turing, 1937).
But we can prove that a particular term rewriting system is terminating.
Determine a suitable termination ordering, i.e., a well-founded relation on terms that is
decreased by the application of every rewrite rule.

One such termination ordering is the lexicographic path order r > u defined as follows:
t > u, if u is a proper subterm of 7.

f(t1,...,ty) > t,ift; > t for some i.

Q.. tn) > fug, ..., un) ift; > u; forsomeiand ¢ = u; forall j <.

f(t1,... ty) > g(u1,...,um), if f > g for some ordering of function/constant symbols.
In the last two rules we additionally require f(t1,...,t,) > u; for every i.

Example: consider the lexicographic path order for *-’ >+ > "’ > ‘0.
x +0 > x because x is a proper subterm of x + 0.
x+(y") > (x+y) because ‘+'>‘""and x + (y’) > x +y (why?).
x -0 > 0 because 0 is a proper subterm of x - 0.
x-(y')>x+(x-y)because‘-’>‘+ and x - (y’) >xand x - (y’') > x -y (why?).

Thus the previously stated arithmetic term rewriting system is terminating. 2229

Does the following term rewriting system have the Church-Rosser Property?
(x-y)-z=x-(y-2)
l-x=x
i(x)-x=1
We can rewrite term (1 - x) - y in two different ways:
10y B 1 (xy)

—_ o~~~
W N =
= = <=

(1-x)-y (i) Xy
This does not violate the property, because both results have the same normal form:
1-(x-y) (i) Xy
But we can also rewrite term (i(x) - x) - y in two different ways:
((x)-x) -y Bix) - (x-)
()0 By 3By

Thus we have derived two different normal forms which violates the Church-Rosser property.

This may spark the idea of how to decide the Church-Rosser property. 23/29

()
2N,
Reduction relation — is locally confluent if the following property holds: &.{
if x - y; and x — y9, then y; —* zand y, —* z for some z € S.
Newman’s Lemma: If a reduction relation — is both terminating and locally confluent, it is
confluent (and thus has the Church-Rosser property).
Thus, given a set A of rewrite rules whose reduction relation — is terminating, the
following algorithm decides whether — has the Church-Rosser property:
Consider every pair /1 — r1 and Iy — ro of rewrite rules (both rules may be the same).
Rename the variables in these rules such that variables in /; and I are disjoint.
Determine every critical pair of these rules, i.e., terms r10- and /1 [r2]o such that

. H 7’

I1 contains an occurrence of a non-variable term [}, where ‘T - e

1%, can be unified with I3 by a most general unifier o~ and 0

I [r2] denotes I, with I, replaced by rs. [LE]e - [z

and we thus have the potentially divergent reductions l;0- — rlo and lyo — 1 [ra]o.
The reduction reduction system has the Church-Rosser property if and only if every critical
pair y; and ys can be rewritten by — to a common normal form z.

The Church-Rosser property can be decided via critical pair computation. 24/29

Example: equations x; + 0 = x; and xs + 0 = x5 (the first equation renamed).
x1 +0 and x2 + 0 have mgu [x1 — x3] which yields the trivial critical pair xo and xs.
The arithmetic system has only trivial critical pairs and thus is Church-Rosser.
We only need to consider the overlap of a rule with itself at a proper subterm of the left side.

Example: A := {f(g(f(x))) = g(x)}
Rule instances f(g(f(x1))) = g(x1). f(8(f(x2))) = g(x2)
Unify f(x1) and f(g(f(x2))) with mgu o = [x1 — g(f(x2))].
Reduction f(g(f(g(f(x2))))) = g(g(f(x2))) with normal form g(g(/(x2))).
Reduction £(g(f(g(f(x2))))) = f(g(g(x2))) with normal form f(g(g(x2))).
Critical pair g(g(f(x2))) and f(g(g(x2))) with different normal forms.
A does not have the Church-Rosser property.

25/29

let renamepair (fml,fm2) = ... ;;
let rec listcases fn rfn 1lis acc = (* Rewrite with 1 = r inside tm to give a critical pair. *)
match lis with
[1 -> acc
| h::t -> fn h (fun i h’ -> rfn i (h’::t)) @ listcases fn (fun i t’ -> rfn i (h::t’)) t acc;;
let rec overlaps (1,r) tm rfn =
match tm with
Fn(f,args) -> listcases (overlaps (1,r)) (fun i a -> rfn i (Fn(f,a))) args
(try [rfn (fullunify [1,tm]) r] with Failure _ -> [])
| Var x -> [1;;

let critl (Atom(R("=",[11;r1]))) (Atom(R("=",[12;r2]))) =
overlaps (11,r1) 12 (fun i t -> subst i (mk_eq t r2));;
let critical_pairs fma fmb = (* Generate all critical pairs between two equations. *)
let fml,fm2 = renamepair (fma,fmb) in
if fma = fmb then critl fml fm2
else union (critl fml fm2) (critl fm2 fml);;

let eq = <<f(f(x)) = g(x)>> in critical_pairs eq eq;;
- : fol formula list = [<<f(g(x0)) = g(£(x0))>>; <<g(x1) = g(x1)>>] 26/29

A semi-algorithm to derive a canonical term rewriting system
(Donald Knuth and Peter Bendix, 1970).

procedure COMPLETE(A) > if the procedure terminates, it returns a canonical system equivalent to A

Al — A
repeat > may not terminate
Ao — Aq
for every critical pair (7, u) in Ag do
reduce ¢ and u to normal forms ¢’ and v’ according to Ag > may not terminate
if ¢’ + u’ then
choosel!=r e {t=u,u=t}
A — A U{l=r}
end if
end for
until A; = Ag
return A;

end procedure

There are numerous improvements to increase the practical applicability. ;9

.
Example: A= {f(g(f(x))) — §(x)} .
Rule instances f(g(f(x1))) — g(x1), f(g(f(x2))) = g(x2)
Unify f (x1) and £ (g(f (x2))) with mgu o = [x1 > g(f (x2))]-
Reduction £ (g(f(g(f(x2))))) = g(g(f(x2))) with normal form g(g(f(x2))).

Reduction f(g(f(g(f(x2))))) = f(g(g(x2))) with normal form f(g(g(x2))).
Critical pair g(g(f(XQ))) and f(g(g(XQ))) with different normal forms.

N = {f(g(f(x)) 5 gx), g(g(f(X))) > fg(g(x))N}

Rule instances g(g(f(x1))) = f(g(g(x1))) and g(g(f(x2))) = f(g(g(x2)))
Only trivial mgu [x1 — x2] and trivial critical pair.]

Rule instances f(g(f(x1))) = g(x1) and g(g(f(x2))) = f(g(g(x2)))
Unify f(x2) and f(g(f(X1))) with mgu [x2 = g(f(x1))].
g(g(f(g(f(x1))))) —> g(g(g(x1))) with normal form g(g(g(x1))).
g(g(f(g(f(x1))))) 3 Fg(g(g(F(x1))))) > f((f(g(g(x1))))) = gl(g(g(x1))).
Critical pair g(g(g(x1))) and f(g(f(g(g(x1))))) has common normal form.

No more non-trivial rule overlaps.

A’ has the Church-Rosser property.
28/29

Our goal is to derive A + (t = u).

Consider the special case of only variable-free equations in A + (¢ = u).

Any occurrence of a symbol x in ¢ = u does not denote any more a “variable” (that
is universally quantified in the equation) but a “constant” (whose value is the same
in all equations in which x occurs).

Then proofs need not apply the Birkhoff rule (INST).
This makes the theory decidable.

We will next consider decision procedures for variable-free equational logic and
other decidable theories.

29/29

