Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at

Our core goal is to show the validity of first-order formulas.

Problem: how to show | F?

Does M E F hold for every structure M (i.e., is every structure M a model of F)?
But there are infinitely many structures with different domains and interpretations!

Can we reduce first-order reasoning to reasoning in some “canonical structures”?

1/26

A Herbrand structure H := (Dg, Iy) for a formula (language) with symbols C, 7, P
consists of the Herbrand universe Dy and some Herbrand interpretation 7.

The Herbrand universe Dy is the set of all terms ¢ formed as follows:
tu=c| f(ty,... ty)

Every constant ¢ € C (if C = { }, we extend C by a constant ¢).

Every n-ary function symbol f € F.
Dy is the set of ground terms (no variables) that includes all constants and is
closed under the application of all function symbols (thus Dy is generally infinite).

A Herbrand interpretation Iy must satisfy the following:
I(c) :=c (e Dy) I(f)(t1,..., tn) == f(t1,..., tn) (€ Dg) I(p)(t1,-.., ta) € DY
Iy interprets constant ¢ as itself, n-ary function symbol f as a term constructor,
and n-ary predicate p as an arbritrary n-ary relation over Dy.

A Herbrand structure is a (generalization of a) “term algebra”.
2/26

Theorem: Let F be a quantifier-free formula. Then there exists a structure M
with M | F if and only if there exists a Herbrand structure H with H E F.

Proof sketch: Since the implication from right to left clearly holds, only the implication from
left to right has to be shown. For this, we assume M [F for arbitrary structure M = (D, I)
and show H [F for the Herbrand structure H = (D gy, Iy) over F with

Ig(p)(t1,...,.ty) o M E p(t1,...,tn)

We take arbitrary valuation vy over Dy and show [F]]ﬁf =true. Let xy,...,x, be the free
variables of F and consider the closed formula instance
F':=F[lvg(x1)/x1,...,vg(xn)/xn]. From M [F, we can show M F’. Furthermore, we
can show |[F]]€L =[F]]VI",’ for arbitrary valuation v’ over D. From M E F’, we have

[F' 1% = true and thus also [F £, = true.

Herbrand structures are “canonical structures” for reasoning in first-order logic; all
proof calculi use these structures in some way or another.

3/26

An extension of the propositional sequent calculus by two additional rules.

IA[t/x], (Vx. A),Ar A
I,(Vx. A),A+r A

'k A Aly/x], A
Tr A, (Vx. A), A

(v-L) (V-R)

IA[y/x],A+ A
I,(3x. A),A+ A

'k A A[t/x], (3x. A), A
T+ A (3x. A), A

(3-L)

(3-R)

Substitution F[z/x]:
Substitution of term ¢ for every free occurrence of variable x in formula F.
Eigenvariable (Skolem constant) y
y must not occur in the conclusion of the rule.
Witness term ¢
Term ¢t may contain arbitrary variables, constants, and function symbols; however,
every variable in ¢ different from x must not be not bound by any quantifier in A.

4/26

PGy) F pE). 3 pT) oy
p(x,y),¥y. p(x,y) F 3x. p(x,y)
Vy. p(x,y) F Ix. p(x,y)
dx. Vy. p(x,y) + Ix. p(x,y)
dx. Vy. p(x,y) v Vy. Ix. p(x,y)
F (3x. Vy. p(x,y)) = (Vy. 3x. p(x,y))

(v-L)

(3L

(V-R)
(=-R)

A simple proof that applies all quantifier rules.

5/26

We may apply some additional “convenience” rules:
I A+A T'FAA
IALAFA I'rAAA

Reduce size of sequent; soundness can be easily derived.

(DROP) (DROP)

———— ——— (AX)
p(X), q(_x, y) Fq(x,y) (3-R.DROP)
(AX) p(x),q(x,y) F 3x,y. g(x,y) a1
p(x) F p(x) p(x),3y. g(x,y) F I, y. q(x,y) =)
p(X),p(x) = Jy. (X, y) ¥ I, y. 4(x,y) (v-L.DROP)
p(x),Vx. p(x) = Jy. g(x,y) F Ix, y. q(x,y) a1
Ax. p(x),VYx. p(x) = Jy. g(x,y) F Ix, y. g(x,y))
(Fx. p(0) A (Vx. p(x) = Fy. g(x,y)) £ Ix,y. gxy) R)

F((3x p(x) A (Yx. p(x) = Fy. q(x,) = 3,y g(x,y)

We may drop formulas that have served their purpose.

6/26

(AX) (AX)

p(a),r(a)+r(a) q(b),r(f(b)) rr(f(b))
ra@p@ Y wr@r I 28 a@irat) Y)@ 3 Y
p(a), p(a) = r(a) + 3x. r(x) (¥-L,DROP) q(b),q(b) =r(f(b))rAx.r(x) (v-L.DROP)
p(a), (Vx. p(x) = r(x)) r 3x. r(x) q(b), (Vx.q(x)=r(f(x)))*r 3x. r(x) (v-L.DROP)
p(a) vV q(D), (Vx. p(x) = r(x)), (¥x. g(x) = r(f(x))) + Ix. r(x) L)
(p(a) v q(D)), (Vx. p(x) = r(x)) A (Vx. g(x) = r(f(x))) F Ix. r(x) L)
(p(a) v q(b)) A (Vx. p(x) = r(x)) A (Vx. ¢(x) = r(f(x))) F Ix. r(x) (=R)

F((p(a) v q(B)) A (Vx. p(x) = r(x)) A (Yx. g(x) = r(f(x)))) = Ix. r(x)

A proof by “case distinction”.

7/26

Sequent Calculus Trainer - o x

— ropositional irst-Order O
Edit | | Help Propositional @ NBEN. i
= Logic C= 5 Logic Y

Rule set

Sequentinput

Antecedent Succedent

(P(a)| Q(b)) &
(forall x. P(x)->R(x)) &
==p| (forall x. Qx)-> R(f(x))) ->
(exists x. R(x))

scan sequent

Substitution <L = Substitution - R

Contraction-L_ Contraction- R

)WQ(b)A(Vx .P(x)—=R(x))A(Vx .Q(x)=R(f(x)))—(3Ix .R(x)) Delete subree

8/26

Sequent Calculus Trainer

B

o =

Proof completed

x
Congratulations! 0

You have successfully completed the proof.

R(a) > R(a) _
R(a) = 3x .R(x)

., o), RAW) > RED)
= 5x R(x), Q(b) Q(b), R((b) = 3x .R(x)

P@), Vx Q) R([(x) = 3% R(x). Pa) . P(a), R(a), ¥x Q@) SR(®) = 3% R(x) Q(b), QI)SR(D)) = 3x R(x) '
P(a), P(a)oR(a), Vx .Q(x) SR(I(x)) = 3x .R(x) ' Q(b), Vx .Q(x)oR(I(x)) = 3x R(x) :
P(a), ¥x .P(x)oR(x), Vx .Q(x) oR(I(x)) = 3x R(x) Q(b), Vx P(x)oR(x), Vx .Q(x) R(I(x) = 3x R(x)

P(@)VQ(b). Vx P(x) oR(x), Vx .Q)-R(Ix)) = 3x .R(x)
(P(a)VQ(D)A(Vx P()SR(), Vx -Q(x)>R(I(x)) = 3x R(x)
(P(a)VQ(b))A(Vx P(x) SR(x)A(Vx -Q(x)SR(I(x))) = 3x .R(x)
0= (P(a)VQ(b))A(Vx -P(x) >R(x))A(Vx -Q(x) SR(I(x))) —(3x -R(x))
D >

Rule set

Substitution =L | Substitution - R
Contraction-L_ Contraction- R
Reflexivity - L Weakening

Delete subtree

9/26

ProofNavigator &

File Options Help
[Proof Tree

RISC ProofNavigator

Declarations
ae
beT
| feT>T
peT—B
qeT—B
reT—-B
F=
(p(a) V q(b)) A (Y2ET:p(z) = r(2)) A (YaeTiq(x) = r(f(x)))

(SzeTir(z)

Input/Output

read "example2.txt";
Type T

Value a:T.

Value b:T.

Value f:T->T.

Value p:T->BOOLEAN.
Value q:T->BOOLEAN.
Value r:T->BOOLEAN.
Formula F.

Proof read (proof status: trusted, closed, absolute).
File example2.txt read.

€¢dPaP FIXOHVYRO®E~- B

% example2.txt
newcontext "example2";

T:TYPE;

a:T;

b:T;

f:T->T;

p: (T)->BOOLEAN;
q: (T)->BOOLEAN;
r: (T)->BOOLEAN;

F: FORMULA
(p(a) OR q(b)) AND
(FORALL(x:T): p(x) => r(x)) AND
(FORALL(x:T): q(x) => r(£(x))) =>
(EXISTS(x:T): r(x));

10/26

File Options Help
IProof Tree
~ [geal: scatter
~ [yxhl: split pag
~ [weyliauto
[i41]: proved (CVC3)
~ [xcy]: instantiate bin 1xo
~ [6dd]: auto
[xas]: proved (CVC3)

RISC ProofNavigator

Proof State

‘ Formula [F] proof state [6dd] (autosimp,CVCS3first order,boolean): auto

Constants (with types) 1a , b, f.p.q,7.
quv| YzeT:p(a) = riz)

ixo| YeeT:g(x) = r(f(x))

ymi| ¢(b)

3or| (b))

oys| we T

)

‘ Parent: [xcy] Children: [xas]

View Declarations

Input/Output
Proof state [i41] is closed by decision procedure.
Proof state [xas] is closed by decision procedure.
Proof replay successful.
Use 'proof F' to see proof.
proof F;
proof status: trusted, closed, absolute
[gcal: scatter
[yxhl: split pag
[wey]: auto
[i41]: proved (CVC3)
[xcy]: instantiate b in 1xo
[6dd]: auto
[xas]: proved (CVC3)

“Pae EFIXOLYRO® M-

11/26

Theorem: Every derivable sequent is valid.
Proof Sketch: It suffices to show that, if the conclusion of a rule is not valid, also some premise is not valid.

AL/, (Y6 A)AFA TrA Aly/x], A

T, (Vx. A),A+ A (v-L) T kA, (Vx. A), A (v-R)

Rule (V-L): Since the conclusion is not valid, we have some structure M and valuation v with [T | = true,
[Vx. AJM =true, [A]M =true, and [A]|M = false. From above, to show that the premise is not valid, it
suffices to show [A[z/x] M =true. Let d := [¢ |™. From the side condition on 7, we can show
[Alz/x] M = [[A]]V[XHd] From [Vx. A]M = true, we know [[A]]C’fXHd] = true and are done.
Rule (V-R): Since the conclusion is not valid, we have some structure M and valuation v with [T |* = true,
[A]M =false, [Vx. A|M =false, and [A |M = false. From [Vx. A]M = false, there is some d € D such
that | A]]v[x»—ul] false. Let v/ := v[y — d]. Since y does not occur in the conclusion, we have
|[F]]M = true, [[A]]M false, and [A |M = false. Thus, to show that the premise is not valid, it suffices to
show [A[y/x]]]M false, i.e., [Aly/x]]]vldeJ false. Since y does not occur in A, we can show
[Aly/x]]]V[deJ = |[A]]v[)mdJ = false and are done.
Rules (3-L) and (3-R): analogously.

12/26

To construct a proof tree for sequent ' + A, we use the following data:

vy = [y0,v1,...]: aninfinite sequence of variables that do not occur in T + A.
These variables can be used as eigenvariables in rules (V-R) and (3-L).

a = |ag, a1, ...]: an infinite sequence of term sequences:
The terms in these sequences are available as witnesses in rules (v-L) and (3-R).

If some function symbols occur in T + A, all sequences ag, aq, ... are infinite.
[70] © ag = [70,...]: an enumeration of all terms constructed from the free

variables, constants, and function symbols in " + A.
If T - A does not contain any free variable or constant, we use tg := yg.

a;>1: an enumeration [y;, ...] of all terms that contain y; and are constructed from
y1,...,y: and the free variables, constants, and function symbols in T" - A.

During the proof tree construction, the value of program variable » indicates that y4, ..., y,
have been used as eigenvariables in rules (V-R) or (3-L); the sequences ag, ay, ..., a,

contain all terms in which these variables may occur.
13/26

procedure SEARCH(I" A)
INITIALIZE(T + A, y, a, tg)
T,ts,n— (I'+A),[t0],0
while T has some open leaf node do
for every open leaf node N in T do
EXPAND(N, T, ts, y, n)
end for
for i from 0 do n do
if -empty(a;) then
ts, a; < tso [head(q;)],tail(q;)
end if
end for
end while
if T is complete then
WRITE(“T proves I' + A”)
else
WRITE(“T refutes I' + A7)
end if
end procedure

procedure EXPAND(N, T, ts, y, I n)
Let S be the subtree of T with root N
Apply the propositional rules until the formulas
in all leaf nodes of S are atomic or quantified
for every leaf formula in S to which (V-L) or (3-R) applies do
repeatedly apply the rule for every r € ts
end for
for every leaf formula in S to which (V-R) or (3-L) applies do
n—n+1
apply the rule for x « y,
end for
end procedure

A leaf node is open if it does not match any axiom and there is a
non-atomic node formula whose outermost symbol is
either a connective
or a quantifier to which (v-L) or (3-R) has not yet been
applied for every term in ts.

This has to be recorded in EXPAND. 14/26

By the soundness of the calculus, if SEARCH terminates with a complete proof tree, I' + A is valid.

Theorem: if I' + A is valid, SEARCH terminates with a complete proof tree.

Proof Sketch: we assume that I' + A is valid but SEARCH does not terminate with a complete proof
tree; from this, we derive a contradiction. There are two cases:

First, SEARCH may terminate with an incomplete tree 7, i.e., there is a leaf node I';. + Ay at some
depth k that does not match any axiom. But, from the loop condition, no leaf node of T is open. Thus,
I'x + A only contains atoms and quantified formulas to which (¥-L) and (3-R) have been applied for
every term in ts. Consider every node I'; + A; along the pathT'F A — ... — T, + Ag from the root
't Atotheleaf I'y F Ag. Let S := U{I; U-A; | 0 <i < k} where -A := {-=A | A € A}. Now itis
possible to prove that every formula in S is satisfied by the Herbrand structure Hg = (Dg, Is) where
(considering all free variables as constants) Dg := (J{a; | 0 < i < n} U ¢s (for the final values

of ts,a,n) and Is(p) (t1, ..., tn) :© p(t1,...,tn) € U{li | 0 <i < k}. Since 'y =T and Ag = A,
this structure Hg refutes I' + A, which contradicts the assumption that T + A is valid.

Second, SEARCH may not terminate. Then its execution describes the construction of an infinite tree T
(even if only a finite part of T" is ever computed). Since T is infinite but finitely branching, by Kénig’s
lemma it contains some infinite path I' + A — Analogously to the first case, we can construct from
this path a satisfiable set S and structure Hg that refutes I' + A (to show this, it is essential that for
every universal formula in some I'; respectively existential formula in some A;, every instance of that
formula appears in the branch in some T';», respectively A;,). 15/26

Completeness: every valid first-order formula is provable.
Kurt Gédel, 1929 (for another proof calculus of first-order logic).
A corollary of the previous theorem: given a valid formula F, procedure SEARCH
finds a complete proof tree for the sequent + F.
However, if F is invalid, SEARCH may run forever.
Undecidability: there cannot exist any procedure that, when given an arbitrary
first-order formula F, always halts and correctly states whether F is valid.
Alonzo Church/Alan Turing, 1936/1937.

The halting problem for computing machines is undecidable.
The halting problem can be reduced to the decision problem of first-order logic.

The power and the limit of reasoning in first-order logic.

16/26

Procedure SEARCH looks a bit difficult to implement.

Complex traversal of proof tree to make sure that all quantified formulas in all
leafs to which the rules (V-L) and (3-R) are applicable are indeed instantiated
by all possible terms.

Is there no “easier” way to achieve the same result?

17/26

Actually, the Godel-Herbrand-Skolem theorem (~1930).

Theorem: Let F be a quantifier-free first-order formula. Then F is first-order satisfiable
if the set of all its ground instances {Fi, Fs, ...} is propositionally satisfiable.
F is first-order satisfiable: there exists some structure M such that M = F.
F’ is a ground instance of F if F’ is identical to F except that every variable has
been replaced by a term in which only constants and function symbols appear.
F is propositionally satisfiable: F is satisfied by some valuation v, considering
every atom as a propositional variable. A set {F1, F», ...} is propositionally
satisfiable if there exists some valuation v that satisfies every formula F; in the set.
Example: formula p(x) A =g(x, y).
Ground instances: {p(c) A ~q(c,c), p(c) A=q(c, f(c)), p(f(c)) A=q(f(c),c),...}
Valuation: [p(c)—true, g(c, c)—false, g(c, f(c))—Tfalse, p(f(c))—true, q(f(c),c)—false,...]
The previously stated theorem abound Herbrand structures as models is actually a

consequence of Herbrand’s theorem. oo

Theorem: Quantifier-free F is first-order satisfiable iff every conjunction
F1 A ... A F, of afinite subset of its instances is propositionally satisfiable.

Proof sketch: a corollary of the “compactness theorem” of propositional logic: a
set of propositional formulas is satisfiable, iff each finite subset is satisfiable.

Theorem: Quantifier-free F is first-order unsatisfiable iff some conjunction
F1 A ... A F, of afinite subset of its instances is propositionally unsatisfiable.

Proof sketch: the contraposition of the previous theorem.

Theorem: Formula Vx4, ...,x,. F in Skolem normal form is unsatisfiable iff
some conjunction F; A ... A F, of a finite number of instances of its matrix F is
propositionally unsatisfiable.

Proof sketch: by induction on n, using the previous theorem as the induction base.
The basis of various “Herbrand procedures” for first-order proving.

19/26

Paul C. Gilmore, 1960.

procedure GILMORE(G)
F «— SKOLEMNORMALFORMMATRIX(=G)
Fs T
i1
loop
Fs « Fs A F(i) > Add instance i of F
if F's is propositionally unsatisfiable then
WRITE(“G is first-order valid”)
return
end if
ie—i+1
end loop
end procedure

A systematic enumeration of all instances of the matrix. 20/26

(* Get the constants for Herbrand base, adding nullary one if necessary. *)
let herbfuns fm =

let cns,fns = partition (fun (_,ar) -> ar = 0) (functions fm) in

if cns = [] then ["c",0],fns else cns,fns;;

(* Enumeration of ground terms and m-tuples, ordered by total fns. *)
let rec groundterms cntms funcs n =
if n = 0 then cntms else
itlist (fun (f,m) 1 -> map (fun args -> Fn(f,args))
(groundtuples cntms funcs (n - 1) m) @ 1)

funcs []
and groundtuples cntms funcs n m =
if m = O then if n = 0 then [[]] else [] else
itlist (fun k 1 -> allpairs (fun h t -> h::t)
(groundterms cntms funcs k)
(groundtuples cntms funcs (n - k) (m - 1)) @ 1)
0 --n) [1;;

21/26

let rec herbloop mfn tfn f10 cntms funcs fvs n fl tried tuples =
print_string(string_of_int(length tried)~" ground instances tried; "~
string_of_int(length f1)~" items in list"); print_newline();
match tuples with
[1 -> let newtups = groundtuples cntms funcs n (length fvs) in
herbloop mfn tfn f10 cntms funcs fvs (n + 1) fl tried newtups
| tup::tups -> let f1’ = mfn f10 (subst(fpf fvs tup)) fl in
if not(tfn f1’) then tup::tried else
herbloop mfn tfn f10 cntms funcs fvs n f1’ (tup::tried) tups;;
let gilmore_loop f10 cntms funcs fvs n fl tried tuples =
let mfn djsO ifn djs = filter (non trivial) (distrib (image (image ifn) djsO) djs) in
herbloop mfn (fun djs -> djs <> []1) £f10 cntms funcs fvs n fl tried tuples;;
let gilmore fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in

length(gilmore_loop (simpdnf sfm) cntms funcs fvs 0 [[1] [1 [1);;
Verify propositional unsatisfiability of a formula in DNF by finding a pair of
complimentary literals in each disjunct. 22/26

gilmore << (P(a)

==> (exists x.

ground
ground
ground

ground

W NN e O

ground
- : int

instances

instances

instances

instances

instances
4

\/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(f(x)))
R(x)) >>;;

tried; 1
tried; 2
tried; 2
tried; 2
tried; 2

items
items
items
items
items

in
in
in
in

in

list
list
list
list
list

skolemize << ~“((P(a) \/ Qb)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(£f(x)))
==> (exists x. R(x)) >>;;
<<((P(a) \/ Q)) /\ CP(x) \/ R(x)) /\ (CQx) \/ R(£(x)))) /\ "R(x)) >>
satisfiable <<
((P(a) \/ Q) /\ (P(a) \/ R(a)) /\ ("Q(a) \/ R(£f(a))) /\ "R(a)) /\
((P(a) \/ Q(®)) /\ CCP(®) \/ R(M®)) /\ QM) \/ R(£®))) /\ "R(D)) /\
(P \/ Q) /\ CPEM®)I \/ R(EM))) /\ CQEM®) \/ REGE D)) /\ "RED®)I) >> 53

- : bool

= false

Our example formula can be proved with 3 ground instances: x = a,x = b,x = f(b).

23/26

val p45 = gilmore <<
(forall x. P(x) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y))
==> (forall y. G(y) /\ H(x,y) ==> R(y))) /\
“(exists y. L(y) /\ R(y)) /\
(exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y)))
==> (exists x. P(x) /\ “(exists y. G(y) /\ H(x,y))) >>;;

ground
ground
ground
ground
ground

B W N R RO

ground

val p45 :

instances
instances
instances
instances
instances
instances
int = 5

tried; 1 items in list

tried;
tried;
tried;
tried;

tried;

13 items
13 items
57 items
84 items

in
in
in

in

list
list
list
list

405 items in list

DNF representations explode, problems soon become intractable.

24/26

An optimization of the Gilmore algorithm where the formula is represented in CNF
and propositional satisfiability is tested by DPLL.

let dp_mfn cjsO ifn cjs = union (image (image ifn) cjs0) cjs;;
let dp_loop = herbloop dp_mfn dpll;;
let davisputnam fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[1)) consts in
length(dp_loop (simpcnf sfm) cntms funcs fvs 0 [1 [1 [1);;

let p20 = gilmore <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(2))>>;;

18 ground instances tried; 15060 items in list

val p20 : int = 19

let p20 = davisputnam <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(2))>>;;

18 ground instances tried; 37 items in list
val p20 : int = 19

However, the number of ground instances does not change. 25/26

Optimizing satisfiability checking does not eliminate the core problem.
Davis, 1983: ... effectively eliminating the truth-functional satisfiability obstacle only uncov-
ered the deeper problem of the combinatorial explosion inherent in unstructured search

through the Herbrand universe . ..

A more intelligent way of choosing instances is required rather than blindingly trying
out all possibilities.

26/26

