Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at

We now consider another deduction calculus for propositional logic.

Judgement: sequent F + .
Clause set F = {Cq,

..., Cn} with interpretation “F is unsatisfiable”.
Inference rules:

{}eF (AX) F[p « true] + F[p « false] +

e e (SPLIT)
F[p « t]: F without any occurrence of p or —p by assigning truth value ¢ to p
If t = true, we remove every occurrence of -p and every clause that contains p.

If ¢ = false, we remove every occurrence of p and every clause that contains —p.
Intuitively justified by the following logical equivalences:

(Cvyiy=cC

(CVT)AD=D
The basis for modern decision procedures (“SAT solvers”) for the SAT problem.

1/23

We show the validity of (p = (¢ =>r)A(p=>g)Ap=>r.

We show the unsatisfiability of clause set {-p, —q, 7}, {-p,q}, {p}, {-r}.

—— AX —— AX
o™ Or
R IAR VR T
SPLIT(g) ———— AX
(Ca b {ah (o} Ok e o)

{ﬂp,ﬂq,r},{—'p,q},{p},{—U”} F

The calculus gives rise to binary deduction trees.

2/23

Soundness: Assume valuation v satisfies F. Then v also satisfies F[p « v(p)]. Thus,
if both F[p < true] and F[p « false] are unsatisfiable, F is unsatisfiable.

Completeness: For an unsatisfiable F with atoms p, ..., p,, we have a deduction tree
of (at most) height n with 2" branches F 'S F, 7257 . ""S™ B, = ({}).

We typically write p for p « true and —-p for p < false.

P1 “P1
P2 P2 P2 “p2

p3 -p3 pP3 p3 p3 -p3 pP3 p3

L] L] L] L] L] L]
P4A:P4 P4Aﬁ174 P4Aﬁp4 P4'A‘ﬁp4 P4A:P4 P4’A‘ﬁp4 P4Aﬁp4 P4/\ P4
L] L] L] L] L] L] L] L] L] L] L] L]

-
. . . [

Every path in the tree denotes a potential satisfying valuation. 3/23

An implementation of (the dual form of) the inference rules (Davis, Putnam,
Logemann, Loveland, 1961).

function DPLL(F) > returns true, if clause set F is satisfiable
if F = { } then return true
if { } € F then return false
choose p e UF
return DPLL(F[p « true]) or DPLL(F[p « false])
end function

Worst-case time complexity O(2") for n propositional variables.
Probably there is no generally better algorithm: since the SAT problem is
NP-complete (Cook, 1971), there exists (unless P = NP) no deterministic way to
solve the SAT problem in worst-case polynomial time.

Modern SAT solvers are based on the DPLL algorithm.
4/23

The algorithm is typically augmented to produce a satisfying valuation.

function DPLL(F) function DPLL(F, stack)
return DPLL(F, EMPTY) if F={}then
end function print stack
return true
end if

if { } € F then return false
choose p c UF
return DPLL(F[p « true], PUSH(p, stack))
or DPLL(F[p « false], PUSH(NEGATE(p), stack))
end function

The search for a satisfying valuation of a propositional formula.

5/23

Furthermore, the algorithm actually contains the optimizations of the DP algorithm.

function DPLL(F)
if F = { } then return true
if { } € F then return false
if there is some literal L and C € F with C = {L} then > unit propagation
remove from F every clause that contains L and from every clause in F the negation of L
return DPLL(F)
else if there is a literal L such that no clause in F contains its negation then > pure literal elimination
remove from F every clause that contains L
return DPLL(F)
else > split
choose p e UF
return DPLL(F[p « true]) or DPLL(F[p « false])
end if
end function

This is the logical core of modern SAT solvers.
6/23

let rec dpll clauses =
if clauses = [] then true else if mem [] clauses then false else
try dpll(one_literal_rule clauses) with Failure _ ->
try dpll(affirmative_negative_rule clauses) with Failure _ ->
let pvs = filter positive (unions clauses) in
let p = maximize (posneg_count clauses) pvs in
dpll (insert [p]l clauses) or dpll (insert [negate pl clauses);;

let dpllsat fm = dpll(defcnfs fm);;
let dplltaut fm = not(dpllsat(Not fm));;

dplltaut << (p ==> (q ==> 1)) /\ (p ==>q) /\ p ==> 1 >> ;;
- : bool = true
While DPLL is faster than DP, some crucial optimizations are still missing.

7/23

Actually, the algorithm is implemented iteratively by using a stack (“trail”).

function DPLL(F) function ANALYZECONFLICT(F, stack)
stack « EMPTY dlevel « SIZE(stack)-1
BCP(F, stack, conflict) loop
if c-onﬁict return false if dlevel < O return dlevel
while 3p. UNASSSIGNED(F, stack, p) do (p.t) « ELEMAT(stack, dlevel)
choose p with UNASSIGNED(F, stack, p) if + = guessed return diecvel
PUSH((p, gUeSSed), St(le) dlevel — dlevel — 1

BCP(F, stack, conflict)
if conflict then
dlevel «— ANALYZECONFLICT(F, stack)
if dlevel < O return false
BACKTRACK(F, stack, dlevel)
end if
end while
return true
end function

end loop
end function

procedure BACKTRACK(F, I stack, dlevel)
repeat
(p,t) « POP(stack)
until S1ZE(stack) = dlevel — 1
PUSH({NEGATE(p), deduced), stack)
end procedure

Stack of pairs (p, r) with literal p and tag ¢ € {guessed, deduced}. 8/23

procedure BCP(F,] stack, Tconflict)

end procedure
function UNASSIGNED(F, stack, p)

end function

BCP(F, stack, conflict): binary constraint propagation.
Repeatedly applies unit propagation deducing the truth values of literals.
Pushes pairs (p,deduced) on stack.
Sets conflict to true if a conflict is detected.
The last literal pushed on the stack conflicts another literal on the stack.
UNASSIGNED(F, stack, p)
Returns true if p is a literal of F that does not appear (neither positively nor

negatively) on stack.

The explicit use of a stack allows various optimization techniques. 9/23

.‘rA‘. f\» :/_‘: /\» .A.

{p,guessed) — (—q,deduced) — (r,guessed)
~ (p,guessed) — (¢, deduced) — (-r,deduced)
~> (=p,deduced)

Traversal of tree where backtracking skips the deduced literals.

10/23

type trailmix = Guessed | Deduced;;
let rec backtrack trail =
match trail with (p,Deduced)::tt -> backtrack tt | _ -> trail;;
let rec dpli cls trail =
let cls’,trail’ = unit_propagate (cls,trail) in
if mem [] cls’ then
match backtrack trail with
(p,Guessed) : :tt -> dpli cls ((negate p,Deduced)::tt)
| _ -> false
else
match unassigned cls trail’ with
[T -> true
| ps -> let p = maximize (posneg_count cls’) ps in
dpli cls ((p,Guessed)::trail’);;
let dplisat fm = dpli (defcnfs fm) [J1;;
let dplitaut fm = not(dplisat(Not fm));;

dplitaut << (p ==> (q ==> 1)) /\ (p ==> q) /\ p ==> r >> ;;
- : bool = true

11/23

pNH

conflict conflict

An optimization of DPLL that combines “learning” with “backjumping”.

Clause Learning: DPLL backtracks to p; — ... — p, to continue with —p,,.
Thus trail p; — ... — p, determines an unsatisfying valuation of F.
We have learned clause C = {-p1,..., -pn} With property F = F U {C}.
Before backtracking, we may add C to F (only using the guessed literals of C).
Non-Chronological Backjumping: backtrack notonly to p; — ... — p,,.
Determine subset S C {p1,...,pn-1} Of guessed literals such that S U {p, } is unsatisfying.
Backjump to shortest path p; — ... — p;<, that contains S and extend it by —p,,.
Learned clause {-p | p € S} U {=pn}.

Backjumping may prune the search tree substantially. 12/23

H=p. =g, ~r}t. A=p, ~q.r}. {-p,q.~r}, {-p, q. 1}, {p. ~q. ~r}. {p. =~q. }. {p. ¢, —r}.{p. q. r}}
stack = (p,guessed) — (g, guessed) — (—r,deduced) : conflict
H=p.~q,~r}.{=p,~q,r}. {-p.q, 7}, {-p.q, 7}, {p,~q,~r}.{p,~q,r}.{p. ¢, ~r}. {p. q. 7}, {-p.~q}}
stack = (p,guessed) — (~q,deduced) — (-r,deduced) : conflict
H=p.~q,~r}.{=p,~q.r}.{-p,q.~r}. {-p.q.r}.{p, ~q. ~r}. {p, ~q. r}.{p, q, -r}.{p. q.r}, {-p,~q}. {-p}}
stack = (—~p,deduced) — (g.guessed) — (-r,deduced) : conflict
H{=p.~q,~r}.A=p,~q,r}.{=p.q,~r}{=p.q.r}.Ap, ~q, ~r}.Ap,~q,r}.{p. q, r}.{p.q.r}.{-p, ~q}.{-pP}.{~q}}
stack = (—~p,deduced) — (—¢q, deduced) — (-r,deduced) : conflict

stack =[] : unsat

13/23

Flx1,...,x9] U {{~x2, x9,x10}, {—x2, ~xg, ~x10}}

stack = (x1,guessed) — (xo,guessed) — ... — (xg,guessed) — (xig,guessed) : conflict

Flx1,...,x9] U {{~x2, x9,x10}, {—x2, ~x9, ~x10}}

stack = (x1,guessed) — (xo,guessed) — ... — (xg,guessed) — (-x19,deduced) : conflict

Flx1,...,x9] U...U{{=x2,-x9}} (learn minimal conflict clause)

stack = (x1,guessed) — (x2,guessed) — (-xg,deduced) (backjump to level of x3)

14/23

procedure BACKTRACK(J F, { stack, dlevel)

repeat

(p,t) « POP(stack)
until S1ZE(stack) = dlevel — 1 > stack and p determine conflict
S « LITERALS(F, stack, p) > Compute minimal literal set S that also implies conflict
C « {NEGATE(p) | p € S} U {NEGATE(p)} > Construct clause C from S
F — FU{C} > Extend F by learned clause C
loop > Backjump to highest level that contains some literal from S

(p,t) < TOP(stack)

if p € S break

PoP(stack)
end loop

PUSH({NEGATE(p), deduced), stack)
end procedure

LITERALS(F, stack, p) actually computes S from an “implication graph” that records
the variable dependencies previously established by BCP (we omit the details).

15/23

let rec dplb cls trail =
let cls’,trail’ = unit_propagate (cls,trail) in
if mem [] cls’ then
match backtrack trail with
(p,Guessed)::tt ->

let trail’ = backjump cls p tt in
let declits = filter (fun (_,d) -> d = Guessed) trail’ in
let conflict = insert (negate p) (image (negate ** fst) declits) in
dplb (conflict::cls) ((negate p,Deduced)::trail’)

| _ -> false
else
match unassigned cls trail’ with
[1 -> true

| ps -> let p = maximize (posneg_count cls’) ps in
dplb cls ((p,Guessed)::trail’);;

16/23

let rec backjump cls p trail =
match backtrack trail with
(q,Guessed) : :tt ->
let cls’,trail’ = unit_propagate (cls,(p,Guessed)::tt) in
if mem [] cls’ then backjump cls p tt else trail
| _ -> trail;;

let dplbsat fm = dplb (defcnfs fm) [1;;
let dplbtaut fm = not(dplbsat(Not fm));;

dplbtaut << (p ==> (q ==> 1)) /\ (p ==>q) /\ p ==>1r > ;;

- : bool = true

Only a simple prototype; modern SAT solvers are heavily optimized with respect to
coding techniques, data structures, and many more heuristic improvements.

17/23

We now consider an efficient implementation of DPLL with CDCL.

MiniSat: An open source SAT solver.

http://minisat.se
Debian/Ubuntu: apt-get install minisat

Minimalistic but efficient.

Winner of the industrial categories of the SAT 2005 competition
For true state-of-the art solvers, see http://www.satcompetition.org.
Lingeling, Plingeling and Treengeling: http://fmv. jku.at/lingeling.

Most SAT solvers typically support the same input format.

18/23

http://minisat.se
http://www.satcompetition.org
http://fmv.jku.at/lingeling

DIMACS: a standard textual input format for MiniSat and other SAT solvers.

c comment
p cnf nv nc

v v ... v O

comment: a comment line.
nv: number of variables, nc: number of clauses.

nclinesvyv ... v0
v: aninteger in the ranges 1, ..., nv respectively —1,..., —nv.
Denotes variable x1, ..., x, respectively =x1, ..., —x,.

Example: x1 A (mx2 V x3)

c file "example.cnf"
p cnf 3 2

10

-230

19/23

debian10!1> minisat example.cnf example.out

WARNING: for repeatability, setting FPU to use double precision

Number of variables:

Number of clauses:

Eliminated clauses:

Simplification time:

|
|
|
| Parse time:
|
|
|

[Problem Statistics]

3

1
0.00 s
0.00 Mb
0.00 s

[Search Statistics]

| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
restarts o1

conflicts : 0 (0 /sec)

decisions : 1 (0.00 % random) (476 /sec)

propagations 01 (476 /sec)

conflict literals : 0 (-nan 7% deleted)

Memory used 14.00 MB

CPU time : 0.002101 s

SATISFIABLE

debian10!1> cat example.out

SAT

1-230

20/23

Another SAT solver that is more suitable for interactive use.
http://fmv. jku.at/limboole/

This is a simple boolean calculator. It reads a boolean formula and checks whether it is valid.
In case ’-s’ is specified satisfiability is checked instead of validity (tautology).
The input format has the following syntax in BNF:

expr ::= iff

iff ::= implies { ’<->’ implies }
implies ::= or [’->’ or | ’<-? or]
or ::= and { ’|’ and }

and ::= not { ’&’ not }

not ::= basic | ’!’ not

basic ::= var | ’(’ expr ’)’

and ’var’ is a string over letters, digits and the following characters:

-_.[1¢%e¢@

21/23
The last character of ’var’ should be different from ’-’.

http://fmv.jku.at/limboole/

debian10!1> limboole -s
x1 & ("x2 | x3)

% SATISFIABLE formula (satisfying assignment follows)

x1 =1
x2 =0
x3 =0

debian10!2> limboole

x1 & ("x2 | x3)

% INVALID formula (falsifying assignment follows)
x1 =1

x2 =1

x3 =0

debian10!4> cat > example.bool

x1 & (-x2 | x3)

alan!355> limboole example.bool

% INVALID formula (falsifying assignment follows)
x1 =1

x2 =1

x3 =0

22/23

https://maximaximal.github.io/limboole

Limboole on the Go!

Uses Limboole (MIT licensed), PicoSAT (MIT licensed), and DepQBF (GPLv3 licensed) to parse an easy SAT and QBF DSL (instead
of relying on DIMACS). Compiled using Emscripten, Source Code and Modifications are available on GitHub. Created by Max
Heisinger. | also wrote a short blog entry about this. Support on GitHub and on #limboole on Libera.Chat.

Validity Check j Run (or Shift+Enter in input area)

Input Output

X1 & (~x2 | x3) % INVALID formula (falsifying assignment follows)
x1=1
£ x2=1
x3=0

i

Errors

23/23

https://maximaximal.github.io/limboole

