
PROPOSITIONAL LOGIC:
MODERN SAT SOLVING
Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at

SAT: The Satisfiability Problem of Propositional Logic

We now consider another deduction calculus for propositional logic.

• Judgement: sequent 𝐹 ⊢ .
◦ Clause set 𝐹 = {𝐶1, . . . , 𝐶𝑛} with interpretation “𝐹 is unsatisfiable”.

• Inference rules:
{ } ∈ 𝐹
𝐹 ⊢ (AX)

𝐹 [𝑝 ← true] ⊢ 𝐹 [𝑝 ← false] ⊢
𝐹 ⊢ (SPLIT)

◦ 𝐹 [𝑝 ← 𝑡]: 𝐹 without any occurrence of 𝑝 or ¬𝑝 by assigning truth value 𝑡 to 𝑝.
If 𝑡 = true, we remove every occurrence of ¬𝑝 and every clause that contains 𝑝.
If 𝑡 = false, we remove every occurrence of 𝑝 and every clause that contains ¬𝑝.
Intuitively justified by the following logical equivalences:

(𝐶 ∨ ⊥) ≡ 𝐶 (𝐶 ∨ ⊤) ∧ 𝐷 ≡ 𝐷

The basis for modern decision procedures (“SAT solvers”) for the SAT problem.

1/23

Deduction Tree

We show the validity of (𝑝 ⇒ (𝑞 ⇒ 𝑟)) ∧ (𝑝 ⇒ 𝑞) ∧ 𝑝 ⇒ 𝑟.

• We show the unsatisfiability of clause set {¬𝑝,¬𝑞, 𝑟}, {¬𝑝, 𝑞}, {𝑝}, {¬𝑟}.

{ } ⊢ AX { } ⊢ AX

{𝑟}, {¬𝑟} ⊢ SPLIT(𝑟) { }, {¬𝑟} ⊢ AX

{¬𝑞, 𝑟}, {𝑞}, {¬𝑟} ⊢ SPLIT(𝑞) { }, {¬𝑟} ⊢ AX

{¬𝑝,¬𝑞, 𝑟}, {¬𝑝, 𝑞}, {𝑝}, {¬𝑟} ⊢ SPLIT(𝑝)

The calculus gives rise to binary deduction trees.

2/23

Soundness and Completeness

• Soundness: Assume valuation 𝑣 satisfies 𝐹. Then 𝑣 also satisfies 𝐹 [𝑝 ← 𝑣(𝑝)]. Thus,
if both 𝐹 [𝑝 ← true] and 𝐹 [𝑝 ← false] are unsatisfiable, 𝐹 is unsatisfiable.

• Completeness: For an unsatisfiable 𝐹 with atoms 𝑝1, . . . , 𝑝𝑛, we have a deduction tree
of (at most) height 𝑛 with 2𝑛 branches 𝐹

𝑝1←𝑣1→ 𝐹1
𝑝2←𝑣2→ . . .

𝑝𝑛←𝑣𝑛→ 𝐹𝑛 = {{ }}.
◦ We typically write 𝑝 for 𝑝 ← true and ¬𝑝 for 𝑝 ← false.

•

•

•

•

••

𝑝4 ¬𝑝4
•

••

𝑝4 ¬𝑝4

𝑝3 ¬𝑝3
•

•

••

𝑝4 ¬𝑝4
•

••

𝑝4 ¬𝑝4

𝑝3 ¬𝑝3

𝑝2 ¬𝑝2
•

•

•

••

𝑝4 ¬𝑝4
•

••

𝑝4 ¬𝑝4

𝑝3 ¬𝑝3
•

•

••

𝑝4 ¬𝑝4
•

••

𝑝4 ¬𝑝4

𝑝3 ¬𝑝3

𝑝2 ¬𝑝2

𝑝1 ¬𝑝1

Every path in the tree denotes a potential satisfying valuation. 3/23

The DPLL Algorithm

An implementation of (the dual form of) the inference rules (Davis, Putnam,
Logemann, Loveland, 1961).

function DPLL(𝐹) ⊲ returns true, if clause set 𝐹 is satisfiable
if 𝐹 = { } then return true
if { } ∈ 𝐹 then return false
choose 𝑝 ∈ ⋃ 𝐹

return DPLL(𝐹 [𝑝 ← true]) or DPLL(𝐹 [𝑝 ← false])
end function

• Worst-case time complexity 𝑂 (2𝑛) for 𝑛 propositional variables.
◦ Probably there is no generally better algorithm: since the SAT problem is
NP -complete (Cook, 1971), there exists (unless 𝑃 = NP) no deterministic way to
solve the SAT problem in worst-case polynomial time.

Modern SAT solvers are based on the DPLL algorithm.
4/23

The DPLL Algorithm

The algorithm is typically augmented to produce a satisfying valuation.

function DPLL(𝐹)
return DPLL(𝐹, EMPTY)

end function

function DPLL(𝐹, stack)
if 𝐹 = { } then

print stack
return true

end if
if { } ∈ 𝐹 then return false
choose 𝑝 ∈ ⋃𝐹

return DPLL(𝐹 [𝑝 ← true], PUSH (𝑝, stack))
or DPLL(𝐹 [𝑝 ← false], PUSH (NEGATE (𝑝) , stack))

end function

The search for a satisfying valuation of a propositional formula.

5/23

The DPLL Algorithm

Furthermore, the algorithm actually contains the optimizations of the DP algorithm.

function DPLL(𝐹)
if 𝐹 = { } then return true
if { } ∈ 𝐹 then return false
if there is some literal 𝐿 and 𝐶 ∈ 𝐹 with 𝐶 = {𝐿} then ⊲ unit propagation

remove from 𝐹 every clause that contains 𝐿 and from every clause in 𝐹 the negation of 𝐿
return DPLL(𝐹)

else if there is a literal 𝐿 such that no clause in 𝐹 contains its negation then ⊲ pure literal elimination
remove from 𝐹 every clause that contains 𝐿

return DPLL(𝐹)
else ⊲ split

choose 𝑝 ∈ ⋃𝐹

return DPLL(𝐹 [𝑝 ← true]) or DPLL(𝐹 [𝑝 ← false])
end if

end function

This is the logical core of modern SAT solvers.
6/23

The DPLL Algorithm in OCaml

let rec dpll clauses =
if clauses = [] then true else if mem [] clauses then false else
try dpll(one_literal_rule clauses) with Failure _ ->
try dpll(affirmative_negative_rule clauses) with Failure _ ->
let pvs = filter positive (unions clauses) in
let p = maximize (posneg_count clauses) pvs in
dpll (insert [p] clauses) or dpll (insert [negate p] clauses);;

let dpllsat fm = dpll(defcnfs fm);;
let dplltaut fm = not(dpllsat(Not fm));;

dplltaut << (p ==> (q ==> r)) /\ (p ==> q) /\ p ==> r >> ;;
- : bool = true

While DPLL is faster than DP, some crucial optimizations are still missing.

7/23

The DPLL Algorithm: Iterative Version
Actually, the algorithm is implemented iteratively by using a stack (“trail”).

function DPLL(𝐹)
stack ← EMPTY

BCP(𝐹, stack , conflict)
if conflict return false
while ∃𝑝. UNASSSIGNED(𝐹, stack , 𝑝) do

choose 𝑝 with UNASSIGNED(𝐹, stack , 𝑝)
PUSH(⟨𝑝, guessed⟩, stack)
BCP(𝐹, stack , conflict)
if conflict then

dlevel ← ANALYZECONFLICT(𝐹, stack)
if dlevel < 0 return false
BACKTRACK(𝐹, stack , dlevel)

end if
end while
return true

end function

function ANALYZECONFLICT(𝐹, stack)
dlevel ← SIZE(stack)−1
loop

if dlevel < 0 return dlevel

⟨𝑝, 𝑡 ⟩ ← ELEMAT(stack , dlevel)
if 𝑡 = guessed return dlevel

dlevel ← dlevel − 1

end loop
end function

procedure BACKTRACK(𝐹, ↕stack , dlevel)
repeat
⟨𝑝, 𝑡 ⟩ ← POP(stack)

until SIZE (stack) = dlevel − 1

PUSH(⟨NEGATE (𝑝) , deduced⟩, stack)
end procedure

Stack of pairs ⟨𝑝, 𝑡⟩ with literal 𝑝 and tag 𝑡 ∈ {guessed, deduced}. 8/23

The DPLL Algorithm: Auxiliary Functions
procedure BCP(𝐹, ↕stack , ↑conflict)

. . .
end procedure

function UNASSIGNED(𝐹, stack , 𝑝)
. . .

end function

• BCP(𝐹, stack , conflict): binary constraint propagation.
◦ Repeatedly applies unit propagation deducing the truth values of literals.

Pushes pairs ⟨𝑝, deduced⟩ on stack.
◦ Sets conflict to true if a conflict is detected.

The last literal pushed on the stack conflicts another literal on the stack.
• UNASSIGNED(𝐹, stack , 𝑝)

◦ Returns true if 𝑝 is a literal of 𝐹 that does not appear (neither positively nor
negatively) on stack .

The explicit use of a stack allows various optimization techniques. 9/23

The DPLL Algorithm: Iterative Version

•

••

•

••

𝑟
• ¬𝑞

𝑝

{

•

••

•

••

¬𝑟• ¬𝑞

𝑝

{

•

••

•

••

•

¬𝑝

⟨𝑝, guessed⟩ → ⟨¬𝑞, deduced⟩ → ⟨𝑟, guessed⟩
{ ⟨𝑝, guessed⟩ → ⟨¬𝑞, deduced⟩ → ⟨¬𝑟, deduced⟩
{ ⟨¬𝑝, deduced⟩

Traversal of tree where backtracking skips the deduced literals.

10/23

The Iterative Version of DPLL in OCaml
type trailmix = Guessed | Deduced;;
let rec backtrack trail =

match trail with (p,Deduced)::tt -> backtrack tt | _ -> trail;;
let rec dpli cls trail =

let cls’,trail’ = unit_propagate (cls,trail) in
if mem [] cls’ then

match backtrack trail with
(p,Guessed)::tt -> dpli cls ((negate p,Deduced)::tt)

| _ -> false
else

match unassigned cls trail’ with
[] -> true

| ps -> let p = maximize (posneg_count cls’) ps in
dpli cls ((p,Guessed)::trail’);;

let dplisat fm = dpli (defcnfs fm) [];;
let dplitaut fm = not(dplisat(Not fm));;

dplitaut << (p ==> (q ==> r)) /\ (p ==> q) /\ p ==> r >> ;;
- : bool = true

11/23

Conflict-Driven Clause Learning (CDCL) •

•

•

••

conflictconflict

𝑝𝑛+1 ¬𝑝𝑛+1

𝑝𝑛 ¬𝑝𝑛

. . .

𝑝1

An optimization of DPLL that combines “learning” with “backjumping”.

• Clause Learning: DPLL backtracks to 𝑝1 → . . .→ 𝑝𝑛 to continue with ¬𝑝𝑛.
◦ Thus trail 𝑝1 → . . .→ 𝑝𝑛 determines an unsatisfying valuation of 𝐹.
◦ We have learned clause 𝐶 = {¬𝑝1, . . . ,¬𝑝𝑛} with property 𝐹 ≡ 𝐹 ∪ {𝐶}.
◦ Before backtracking, we may add 𝐶 to 𝐹 (only using the guessed literals of 𝐶).

• Non-Chronological Backjumping: backtrack not only to 𝑝1 → . . .→ 𝑝𝑛.
◦ Determine subset 𝑆 ⊆ {𝑝1, . . . , 𝑝𝑛−1} of guessed literals such that 𝑆 ∪ {𝑝𝑛} is unsatisfying.
◦ Backjump to shortest path 𝑝1 → . . .→ 𝑝𝑖<𝑛 that contains 𝑆 and extend it by ¬𝑝𝑛.

Learned clause {¬𝑝 | 𝑝 ∈ 𝑆} ∪ {¬𝑝𝑛}.

Backjumping may prune the search tree substantially. 12/23

Clause Learning: Example

{{¬𝑝,¬𝑞,¬𝑟}, {¬𝑝,¬𝑞, 𝑟}, {¬𝑝, 𝑞,¬𝑟}, {¬𝑝, 𝑞, 𝑟}, {𝑝,¬𝑞,¬𝑟}, {𝑝,¬𝑞, 𝑟}, {𝑝, 𝑞,¬𝑟}, {𝑝, 𝑞, 𝑟}}

stack = ⟨𝑝, guessed⟩ → ⟨𝑞, guessed⟩ → ⟨¬𝑟, deduced⟩ : conflict

{{¬𝑝,¬𝑞,¬𝑟}, {¬𝑝,¬𝑞, 𝑟}, {¬𝑝, 𝑞,¬𝑟}, {¬𝑝, 𝑞, 𝑟}, {𝑝,¬𝑞,¬𝑟}, {𝑝,¬𝑞, 𝑟}, {𝑝, 𝑞,¬𝑟}, {𝑝, 𝑞, 𝑟}, {¬𝑝,¬𝑞}}

stack = ⟨𝑝, guessed⟩ → ⟨¬𝑞, deduced⟩ → ⟨¬𝑟, deduced⟩ : conflict

{{¬𝑝,¬𝑞,¬𝑟}, {¬𝑝,¬𝑞, 𝑟}, {¬𝑝, 𝑞,¬𝑟}, {¬𝑝, 𝑞, 𝑟}, {𝑝,¬𝑞,¬𝑟}, {𝑝,¬𝑞, 𝑟}, {𝑝, 𝑞,¬𝑟}, {𝑝, 𝑞, 𝑟}, {¬𝑝,¬𝑞}, {¬𝑝}}

stack = ⟨¬𝑝, deduced⟩ → ⟨𝑞, guessed⟩ → ⟨¬𝑟, deduced⟩ : conflict

{{¬𝑝,¬𝑞,¬𝑟},{¬𝑝,¬𝑞, 𝑟},{¬𝑝, 𝑞,¬𝑟},{¬𝑝, 𝑞, 𝑟},{𝑝,¬𝑞,¬𝑟},{𝑝,¬𝑞, 𝑟},{𝑝, 𝑞,¬𝑟},{𝑝, 𝑞, 𝑟},{¬𝑝,¬𝑞},{¬𝑝},{¬𝑞}}

stack = ⟨¬𝑝, deduced⟩ → ⟨¬𝑞, deduced⟩ → ⟨¬𝑟, deduced⟩ : conflict

stack = [] : unsat

13/23

Non-Chronological Backjumping: Example

𝐹 [𝑥1, . . . , 𝑥9] ∪ {{¬𝑥2,¬𝑥9, 𝑥10}, {¬𝑥2,¬𝑥9,¬𝑥10}}

stack = ⟨𝑥1, guessed⟩ → ⟨𝑥2, guessed⟩ → . . .→ ⟨𝑥9, guessed⟩ → ⟨𝑥10, guessed⟩ : conflict

𝐹 [𝑥1, . . . , 𝑥9] ∪ {{¬𝑥2,¬𝑥9, 𝑥10}, {¬𝑥2,¬𝑥9,¬𝑥10}}

stack = ⟨𝑥1, guessed⟩ → ⟨𝑥2, guessed⟩ → . . .→ ⟨𝑥9, guessed⟩ → ⟨¬𝑥10, deduced⟩ : conflict

𝐹 [𝑥1, . . . , 𝑥9] ∪ . . . ∪ {{¬𝑥2,¬𝑥9}} (learn minimal conflict clause)

stack = ⟨𝑥1, guessed⟩ → ⟨𝑥2, guessed⟩ → ⟨¬𝑥9, deduced⟩ (backjump to level of 𝑥2)

. . .

14/23

The DPLL Algorithm with CDCL
procedure BACKTRACK(↕𝐹, ↕stack , dlevel)

repeat
⟨𝑝, 𝑡 ⟩ ← POP(stack)

until SIZE (stack) = dlevel − 1 ⊲ stack and 𝑝 determine conflict
𝑆 ← LITERALS(𝐹, stack , 𝑝) ⊲ Compute minimal literal set 𝑆 that also implies conflict
𝐶 ← {NEGATE (𝑝) | 𝑝 ∈ 𝑆} ∪ {NEGATE (𝑝) } ⊲ Construct clause 𝐶 from 𝑆

𝐹 ← 𝐹 ∪ {𝐶 } ⊲ Extend 𝐹 by learned clause 𝐶

loop ⊲ Backjump to highest level that contains some literal from 𝑆

⟨𝑝, 𝑡 ⟩ ← TOP (stack)
if 𝑝 ∈ 𝑆 break
POP(stack)

end loop
PUSH(⟨NEGATE (𝑝) , deduced⟩, stack)

end procedure

LITERALS(𝐹, stack , 𝑝) actually computes 𝑆 from an “implication graph” that records
the variable dependencies previously established by BCP (we omit the details).

15/23

CDCL in OCaml

let rec dplb cls trail =
let cls’,trail’ = unit_propagate (cls,trail) in
if mem [] cls’ then

match backtrack trail with
(p,Guessed)::tt ->

let trail’ = backjump cls p tt in
let declits = filter (fun (_,d) -> d = Guessed) trail’ in
let conflict = insert (negate p) (image (negate ** fst) declits) in
dplb (conflict::cls) ((negate p,Deduced)::trail’)

| _ -> false
else

match unassigned cls trail’ with
[] -> true

| ps -> let p = maximize (posneg_count cls’) ps in
dplb cls ((p,Guessed)::trail’);;

16/23

CDCL in OCaml

let rec backjump cls p trail =
match backtrack trail with

(q,Guessed)::tt ->
let cls’,trail’ = unit_propagate (cls,(p,Guessed)::tt) in
if mem [] cls’ then backjump cls p tt else trail

| _ -> trail;;

let dplbsat fm = dplb (defcnfs fm) [];;
let dplbtaut fm = not(dplbsat(Not fm));;

dplbtaut << (p ==> (q ==> r)) /\ (p ==> q) /\ p ==> r >> ;;
- : bool = true

Only a simple prototype; modern SAT solvers are heavily optimized with respect to
coding techniques, data structures, and many more heuristic improvements.

17/23

The SAT Solver MiniSat

We now consider an efficient implementation of DPLL with CDCL.

• MiniSat: An open source SAT solver.

http://minisat.se
Debian/Ubuntu: apt-get install minisat

• Minimalistic but efficient.
◦ Winner of the industrial categories of the SAT 2005 competition
◦ For true state-of-the art solvers, see http://www.satcompetition.org.
◦ Lingeling, Plingeling and Treengeling: http://fmv.jku.at/lingeling.

Most SAT solvers typically support the same input format.

18/23

http://minisat.se
http://www.satcompetition.org
http://fmv.jku.at/lingeling

The DIMACS Format
• DIMACS: a standard textual input format for MiniSat and other SAT solvers.

c comment
p cnf nv nc
v v ... v 0
...

◦ comment : a comment line.
◦ nv : number of variables, nc: number of clauses.

nc lines 𝑣 𝑣 . . . 𝑣 0

◦ 𝑣: an integer in the ranges 1, . . . , nv respectively −1, . . . ,−nv .
Denotes variable 𝑥1, . . . , 𝑥𝑣 respectively ¬𝑥1, . . . ,¬𝑥𝑣 .

• Example: 𝑥1 ∧ (¬𝑥2 ∨ 𝑥3)
c file "example.cnf"
p cnf 3 2
1 0
-2 3 0

19/23

MiniSat Example
debian10!1> minisat example.cnf example.out
WARNING: for repeatability, setting FPU to use double precision
============================[Problem Statistics]=============================
| |
| Number of variables: 3 |
| Number of clauses: 1 |
| Parse time: 0.00 s |
| Eliminated clauses: 0.00 Mb |
| Simplification time: 0.00 s |
| |
============================[Search Statistics]==============================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
===
===
restarts : 1
conflicts : 0 (0 /sec)
decisions : 1 (0.00 % random) (476 /sec)
propagations : 1 (476 /sec)
conflict literals : 0 (-nan % deleted)
Memory used : 14.00 MB
CPU time : 0.002101 s

SATISFIABLE
debian10!1> cat example.out
SAT
1 -2 3 0 20/23

The SAT Solver Limboole
Another SAT solver that is more suitable for interactive use.

http://fmv.jku.at/limboole/

This is a simple boolean calculator. It reads a boolean formula and checks whether it is valid.
In case ’-s’ is specified satisfiability is checked instead of validity (tautology).
The input format has the following syntax in BNF: ...

expr ::= iff
iff ::= implies { ’<->’ implies }
implies ::= or [’->’ or | ’<-’ or]
or ::= and { ’|’ and }
and ::= not { ’&’ not }
not ::= basic | ’!’ not
basic ::= var | ’(’ expr ’)’

and ’var’ is a string over letters, digits and the following characters:

- _ . [] $ @

The last character of ’var’ should be different from ’-’.
21/23

http://fmv.jku.at/limboole/

Limboole: Command Line Version
debian10!1> limboole -s
x1 & (~x2 | x3)
% SATISFIABLE formula (satisfying assignment follows)
x1 = 1
x2 = 0
x3 = 0
debian10!2> limboole
x1 & (~x2 | x3)
% INVALID formula (falsifying assignment follows)
x1 = 1
x2 = 1
x3 = 0
debian10!4> cat > example.bool
x1 & (-x2 | x3)
alan!355> limboole example.bool
% INVALID formula (falsifying assignment follows)
x1 = 1
x2 = 1
x3 = 0

22/23

Limboole: Web Version

https://maximaximal.github.io/limboole

23/23

https://maximaximal.github.io/limboole

