
Programming 2:
Object-Oriented Programming in C++

Sample Exam
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

Last Name:

First Name:

Matrikelnummer:

Please write on the empty space of these sheets; you may also add additional pages. Answers
can be written in German or English. All written materials are allowed.



1. (20 points) Write a class Work whose objects represent working times (in whole minutes)
and salary rates (in whole cents per minute). With this class, the following operation shall
be possible:

Work* w = new Work(25, 60); // 25 cent/min, 60 min
w->add(65); // add 65 minutes working time
w->printSalary(); // prints salary "31,25" (25*125 Cents)
bool okay = w->subtract(60); // attempts to subtract 60 minutes

// returns false, if not sufficient time
// available (time remains unchanged)

Work::reset(*w); // reset working time to zero
Work v(30); // 30 cent/min, 0 min
int r = w->compare(v); // 0 if salaries of w and v are equal,

// 1, if w’s salary is bigger, -1, else
Work u(v); // u becomes a copy of v
v.reset(); // reset working time to zero

2



2. (20 points) Take the following interfaces for a music archive:

class Song
{
public:
virtual string title() = 0; // the title of the song
virtual string interpreter() = 0; // its interpreter
virtual int length() = 0; // its length (in seconds)

};
class Album
{
public:
virtual int year() = 0; // the year of the album
virtual string title() = 0; // the title of the album
virtual int size() = 0; // the number of songs in the album
virtual Song* song(int i) = 0; // song i, 0 <= i < size()

};
class Archive
{
public:
virtual int size() = 0; // the number of albums in the archive
virtual Album* album(int i) = 0; // album i, 0 <= i < size()

};

Write a function

int printSongs(Archive* archive, int year, string interpreter)

which takes an archive archive, an integer year, and a string interpreter. It prints to the
standard output stream in a line of the form

albumTitle: songTitle

every song performed by interpreter on every album in archive published in year. The
function returns the sum of the lengths of these songs.

Hint: iterate over every album of the archive and; if it was not published in the denoted
year, ignore it. Otherwise, call a (self-defined) auxiliary function printAlbum(album,
interpreter) that prints the titles of all songs from album published by interpreter and
returns the sum of the lengths of these songs.

This auxiliary function must be defined and used.

3



3. (25 points) Take the template class

template<class T> class BoundedQueue {
public:
virtual ~BoundedQueue() { }
virtual bool isempty() = 0; // is queue empty?
virtual bool isfull() = 0; // is queue full?
virtual void put(T& x) = 0; // add x to queue
virtual T get() = 0; // remove element from queue

};

which describes the interface of a bounded queue to which (if the queue is not full) elements
of type𝑇 can be added and from which (if the queue is not empty) elements can be removed
(in the order in which they were added). The operations assume that their preconditions
(queue is not full/empty) are satisfied.

Write a concrete template class

template<class T>
class ArrayQueue: public BoundedQueue<T> { ... };

which implements by a constructor

ArrayQueue(int s)

a bounded queue of size 𝑠 with the help of an array 𝑎, its length 𝑙, a counter 𝑛 (the number
of elements in the queue) and two indices ℎ (head) and 𝑡 (tail): elements are added at
position 𝑡 (𝑡 is increased) and removed from position ℎ (ℎ is increased). If ℎ respectively
𝑡 become 𝑠, they are reset to 0 (the technique of circular buffers). Actually, 𝑡 can be
determined from ℎ and 𝑛 and is thus not strictly necessary.

4



4. (25 points) Implement a function with the following header (where map, set, and list
are class templates of the C++ standard library):

map< string, set<int> > occurrences(list<string> text)

This function traverses a text (a list of words) and returns as a result a map that assigns
to every word of the text the set of all positions where the word occurs in the text. For
instance, if the text consists of the words

der die das die der der
0 1 2 3 4 5

then the result maps “der” to the set {0, 4, 5}, “die” to {1, 3} and “das” to {2}.

For this, first generate an empty map. Then, for every word in the text, check whether
the map has already an entry for the word. If yes, add the position of the word to the
corresponding set; if not, create a new set with the single position. In any case, be sure
that the map indeed contains the (new/updated) set.

5



5. (10 points) Take the declarations

class I
{ public: virtual int key() = 0; };
class C: public I
{ public: virtual int key() { ... } int value() { ... } };
class D: public C
{ public: string name() { ... } };
class E
{ public: virtual int key() { ... } };

void print(I* x) { ... }

Which of the following declarations/commands yield compilation errors or runtime errors
and what is the exact reason?

a) I* i = new I();

b) C* c = new C();

c) D* d = new D();

d) E* e = new E();

e) I* j = c;

f) I* k = d;

g) I* l = e;

h) C* f = d;

i) D* g = c;

j) D* h = dynamic_cast<D*>(c);

k) D* m = dynamic_cast<D*>(f);

l) print(j);

m) print(c);

n) print(d);

o) print(e);

Additionally state explicitly what the values of ℎ and 𝑚 are after the assignment (if any).

6


