
Das SCCH ist eine Initiative der Das SCCH befindet sich im

Automatic Refinement of Model
Transformations
Gábor Guta
Advisors: András Pataricza, Wolfgang Schreiner, Dániel Varró

RISC, 23.06.2010

RISC, 23.06.2010

Traditional Model Transformation
Development Process

ResultTransformation

Write
Transformation Test Run Compare Correct/

Modify

Examples: Pairs of

Source Model

Expected Result

Done

Modified Transformation

RISC, 23.06.2010

Motivation

 Aid model transformation development
 Reduce the number and the effort of the modify/correct cycles
 In most of the cases the modifications are trivial

 Support web page designers
 Support retargeting information to different format

 E.g.: Source Code to Documentation

 Results may be useful in other application
 Automatic inference of simple transformations
 Automatic inference of domain meta-model changes
 Quality evaluation of the transformations

RISC, 23.06.2010

The Model Transformation
Modification Problem

 We have
 a transformation (t) which generates code G from the source

domain S,
 set of examples (pairs of source models Sk and generated

codes Gk),
 modified code Gk’ corresponding to each examples

 Are the modifications trivial?
 If yes, what is the modified

transformation t’?

<TblName>ItemMaster</TblName>
<TblColumnNames>
 <Name>Number</Name>
 <Name>Desc1</Name>
 <Name>Desc2</Name>
 <Name>ProductTypeRef</Name>
 <Name>PartTypeRef</Name>
 <Name>Remark</Name>
</TblColumnNames>

drop procedure sp_ItemMaster_select_by_id
GO

CREATE PROCEDURE sp_ItemMaster_select_by
 @ItemMasterID BIGINT
AS
 SELECT
 ItemMasterID,
 ItemMasterNumber;
 ItemMasterDesc1;
 ItemMasterDesc2;
 ItemMasterProductTypeRef;
 ItemMasterPartTypeRef;
 ItemMasterRemark
 FROM tbl_ItemMaster
 WHERE ItemMasterID = @ItemMasterID
GO

drop procedure sp_{$TblName}_select_by_id
GO

CREATE PROCEDURE sp_${TblName}_select_by
 @${TblName}ID BIGINT
AS
 SELECT
 ${TblName}ID,
 #foreach($ColumnName in $TblColumnNames)
 ${TblName}${ColumnName}#if(last!=True);#end
 #end
 FROM tbl_${TblName}
 WHERE ${TblName}ID = @${TblName}ID
GO

drop procedure sp_ItemMaster_select_by_id
GO

CREATE PROCEDURE sp_ItemMaster_select_by_id
 @ItemMasterID BIGINT
AS
 SELECT
 ItemMasterID,
 ItemMasterNumber,
 ItemMasterDesc1,
 ItemMasterDesc2,
 ItemMasterProductTypeRef,
 ItemMasterPartTypeRef,
 ItemMasterRemark
 FROM tbl_ItemMaster
 WHERE ItemMasterID = @ItemMasterID
GO

drop procedure sp_{$TblName}_select_by_id
GO

CREATE PROCEDURE sp_${TblName}_select_by_id
 @${TblName}ID BIGINT
AS
 SELECT
 ${TblName}ID,
 #foreach($ColumnName in $TblColumnNames)
 ${TblName}${ColumnName}#if(last!=True),#end
 #end
 FROM tbl_${TblName}
 WHERE ${TblName}ID = @${TblName}ID
GO

RISC, 23.06.2010

Our Approach

 Direction (Inspired by grammatical inference)
 Developing specialized algorithms (instead of using generic

optimization methods e.g. Genetic Algorithms)
 Define measures to judge the quality of a refinement

algorithms
 Evaluate different versions of the algorithms

 Steps (Inspired by type checking solutions of XMLs)
 Examine finite state (string) transducers

 To investigate modification by example paradigm
 Experiment “XSLT” like languages

 To experiment “industrial” examples

RISC, 23.06.2010

 Transducer:

 Input: „aabaaba”
 Output: „xyywzxywz”
 Expected output: „xyyvzxyvz”

The Example

RISC, 23.06.2010

The Algorithm

 Used data types:
 TransitionKey := (source: State, input: Input)
 TransitionData := (target: State, output: Output)
 Rules := TransitionKey → TransitionData
 Transducer := (input: set(Input), output: set(Output), state: set(State), init:

State, rules: Rules)
 TraceStep := (source: State, input: Input, target: State, output: Output)
 Trace := TraceStep*
 Diff := (output: Output, mod: {' ', '-', '+'})*

inferTransducer(Transducer trans, Input* input, Output* output'):Transducer
 Trace tr=execute(trans,input)
 Output* output=getOutput(tr)
 Diff diff=calculateDiff(output,output')
 Trace tr'=modifyTrace(tr, diff, trans.init)
 Transducer trans'=modifyTransducer(trans, tr')
 return trans'

RISC, 23.06.2010

The Data-flow of the Example
Problem

RISC, 23.06.2010

Modifying the transducer

modifyTransducer(Transducer, Trace'):Transducer

 If the transition in the modified trace is possible according to
transition of the transducer:
 Count the usage of the transition

 If it is not possible:
 Add the new transition to the existing ones (only if the

transition not destroy deterministic behaviour)
 or modify an existing transition (this is the tricky part)

RISC, 23.06.2010

Modify an Existing Transition

 Modification of an existing transition (a simple version):
 Modify the transition from the trace with a new ‘start state’
 Modify the ‘end state’ of the preceding transition

(corresponding to the preceding trace element) to the new
state

 If the transition is executed only once according to trace, we
are done; Otherwise we have to modify all transitions
corresponding to the preceding trace elements, until we do
not find an transition executed only once

We may create several slightly different versions of the
algorithm

RISC, 23.06.2010

Measuring the Efficiency of the
Algorithm

 Compare the result of the algorithm with a hand crafted
expected result

 Structural metrics of the transducer modification
 Number of new states
 Number of new/modified transitions

 Behavioural metrics of the transducer modification
 Difference in behaviour between the original transducer and

modified transducer
 Metrics of the relation between the transducers and the

examples
 Coverage of the transitions

First experiments: basic metrics do not help to explain the
results of the manual inspection of the results. Why?

RISC, 23.06.2010

Goal-Question-Metric Paradigm

 Goal
 Evaluate how efficiently the examples describe the

modification intention of the user
 Questions

 How many possible interpretations of the example are
possible? (How clear is the intention of the user?)

 Are the examples minimal?
 Are the examples consistent?

 Metrics
 Branches and cycles in the execution graph of the

transducers
 Possible interpretations of the examples

RISC, 23.06.2010

„Metrics of Intentions“

 Inserting a new edge into the graph:
 Existing examples (possible sate transitions)

 No iteration: xnz
A, x, 1, n, B, z / A, x, B, n, 1, z

 One iteration: xnyz
A, x, 1, n, B, y, B, z / A, x, B, n, 1, y, B, z

 Two iterations: xnyyz
A, x, 1, n, B, y, B, y, B, z

RISC, 23.06.2010

The Concepts Behind the New
Algorithm

 The idea is to replace the „modifyTrace“ function with a new
one which
 Does not modify the trace, but annotates the transducer
 The annotations contains the possible way of the modification

 Then the „modifyTransducer“ will consolidate these
annotations
 The modification intention is clear
 The modification intention is not clear
 The annotations are contradicting

RISC, 23.06.2010

Applying the Algorithm to
Transformation Languages

 Main differences in execution:
 Transducers: selection of the transition depend on the input

string
 Transformation languages: selection of the execution path

depends on the input data and the result of computed values

 Main differences in print instruction:
 Transducers: always a fixed constant
 Transforamtion languages: can be any computed values

RISC, 23.06.2010

Status of the Work

RISC, 23.06.2010

Conclusions

 Conclusions
 We described an algorithm to infer transducer modifications
 We described the concepts of a more powerful modification

inference algorithm and its application concepts to
transformation languages

 We defined metrics to evaluate such algorithms

 Further work
 Compare the algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

