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Engelfriet & Schmidt 1977:

@ ...In theoretical computer science there are two basic ways of
describing the meaning of a syntactical object. operational and
equational. Operational semantics is defined by some effective
(eventually nondeterministic) stepwise process which, from the
syntactical object, generates its meaning. Equational semantics is
defined by interpreting the syntactical object as a system of equations
to be solved in some space of meanings. ...
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Engelfriet & Schmidt 1977:

@ ...In theoretical computer science there are two basic ways of
describing the meaning of a syntactical object: operational and
equational. Operational semantics is defined by some effective
(eventually nondeterministic) stepwise process which, from the
syntactical object, generates its meaning. Equational semantics is
defined by interpreting the syntactical object as a system of equations
to be solved in some space of meanings. ...

@ Examples of syntactical objects:

finite automata,

context free grammars,

tree automata,

context free tree grammars,
transducers over words and trees,
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Motivation

@ Equational semantics provides the algorithm to specify the meaning of
a syntactical object
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@ Equational semantics provides the algorithm to specify the meaning of
a syntactical object

@ Systems of equations can be solved in two ways: /O and O/
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@ Equational semantics provides the algorithm to specify the meaning of
a syntactical object

@ Systems of equations can be solved in two ways: /O and O/

@ /O (Inside-Out) interprets the Call-by-Value method of "calling
procedures, functions, etc." in programming languages
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Equational semantics provides the algorithm to specify the meaning of
a syntactical object

Systems of equations can be solved in two ways: /0 and O/

10 (Inside-Out) interprets the Call-by-Value method of "calling
procedures, functions, etc." in programming languages

Ol (Outside-In) interprets the Call-by-Name (or Call-by-Reference)

method of "calling procedures, functions, etc." in programming
languages
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Trees

@ ranked alphabet: (X, rk) (simply ), rk : ¥ — IN
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Trees

o ranked alphabet: (X, rk) (simply ), rk : £ — IN
oYXy ={ceX|rk(c) =k}, k>0
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Trees

ranked alphabet: (X, rk) (simply ), rk : £ — IN
Yy={ceX|rk(c)=k}, k>0

X = {x1,x2,...}: a countably infinite set of variables,
Xp={x1,..., xp} (n>0), Xo =0
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Trees

o ranked alphabet: (X, rk) (simply ), rk : £ — IN

o Xy={ceX|rk(c) =k}, k>0

@ X = {x1,x,...}: a countably infinite set of variables,

o Xy ={x1i,....x,} (n>0), o =0

@ Tx(Xp,): the set of all trees over ¥ indexed with variables from X,
defined as:
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Trees

ranked alphabet: (X, rk) (simply ), rk : £ — IN
Yy={ceX|rk(c)=k}, k>0

X = {x1,x2,...}: a countably infinite set of variables,
Xp={x1,....xn} (n>0), Xo =0

Tx.(Xy): the set of all trees over X indexed with variables from X,
defined as:

the least set T such that
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defined as:

@ the least set T such that
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Trees

o ranked alphabet: (X, rk) (simply ), rk : £ — IN
o Xy={ceX|rk(c) =k}, k>0
@ X = {x1,x,...}: a countably infinite set of variables,
o Xy ={x1i,....x,} (n>0), o =0
e Tx(Xp,): the set of all trees over ¥ indexed with variables from X,
defined as:
@ the least set T such that
e XogUX,CT
e EX, k>0, t,..., th € T=0(ty,..., ty,) €T
e Tyx: the set of all trees over ¥ (without variables)
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Trees

o ranked alphabet: (X, rk) (simply ), rk : £ — IN

o Xy={ceX|rk(c) =k}, k>0

@ X = {x1,x,...}: a countably infinite set of variables,

o Xy ={x1i,....x,} (n>0), o =0

e Tx(Xp,): the set of all trees over ¥ indexed with variables from X,
defined as:

@ the least set T such that

e XogUX,CT

e EX, k>0, t,..., th € T=0(ty,..., ty,) €T
o Tyx: the set of all trees over ¥ (without variables)
@ 2, A, I': ranked alphabets
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Trees

e sc Tx(Xy), xi € Xp, |s|,.: the number of occurrences of x; in s

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010



Trees

e se Tx(Xy), xi € X, |5‘x,-: the number of occurrences of x; in s
@ s is linear if ‘S|Xi <1 V1i<i<n
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Trees

e se Tx(Xy), xi € X, |5‘x,-: the number of occurrences of x; in s
@ s is linear if |s|X[ <1, Vi<i<n
@ s is nondeleting if |s|le >1, V1i<i<n
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Trees

s € Tx(Xy), xi € X, |5‘x,-: the number of occurrences of x; in s
s is linear if |s|X[ <1, V1i<i<n

s is nondeleting if |5|Xi >1, Vi<i<n

s € Te(Xy),s1,...,8, € Te(Xy),
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Trees

s € Tx(Xy), xi € X, |5‘x,-: the number of occurrences of x; in s
s is linear if |s|X[ <1, V1i<i<n

s is nondeleting if |5|Xi >1, Vi<i<n

s€ Tx(Xn),s1,....50 € Te(Xn),

s[s1/x1,...,Sn/xn| (simply s[si,...,s,]): by substituting
simultaneously s; for every occurrence of x; in s
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Trees

e se Tx(Xy), xi € X, |s\xi: the number of occurrences of x; in s

@ s is linear if |s|X[ <1, V1i<i<n

@ s is nondeleting if |5|Xi >1, Vi<i<n

@ s¢c Tz(Xn),Sl, ..., S5 € Tz(Xn),

@ s[si/x1,...,5n/xn) (simply s[s1,...,sp]): by substituting
simultaneously s; for every occurrence of x; in s

o formally:
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Trees

e se Tx(Xy), xi € X, |s\xi: the number of occurrences of x; in s
@ s is linear if |s|X[ <1, V1i<i<n
@ s is nondeleting if |5|Xi >1, Vi<i<n
@ s¢c Tz(Xn),Sl, ..., S5 € Tz(Xn),
@ s[si/x1,...,5n/xn) (simply s[s1,...,sp]): by substituting
simultaneously s; for every occurrence of x; in s
o formally:
o fors=x;, s[s1,....sp] =s;
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Trees

o s € Tx(Xy), xi € Xn, |s],.: the number of occurrences of x; in s
@ s is linear if |s|X[ <1, V1i<i<n
@ s is nondeleting if |5|Xi >1, Vi<i<n
@ s & Tz(Xn),Sl, ..., 5, € Tz(Xn),
@ s[si/x1,...,5n/xn) (simply s[s1,...,sp]): by substituting
simultaneously s; for every occurrence of x; in s
o formally:
o for s=x;, s[s1,...,sn] =5;
o fors=ceXy, Ss[s1,...,50]=c
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Trees

s € Tx(Xy), xi € X, |s\xi: the number of occurrences of x; in s
s is linear if |s|X[ <1, V1i<i<n

s is nondeleting if |5|Xi >1, Vi<i<n

s€ Tx(Xn),s1,....50 € Te(Xn),

s[s1/x1,...,Sn/xn] (simply s[si,...,s,]): by substituting
simultaneously s; for every occurrence of x; in s

o formally:
o for s=x;, s[s1,...,sn] =5;
o fors=cexy, s[s1,....sn]=c
o fors=o0(ty,..., te), k>1,0€%
s[sy, ..., sn] =0 (t1[s1, ..., Sl .-, telst, .-, sn])
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Trees

s € Tx(Xy), xi € X, |s\xi: the number of occurrences of x; in s
s is linear if |s|X[ <1, V1i<i<n

s is nondeleting if |5|Xi >1, Vi<i<n

s€ Tx(Xn),s1,....50 € Te(Xn),

s[s1/x1,...,Sn/xn] (simply s[si,...,s,]): by substituting
simultaneously s; for every occurrence of x; in s

o formally:
o for s=x;, s[s1,...,sn] =5;
o fors=cexy, s[s1,....sn]=c
o fors=0(ty,....t), k>10€X,

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 5/32



Tree homomorphisms

e = =1{¢,,C,,...} another set of variables, disjoint from any ranked
alphabet and X
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Tree homomorphisms

e 5 =1{¢,,C,,...} another set of variables, disjoint from any ranked
alphabet and X

o E,={¢,....5,}¥n>0
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Tree homomorphisms

e 5 =1{¢,,C,,...} another set of variables, disjoint from any ranked
alphabet and X

o B, ={¢,....5,}¥n>0

@ a tree homomorphism from ¥ to A: (hy)~o . hi : X — Ta (Ex),
k>0, :
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Tree homomorphisms

—

e 5 =1{¢,,C,,...} another set of variables, disjoint from any ranked
alphabet and X
o B,={&,....¢,} Yn>0

@ a tree homomorphism from ¥ to A: (hy)~o. he : 2 — Ta (Ex)
k>0, )

linear (for short /) if Yk > 1, 0 € X the tree hy(0) is linear in By
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Tree homomorphisms

—

E=1{¢,,&,, ...} another set of variables, disjoint from any ranked
alphabet and X

Ey={&,....E.}Vn>0
@ a tree homomorphism from ¥ to A: (hy)~o. he : 2 — Ta (Ex)
k>0, )

linear (for short /) if Vk > 1, o € X the tree hi(0) is linear in Ey

nondeleting (or complete) (for short ¢) if Yk > 1, 0 € X the tree
hi (o) is nondeleting in Ej
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Tree homomorphisms

e 5 =1{¢,,C,,...} another set of variables, disjoint from any ranked
alphabet and X

o By ={¢,....5,} ¥n>0

@ a tree homomorphism from ¥ to A: (hk)kZO, hy : Xy — Ta (Eg),
k>0,

o linear (for short /) if Vk > 1, 0 € X the tree hi(0) is linear in Ey

e nondeleting (or complete) (for short ¢) if Vk > 1, o € Ly the tree
hi () is nondeleting in E

@ alphabetic (for short al) if it is linear and Yk > 0, 0 € Xy we have
he(o) =6(&;,. -, G; ) for some & € Ay, (k> m >0) or h(o) = ¢;

]
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Tree homomorphisms

E=1{¢,,&,, ...} another set of variables, disjoint from any ranked
alphabet and X

E,=1{¢,....E}Vn>0

a tree homomorphism from £ to A: (hi),~q . hk : Zk — Ta (Ex),
k>0,

linear (for short /) if Vk > 1, o € X the tree hi(0) is linear in Ey
nondeleting (or complete) (for short ¢) if Yk > 1, 0 € ¥ the tree
hi () is nondeleting in E

alphabetic (for short al) if it is linear and Yk > 0, 0 € X, we have
he(0) = 6(E;,,....¢; ) for some 6 € Ay, (k> m > 0) or h(0) = ¢;

relabeling if Vk > 0, o € Ly we have hi(c) = 6(&q,..., &) for some
o€ Ny
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Tree homomorphisms

® (hk),>q induces a mapping
h: Ty (Xa) — Ta(Xp)

defined inductively by:
let t € Ty (Xp)
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Tree homomorphisms

° (hk)kzo induces a mapping
h: Ts (Xn) = Ta (Xn)

defined inductively by:
let t € Ty (Xp)

o h(t)=1t ifteX,
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Tree homomorphisms

 (hk)y>o induces a mapping
h: Ts (Xn) = Ta (Xn)

defined inductively by:
let t € Ty (Xp)
o h(t)=1t ifteX,

o h(t)=he(o)[h(tr) /&1, ... h(tx) /&) ift=0(t1,..., t,) with
k>0, 0€X, t1,...,t, € Tz(Xn)
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Tree homomorphisms

 (hk)y>o induces a mapping
h: Ts (Xn) = Ta (Xn)

defined inductively by:
let t € Ty (Xp)
o h(t)=1t ifteX,
o h(t)=he(o)[h(tr) /&1 ... h(t) /&) ift=0(t1,..., t,) with
kZ0,0’EZk, t1,..., tx € Tz(Xn)

@ H: the class of all tree homomorphisms and,
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Tree homomorphisms

 (hk)y>o induces a mapping
h: Ts (Xn) = Ta (Xn)
defined inductively by:

let t € Ty (Xp)

o h(t)=1t ifteX,
o h(t)=he(o)[h(tr) /&1 ... h(t) /&) ift=0(t1,..., t,) with
k>0, O'EZk, t1,..., tx € Tz(Xn)

@ H: the class of all tree homomorphisms and,

e for any combination w of /, ¢, and al we denote by w-H the class of
w-tree homomorphisms
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Tree homomorphisms

 (hk)y>o induces a mapping
h: Ts (Xn) = Ta (Xn)

defined inductively by:
let t € Ty (Xp)
o h(t)=1t ifteX,
o h(t)=he(o)[h(tr) /&1 ... h(t) /&) ift=0(t1,..., t,) with
k>0, O'EZk, t1,..., tx € Tz(Xn)
@ H: the class of all tree homomorphisms and,

@ for any combination w of /, ¢, and al we denote by w-H the class of
w-tree homomorphisms

@ REL: the class of all relabelings
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Bottom-up tree automata

@ A (deterministic) bottom-up tree automaton

A=(Q,%X,4,T)
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set
o X the input ranked alphabet
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set
e Y. the input ranked alphabet
o 0= (), ey the family of transition mappings
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

Q@ the finite state set

Y. the input ranked alphabet

0 = (0s)yex the family of transition mappings
T C @ the final state set
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set

e Y. the input ranked alphabet

o 0 = (0g)y ey, the family of transition mappings
o T C Q the final state set

o&U:QkHQforeveryUEZk,kZO
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set
e Y. the input ranked alphabet
o 0 = (0g)y ey, the family of transition mappings
o T C Q the final state set
° 50:Qk—>Qforevery0€Zk,k20
@ observe: if o € ¥, then 5, € Q
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set
e Y. the input ranked alphabet
o 0 = (0g)y ey, the family of transition mappings
o T C Q the final state set
° 50:Qk—>Qforevery0€Zk,k20
@ observe: if o € X, then 6, € Q
o define a mapping 5: Ty — Q inductively as follows:
for every t € Tyx:
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

Q@ the finite state set
Y. the input ranked alphabet
0 = (0s)yex the family of transition mappings
T C Q the final state set
° (50:Qk—>Qforevery(7€Zk,k20
@ observe: if o € X, then 6, € Q
o define a mapping 5: Ty — Q inductively as follows:
for every t € Tyx:
0 6(t) =0, ift=0€ X,
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

Q@ the finite state set
Y. the input ranked alphabet
0 = (0s)yex the family of transition mappings
T C Q the final state set
° (50:Qk—>Qforevery(7€Zk,k20
@ observe: if o € X, then 6, € Q
o define a mapping 5: Ty — Q inductively as follows:
for every t € Tyx:
0 0(t) =6, ift=0€ X,

0 5(t) =06,(6(t1),....0(ty)) ift=0(tr,... . t,) with k > 1, 0 € 5
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

Q@ the finite state set
Y. the input ranked alphabet
0 = (0s)yex the family of transition mappings
T C Q the final state set
° (50:Qk—>Qforevery(7€Zk,k20
@ observe: if o € X, then 6, € Q
o define a mapping 5: Ty — Q inductively as follows:
for every t € Tyx:
0 0(t) =6, ift=0€ X,
0 0(t) = 6,(6(t1),....0(ty)) ift=0(tr,... . t,) with k > 1, 0 € 5

o t € Ty is accepted (or recognized) by A if 6(t) € T
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Bottom-up tree automata

o A (deterministic) bottom-up tree automaton
A=(QX4T)

o @ the finite state set
e Y. the input ranked alphabet
o 0 = (0g)y ey, the family of transition mappings
o T C Q the final state set
° (50:Qk—>Qforevery(7€Zk,k20
@ observe: if o € X, then 6, € Q
o define a mapping 5: Ty — Q inductively as follows:
for every t € Tyx:
0 0(t) =6, ift=0€ X,
0 0(t) = 6,(6(t1),....0(ty)) ift=0(tr,... . t,) with k > 1, 0 € 5
o t € Ty is accepted (or recognized) by A if 6(t) € T
o L(A)={te Ty | 4(t) € T}: the tree language of (all trees
accepted by) A
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 9/32



Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
@ REC: class of all recognizable tree languages
@ REC is closed under
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
@ REC: class of all recognizable tree languages
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@ union,
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
@ REC: class of all recognizable tree languages

@ REC is closed under

@ union,
e intersection,
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
@ REC: class of all recognizable tree languages

@ REC is closed under

@ union,
@ intersection,
e complementation,
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
@ REC: class of all recognizable tree languages
@ REC is closed under

@ union,

@ intersection,

e complementation,

o linear tree homomorphisms,
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Recognizable tree languages

e L C Tyx: recognizable if L = L(.A) for some A = (Q,%,6,T)
@ REC: class of all recognizable tree languages
@ REC is closed under

@ union,

@ intersection,

e complementation,

o linear tree homomorphisms,
e inverse tree homomorphisms

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010



[|O]-substitutions

@ sc Tx(Xy),s1,-..,5, € Tx, S[s1,...,5n]
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[|O]-substitutions

@ s€ Tx(Xy), s1,---,5, € Ts, s[s1,...,5n]
4 Ll,...,L,,g Tz
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[|O]-substitutions

@ s€ Tx(Xy), s1,---,5, € Ts, s[s1,...,5n]
4 L1,...,L,,§ Tz

@ [O-substitution of L; at x; (1 < i < n) in s:
S[Ll ..... Ln]IO = {S[Sl ..... Sn] | s€el;,1<i< n}

George Rahonis (University of Thessaloniki)

Equational Tree Transformations

Linz, May 31, 2010 10 / 32



[|O]-substitutions

@ s€ Tx(Xy), s1,---,5, € Ts, s[s1,...,5n]
4 L1,...,L,7 g Tz
o [O-substitution of Lj at x; (1 <i < n)ins:
s[Li, ..., Lnlio = {s[s1,....sn] | si € Li,1 < i< n}
e Example: 0 € Xy, 0(x1,x1)[L1,D]j0 = D evenif Ly # D
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[|O]-substitutions

s€ Tx(Xn),s1,....50 € Ty, S[s1,..., 5]

L]_,...,Ln g TZ

I0-substitution of Lj at x; (1 <i<n)ins:

s[Li, ..., Lnlio = {s[s1,....sn] | si € Li,1 < i< n}
Example: 0 € Xy, 0(x1,x1)[L1,D]10 = D even if L1 # D
[10]-substitution of L; at x; (1 < i < n)ins:
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[|O]-substitutions

s€ Tx(Xn),s1,....50 € Ty, S[s1,..., 5]
Li,...,L, C Ty
o [O-substitution of Lj at x; (1 <i < n)ins:
s[Li, ..., Lnlio = {s[s1,....sn] | si € Li,1 < i< n}
Example: 0 € Xy, 0(x1,x1)[L1,D]10 = D even if L1 # D
[10]-substitution of L; at x; (1 < i < n)ins:
S[Ll, cee, Ln][lo} = {5[51, cee, Sn] ’ sieLjif ‘S‘X,‘ >0
and s; =arbitrary tree in Ty otherwise, 1 < i < n}
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[|O]-substitutions

s€ Tx(Xn),s1,....50 € Ty, S[s1,..., 5]
L]_,...,I_n g TZ
o [O-substitution of Lj at x; (1 <i < n)ins:
s[Li, ..., Lnlio = {s[s1,....sn] | si € Li,1 < i< n}
Example: 0 € Xy, 0(x1, x1)[L1,D]j0 =D even if L1 # O
[10]-substitution of L; at x; (1 < i < n)ins:
S[Ll, . Ln][IO] = {5[51, - ,Sn] ’ s € L;if ‘5|x,- >0

and s; =arbitrary tree in Ty otherwise,1 < i < n}
Example: o € ¥, 0(x1, x1)[L1, D]jj0) = {o(t, t) | t € L1}
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Ol-substitutions

ool =4 (i), o0 = (s s) € TN
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Ol-substitutions

ool =4 (i), s = (s s) € TN

@s [s(l)/xl, .. ,s(”)/xn} (simply s [s(l), . s(”q) (by substituting

simultaneously (51('), ce 5)@) for the occurrences of x; in s from left

to right)
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Ol-substitutions

ool =4 (i), s = (s s) € TN

°s [s(l)/xl, e ,s(”)/x,,] (simply s [5(1), e s(”)}) (by substituting
simultaneously (sl(i), e 5/(\1,)) for the occurrences of x; in s from left
to right)

o Ol-substitution of L; at x; (1 <i < n) in s:
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Ol-substitutions

ool =4 (i), s = (s s) € TN

°s [s(l)/xl, e ,s(”)/x,,] (simply s [5(1), e s(”)}) (by substituting
simultaneously (sl(i), e 5/(\1,)) for the occurrences of x; in s from left
to right)

o Ol-substitution of Lj at x; (1 <i < n)ins:

o s[Li,..., Lolor = {s [s(l) ..... s(")} sl e M 1< i< n)
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Ol-substitutions

she =2 (1 <i<n), s = (s ) e Tt

°s [s(l)/xl, e ,s(”)/x,,] (simply s [5(1), e s(”)}) (by substituting
simultaneously (sl(i), e 5/(\1,)) for the occurrences of x; in s from left

to right)
Ol-substitution of L;j at x; (1 <i<n)ins:
..... Lplor ={s [s(l),...,s(”)} |st) € LI)."', 1<i<n}

[ ()
0
~
—_

s linear = s[Ly, ..., Ln][/o] =s[Ly, ..., Ly)or
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Ol-substitutions

she =2 (1 <i<n), s = (s ) e Tt

°s [s(l)/xl, e ,s(”)/x,,] (simply s [s(l), e s(”)}) (by substituting
simultaneously (sl(i), e 5/(\1,)) for the occurrences of x; in s from left
to right)

Ol-substitution of Lj at x; (1 <i<n)ins:

..... Lplor ={s [s(l),...,s(”)} |s) € LI)."', 1<i<n}

s linear == s[L1,..., La]po) = s[L1, .- -, Ln]os

LC Te(Xy), Li,.... Ly C Ty, u=[IO], OI

[ ()
0
~
—_
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Ol-substitutions

she =2 (1 <i<n), s = (s ) e Tt

°s [s(l)/xl, e ,s(”)/x,,] (simply s [s(l), e s(”)}) (by substituting
simultaneously (sl(i), e 5/(\1,)) for the occurrences of x; in s from left
to right)

Ol-substitution of Lj at x; (1 <i<n)ins:

..... Lplor ={s [s(l),...,s(”)} |s) € LI)."', 1<i<n}

s linear —- S[Ll,...,l_n][/o] = S[Ll, R Ln]OI
LC Te(Xy), Li,..., Ly C T, u=[lO], OI

[ ()
0
~
—_
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Systems of equations of tree languages

@ A system of equations of tree languages over X is a system
(E) x=K;, 1<i<n,

where K; C Ty (X,) are finite tree languages
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Systems of equations of tree languages

@ A system of equations of tree languages over ¥ is a system
(E) X,':K,',].SI'SH,

where K; C Tx(X,) are finite tree languages
e u=[l0], Ol
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Systems of equations of tree languages

@ A system of equations of tree languages over ¥ is a system
(E) X,':K,',].SI'SH,

where K; C Tx(X,) are finite tree languages

e u=[lO], Ol
o (Li,...,L,) € (P(Ty))" is a u-solution of (E) if
Li = Ki[L1,... Lols V1< i<n
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Systems of equations of tree languages

@ A system of equations of tree languages over ¥ is a system
(E) X,':K,',].SI'SH,

where K; C Tx(X,) are finite tree languages
e u=[lI0], Ol
o (Ly,..., L,) € (P(Tg))" is a u-solution of (E) if
L,' = Ki[Lly---,Ln]u, V1 S I'S n
Ly,..., L,) € (P(Tx))" is the least u-solution of (E) if L; C L!
1 < i < n) for every other u-solution (Lf,..., L)) of (E)
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Systems of equations of tree languages

@ A system of equations of tree languages over ¥ is a system
(E) X,':K,',].SI'SFI,

where K; C Tx(X,) are finite tree languages

e u=[lI0], Ol

o (Ly,..., L,) € (P(Tg))" is a u-solution of (E) if
L,' = Ki[Lly---,Ln]u, V1 S I'S n

o (Ly,..., L,) € (P(Tx))" is the least u-solution of (E) if L; C L!
(1 < i< n) for every other u-solution (L], ..., L}) of (E)

@ Existence of the least u-solution of (E), by:
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Systems of equations of tree languages

@ A system of equations of tree languages over ¥ is a system
(E) X,':K,',].SI'SH,

where K; C Tx(X,) are finite tree languages

e u=[lO], Ol

o (Ly,..., L,) € (P(Tg))" is a u-solution of (E) if
L,' = Ki[Lly---,Ln]u, V1 S I'S n

o (Ly,..., L,) € (P(Tx))" is the least u-solution of (E) if L; C L!
(1 < i< n) for every other u-solution (L], ..., L}) of (E)

e Existence of the least u-solution of (E), by:

@ Tarski's fixpoint theorem: Let (V, <) be an w-complete poset with
least element | and f: V — V an w-continuous mapping, i.e.,
f(sup{aj | i > 0}) =sup{f(a;) | i > 0} for every w-chain
ag < a; <...in V. Then f has a least fixpoint fixf, and
fixf = sup{f()(L) | i > 0}.
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u-equational tree languages

o L C Ty: wu-equational if it is the union of some components of the
least wu-solution of a system of equations of tree languages
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u-equational tree languages

o L C Ty: u-equational if it is the union of some components of the
least u-solution of a system of equations of tree languages

o Mezei & Wright 1967:
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u-equational tree languages

o L C Ty: u-equational if it is the union of some components of the
least u-solution of a system of equations of tree languages

o Mezei & Wright 1967:

e recognizable tree languages = Ol-equational tree languages
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u-equational tree languages

o L C Ty: u-equational if it is the union of some components of the
least u-solution of a system of equations of tree languages

o Mezei & Wright 1967:

e recognizable tree languages = Ol-equational tree languages

@ Bozapalidis & Rahonis 2004:
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u-equational tree languages

o L C Ty: u-equational if it is the union of some components of the
least u-solution of a system of equations of tree languages

o Mezei & Wright 1967:

e recognizable tree languages = Ol-equational tree languages

@ Bozapalidis & Rahonis 2004:

o [IO]-equational tree languages = closure of Ol-equational tree
languages under tree homomorphisms
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Pairs of trees: [IO]- and Ol-substitutions

) (S,t)E Tz(Xn)X TA(X,,), Ri,....Ry C Ty X Tx
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Pairs of trees: [IO]- and Ol-substitutions

) (S,t) S Tz(Xn) X TA(X,,), Ri,....R, C Tz X TA
o [IO]-substitution of R; at x; (1 <i < n) in (s, t):
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty
o [IO]-substitution of R; at x; (1 <i < n) in (s,t):
(4] (S, t) [R1 ,,,,,, R”][IO] = {(S [51 ..... Sn] T [tl ..... l’n]) | (S,', t,') c R,’

if |s|x, > 0 or |t|5, > 0 and (s;, tj) =arbitrary pair in Tz X Tp
otherwise, 1 </ < n}
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty
o [IO]-substitution of R; at x; (1 <i < n) in (s,t):
) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;

if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}
o [s|, =Aj, |tly, =u;, mi=max{A;,pu;} V1<i<n,
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty
o [IO]-substitution of R; at x; (1 <i < n) in (s,t):
) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;

if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}
o [s|, = Aj, |ty =wu;,, mi=max{A;,pu;} V1<i<n,

o rl) — ((51("): t{")) ,,,, (sﬁ,;'), t,ﬁ?)) e (T x Ta)™,
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty
o [IO]-substitution of R; at x; (1 <i < n) in (s,t):
) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;

if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}
o [s|, = Aj, |ty =wu;,, mi=max{A;,pu;} V1<i<n,

o rl) = ((sl(i), tp) ..... (s,(,;,) t#?)) € (Tg x Tp)™,
) s<’) = (sl('j,...,s)(\';_)), t(i) = (tl(i),..., F(fl,)>

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 14 / 32



Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty

o [IO]-substitution of R; at x; (1 <i < n) in (s,t):

) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;
if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}

sl = i el = e i = max{Aigi} V1< i<n

0 = (00 o (s, 60)) € (T x Ta)m,
0 = (50, s0). 10 = (0 )

substitution of r') at x; (1 <i < n)in (s, t):
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty

o [IO]-substitution of R; at x; (1 <i < n) in (s,t):

) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;
if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}

o [s|, = Aj, |ty =wu;,, mi=max{A;,pu;} V1<i<n,

o rl) = ((sl(i), tp) ..... (s,(,;,) t#?)) € (Tg x Tp)™,
o s = (s",.sl), €0 = (¢, q))

o substitution of ¥')) at x; (1 < i < n) in (s, t):
@jwm> ..... rW}:@Fm ..... aﬂ,4w> ..... tWD
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty

o [IO]-substitution of R; at x; (1 <i < n) in (s,t):

) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;
if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}

o [s|, = Aj, |ty =wu;,, mi=max{A;,pu;} V1<i<n,

o rl) = ((sl(i), tp) ..... (s,(,;,) t#?)) € (Tg x Tp)™,
o s = (s",.sl), €0 = (¢, q))

o substitution of ¥')) at x; (1 < i < n) in (s, t):

o (s t) [r(l) ..... r(”)] = (s [s(l) ..... s(”)} 't [t(l) ..... t(”)D

e Ol-substitution of R; at x; in (s, t):
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Pairs of trees: [IO]- and Ol-substitutions

) (S, t) eTs (Xn) X Ta (Xn), Ry,..., R, C Ty x Ty

o [IO]-substitution of R; at x; (1 <i < n) in (s,t):

) (S, t) [Rl ,,,,,, R”][IO} = {(S [51 ..... Sn] ,t [1.'1 ..... tn]) | (S,‘, 1.',') € R;
if |s|x, > 0 or |t|x, > 0 and (s;, t;) =arbitrary pair in Ty X Ty
otherwise, 1 < < n}

sl = i el = e i = max{Aigi} V1< i<n

r(i) = ((sl(i), tl(i)> ..... (s,(,;,) t,(,;l)>> € (Te x Tp)™,

s() = (sl(i) ..... sﬁ')) tl) = (tl(i) ..... tﬁ(ll,:))

substitution of rl) at x; (1 < i< n) in (s, t):

(s, t) [r(l) ..... r(”)] = (s [5(1) ..... s(”)} t [t(l) ..... t(”)D
Ol-substitution of R; at x; in (s, t):

o (s, t)[Ri,..., Rnlo) =

{(s, t) [r(l) ..... r<”)} | r() e R™ 1<i< n}
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Rairs of trees: [IO]- and Ol-substitutions

Example
oE X3 8EN,, (s, t) = (U(X1.X1.X3),5(X3:X1)):
Ri={(s1,t1),(s;, 1)}, Re =9, Ry = {(s3,13)}
(s, t) [R1, R, Rs]yop = { (0 (51, 51, 53), 6(t3, 1)), (o (s1, 51, 53), 0(t3, t1)) }

(s.t) [R1, R, R3] o) = {(c(s1,51,53),6(t3, t1)), (0 (s1, 51, 53), (13, 1)),
(0(s1.51,53),6(t3, t1)), (0 (s1,51,53), (13, 1)) }

v
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Tree transformations: [IO]- and Ol-substitutions

@ RC Ty (Xn) X TA(Xn), Ri,...,Ry C Ty x Tp, u=[I0],0l
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Tree transformations: [IO]- and Ol-substitutions
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Tree transformations: [IO]- and Ol-substitutions

o R - Tz (Xn) X TA (Xn), Rl ..... R,-, - T): X TA, u= [/O],OI

) R[Rl ..... Rn],_, = U(s,t)eR(si t) [Rl ..... R,,]u
@ RC Ty (Xy) X Ta(Xp): linear if for every (s, t) € R, s and t are
linear trees
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Tree transformations: [IO]- and Ol-substitutions

e RC Tz(Xn)XTA(X),Rl

..... R,-, g T): X TA, u = [/O], 0Ol

''''' Rn]u = U(s,t)ER(S' t) [RL SRR R”]u

R C Tx (Xy) X Ta (Xy): linear if for every (s, t) € R, s and t are
linear trees

R C Ty (Xy) X Tp (Xy) linear

- R[Rl ..... Rn][IO] = R[Rl ..... Rn]OI

°
=)
Y
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@ h: Tr(X,) — Tx(Xy), W : Tr(X,) — Ta(X,) tree homomorphisms
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e h: Tr(X,) — Tx(X,), W : Tr(X,) — Ta(X,) tree homomorphisms
@ hand h define a tree transformation for every L C Tr(X,):

(h,W)(L) = {(h(t), W (1)) | t € L}
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@ A bimorphism over I', %, and A
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where
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(h, W) (L) = {(h(t), K (1)) | t € L}
@ A bimorphism overT', %, and A
(h, L, )

where
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e h: Tr(X,) — Tx(X,), W : Tr(X,) — Ta(X,) tree homomorphisms
@ hand h define a tree transformation for every L C Tr(X,):
(h, W) (L) = {(h(t), K (1)) | t € L}
@ A bimorphism overT', %, and A
(h, L, )

where

o L C Tt is a recognizable tree language,
e h: Tt — Ty the input tree homomorphism,
o H : Tr — T the output tree homomorphism

e (h,h')(L): the tree transformation computed by (h, L, h")
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h: Tr(X,) — Ts(X,), B : Tr(X,) — Ta(X,) tree homomorphisms
h and K define a tree transformation for every L C Tr(X,):
(h, W) (L) = {(h(t), K (1)) | t € L}
@ A bimorphism overT', %, and A
(h, L, )

where

o L C Tt is a recognizable tree language,

e h: Tt — Ty the input tree homomorphism,

o W : Tr — T, the output tree homomorphism
(h, h')(L): the tree transformation computed by (h, L, h'")
wi and wy combinations of /, ¢, and al (including the empty
combination)
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h: Tr(X,) — Ts(X,), B : Tr(X,) — Ta(X,) tree homomorphisms
h and K define a tree transformation for every L C Tr(X,):
(h, W) (L) = {(h(t), K (1)) | t € L}
@ A bimorphism overT', %, and A
(h, L, )

where

o L C Tt is a recognizable tree language,

e h: Tt — Ty the input tree homomorphism,

o W : Tr — T, the output tree homomorphism
(h, h')(L): the tree transformation computed by (h, L, h'")
wi and wy combinations of /, ¢, and al (including the empty
combination)
B(wi-H, wo-H): the class of all tree transformations computed by
bimorphisms with input homomorphism of type w; and output
homomorphism of type w»
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Systems of equations of tree transformations

Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.
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Systems of equations of tree transformations

Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.

,Sn) € (P (Ts x Typ))" is a u-solution of (E) if

e (S1,...
S = Ri[S1,.... S0y V1< i<n

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 18 /



Systems of equations of tree transformations

Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.

e (S1,...,5,) € (P(Ts x Ta))" is a u-solution of (E) if
Si=Ri[S1,.... 5]y V1<i<n

o (S1,..., Sn) € (P (Tx x Ta))" is the least u-solution of (E) if
Si € S/ (1 < i< n) for every other u-solution (S;, ..., S}) of (E)
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Systems of equations of tree transformations

Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.

e (S1,...,5,) € (P(Ts x Ta))" is a u-solution of (E) if
S =Ri[S1,....S]y Y1<i<n
o (S1,...,5,) € (P(Tg x Ta))" is the least u-solution of (E) if
Si € S/ (1 < i< n) for every other u-solution (S7,..., S!) of (E)
e Existence of the least u-solution of (E): (P (Tg x Ta))" is
w-complete and

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 18 / 32



Systems of equations of tree transformations

Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.

® (51,...,5,) € (P(Tg x Tp))" is a u-solution of (E) if
S =Ri[S1,....S]y Y1<i<n
o (S1,...,5,) € (P(Tg x Ta))" is the least u-solution of (E) if
Si € S/ (1 < i< n) for every other u-solution (S7,..., S!) of (E)

e Existence of the least u-solution of (E): (P (Tg x Ta))" is
w-complete and

o (DE,u . ('P (Tz X TA)) ( (Tz X TA)) given by
(Fi,....Fa) — (Ri[F1, ..., Falu, oo  RalF1, .o Falu) is
w-continuous,
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Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.

e (S1,...,5,) € (P(Ts x Ta))" is a u-solution of (E) if
S =Ri[S1,....S]y Y1<i<n
o (S1,...,5,) € (P(Tg x Ta))" is the least u-solution of (E) if
Si € S/ (1 < i< n) for every other u-solution (S7,..., S!) of (E)

e Existence of the least u-solution of (E): (P (Tg x Ta))" is
w-complete and

o O, : (P (Tex Ta))" — (P (Tx x TA)) given by
(Fi,....Fy) — (Ri[F, ... Folus oo s RalF1, oo Folu) is
w-continuous,

@ Tarski: "least fixpoint of ®f , exists"
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Systems of equations of tree transformations

Definition
A system of equations of tree transformations over 2. and A is a system

(E) X,'ZR,',].SI'SH,

where Ry, ..., R, € Tx (X,) X Ta (X,) are finite tree transformations.

e (S51,...,5,) € (P(Ts x Ta))" is a u-solution of (E) if
S =Ri[St,....5], Y1<i<n
o (S1,...,5,) € (P(Tg x Ta))" is the least u-solution of (E) if
Si € S/ (1 < i< n) for every other u-solution (Si,..., S!) of (E)

e Existence of the least u-solution of (E): (P (Tg x Ta))" is
w-complete and

o O, : (P (Tex Ta))" — (P (Tx x TA)) given by
(Fi,....Fy) — (Ri[F1, ... Folus oo s RalF1, oo Falu) is
w-continuous,

@ Tarski: "least fixpoint of @ , exists" and equals the least u-solution
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Systems of equations of tree transformations: least

u-solutions

(] ﬁXCDE'u = supkzo ((Sl,kv . Sn,k))
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Systems of equations of tree transformations: least

u-solutions

o fiXCDEvu = supkzo ((51’;(, ey 5n,k>)
@ S5i0=0, for1 <i<n, and
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Systems of equations of tree transformations: least

u-solutions

o fiXCDEvu = supkzo ((51’;(, ey 5n,k>)
@ S5i0=0, for1<i<n, and
® Sikt1=Ri[Sik - Sk, forl1<i<nand k>0
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u-equational tree transformations

Definition

S C Tx x Ty is u-equational (u-[IO], Ol) if it is the union of some
components of the least u-solution of a system of equations of tree
transformations over X and A.

® EQUTjjp) the class of all [/O]-equational tree transformations

21/ 32
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u-equational tree transformations

Definition

S C Tx x Ty is u-equational (u-[IO], Ol) if it is the union of some
components of the least u-solution of a system of equations of tree
transformations over X and A.

® EQUTyjp) the class of all [/O]-equational tree transformations

@ EQUTyp; the class of all Ol-equational tree transformations
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Equational Tree Transformations

George Rahonis (University of Thessaloniki)



u-equational tree transformations - further classes

@ RC Tx(X,) x Ta(Xy) is letter-like if V(s t) € R
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u-equational tree transformations - further classes

o RC Tx(X,) X Ta(Xy) is letter-like if V(s t) € R

e s, t are linear
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u-equational tree transformations - further classes

o RC Tx(X,) x Ta(Xy) is letter-like if V(s t) € R

e s, t are linear
o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;
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u-equational tree transformations - further classes

o RC Tx(X,) X Ta(Xy) is letter-like if V(s t) € R

e s, t are linear
o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;
° t:(S(le ..... ij) where m > 0,0 € Ay or t=x;
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u-equational tree transformations - further classes

e RC TZ(X,,) X TA(X,,) is letter-like if V(s, t) ER
e s, t are linear

o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;

° t:&(le,...,xjm)wheremZO,éEAm or t=x;

@ R C Tx(X,) X Ta(X,) is variable symmetric if V(s,t) € R
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o R C Tx(X,) X Ta(Xy) is variable symmetric if V(s,t) € R
o [s|y, =|tlx, VI<i<n
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° t:&(le,...,xjm)wheremZO,éEAm or t=x;

o R C Tx(X,) X Ta(Xy) is variable symmetric if V(s,t) € R
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o RC Tx(X,) x Ta(Xy) is rule-like if (s, t) € R
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u-equational tree transformations - further classes

o RC Tx(X,) X Ta(Xy) is letter-like if V(s t) € R

e s, t are linear
o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;
° t:&(le,...,xjm)wheremZO,éEAm or t=x;

o R C Tx(X,) X Ta(Xy) is variable symmetric if V(s,t) € R
o sy, =|tlx;, VI1<i<n

o RC Tx(X,) X Ta(X,) is rule-like if (s, t) € R

o s=0(Xj,...,X,) is linear where k > 0, ¢ € Xy,
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u-equational tree transformations - further classes

o RC Tx(Xy) X Ta(Xy) is letter-like if ¥(s, t) € R
e s, t are linear
o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;
° t:&(le,...,xjm)wheremZO,éEAm or t=x;
e R C Tx(Xs) X Ta(X,) is variable symmetric if ¥(s, t) € R
o sy, =|tlx;, VI1<i<n

e RC Tx(X,) X Ta(Xy) is rule-like if V(s,t) € R
0 5= (T(X,'l,...,X,'k) is linear where k > 0, 0 € X,
e tc TA({X,'1 ..... X,'k})
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u-equational tree transformations - further classes

o RC Tx(X,) X Ta(Xy) is letter-like if V(s t) € R

e s, t are linear
o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;
° t:&(le,...,xjm)wheremZO,éEAm or t=x;

o R C Tx(X,) X Ta(Xy) is variable symmetric if V(s,t) € R
o sy, =|tlx;, VI1<i<n

o RC Tx(X,) X Ta(X,) is rule-like if (s, t) € R

0 5= (T(X,'l,...,X,'k) is linear where k > 0, 0 € X,
e te TA({X,'1 ..... X,'k})
e or
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u-equational tree transformations - further classes

o RC Tx(X,) X Ta(Xy) is letter-like if V(s t) € R

e s, t are linear
o s=0(Xj,...,X;,) where k >0, 0 € Xy or s=x;
° t:&(le,...,xjm)wheremZO,éEAm or t=x;

o R C Tx(X,) X Ta(Xy) is variable symmetric if V(s,t) € R
o sy, =|tlx;, VI1<i<n

o RC Tx(X,) X Ta(X,) is rule-like if (s, t) € R

0 5= (T(X,'l,...,X,'k) is linear where k > 0, 0 € X,
e te TA({X,'1 ..... X,'k})
e or

o (s,t) = (x.,%)

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 22/



u-equational tree transformations - further classes

@ A system of equations
(E) X,':R,',].Sl'gn,

of tree transformations over X and A is letter-like (resp. variable
symmetric, rule-like) if R; is letter-like (resp. variable symmetric,
rule-like) V1 < i <n
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u-equational tree transformations - further classes

@ A system of equations
(E) X,':R,',].Sign,

of tree transformations over X and A is letter-like (resp. variable
symmetric, rule-like) if R; is letter-like (resp. variable symmetric,
rule-like) V1 < i <n

@ S C Ty X Tp: It-u-equational (resp. vs-u-equational, rl-u-equational)
if it is the union of some components of the least u-solution of a
letter-like (resp. variable symmetric, rule-like) system of tree
transformations over X and A
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u-equational tree transformations - further classes

@ A system of equations
(E) X,':R,',].Sign,

of tree transformations over X and A is letter-like (resp. variable
symmetric, rule-like) if R; is letter-like (resp. variable symmetric,
rule-like) V1 < i <n

@ S C Ty x Tp: lt-u-equational (resp. vs-u-equational, rl-u-equational)
if it is the union of some components of the least wu-solution of a
letter-like (resp. variable symmetric, rule-like) system of tree
transformations over ¥ and A

o [t-EQUT,, vs-EQUT,, rl-EQUT,
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u-equational tree transformations - further classes

@ A system of equations
(E) X,':R,',].Sign,

of tree transformations over X and A is letter-like (resp. variable
symmetric, rule-like) if R; is letter-like (resp. variable symmetric,
rule-like) V1 < i <n

@ S C Ty x Tp: lt-u-equational (resp. vs-u-equational, rl-u-equational)
if it is the union of some components of the least wu-solution of a
letter-like (resp. variable symmetric, rule-like) system of tree
transformations over ¥ and A

o It-EQUT,, vs-EQUT,, rl-EQUT,
o [-rl-EQUTyp;, I-vs-rl-EQUTp,
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Main results

o EQUT| ;o) = B(H, H)

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2



Main results

o EQUTyo; = B(H, H)
o EQUTy = B(I-H, I-H)

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 24 / 32



Main results

o EQUTyo; = B(H, H)
o EQUTo = B(I-H, I-H)
o It-EQUTy; = B(al-H, al-H)

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 24 / 32



Main results

EQUT o) = B(H, H)
EQUTo = B(I-H, I-H)
It-EQUTo; = B(al-H, al-H)
vs-EQUTo; = B(lc-H, lc-H)
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Main results

EQUT|0; = B(H, H)
EQUTo = B(I-H, I-H)
It-EQUTo, = B(al-H, al-H)
vs-EQUTp; = B(lc-H, Ic-H)
H-EQUT 0 = B(REL, H)
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Main results

EQUT|0; = B(H, H)

EQUTo = B(I-H, I-H)
1t-EQUTo; = B(al-H, al-H)
vs-EQUTp; = B(lc-H, Ic-H)
r-EQUT o) = B(REL, H)

(H, H) (EQUTor) = EQUTjj0
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Main results

EQUT o) = B(H, H)

EQUTy; = B(I-H, I-H)

It-EQUTo, = B(al-H, al-H)

vs-EQUTp; = B(lc-H, Ic-H)

r-EQUT (01 = B(REL, H)

(H,H) (EQUTyo)) = EQUT o)

Equational characterization of some well-known classes of tree
transformations:
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Main results

EQUT o) = B(H, H)
EQUTy; = B(I-H, I-H)
It-EQUTo; = B(al-H, al-H)
vs-EQUTp; = B(lc-H, Ic-H)
r-EQUT (01 = B(REL, H)
(H,H) (EQUTyo)) = EQUT 0
Equational characterization of some well-known classes of tree
transformations:
o r-EQUTo] = BOT
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Main results

EQUT o) = B(H, H)
EQUTy; = B(I-H, I-H)
It-EQUTo; = B(al-H, al-H)
vs-EQUTp; = B(lc-H, Ic-H)
r-EQUT (01 = B(REL, H)
(H,H) (EQUTyo)) = EQUT 0
Equational characterization of some well-known classes of tree
transformations:
o -EQUTyo) = BOT
o I-r-EQUTo = I-BOT
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Main results

EQUT o) = B(H, H)
EQUTy; = B(I-H, I-H)
It-EQUTo; = B(al-H, al-H)
vs-EQUTp; = B(lc-H, Ic-H)
r-EQUT (01 = B(REL, H)
(H,H) (EQUTyo)) = EQUT 0
Equational characterization of some well-known classes of tree
transformations:

o -EQUTyo) = BOT

o I--EQUTo; = I-BOT

o l-vs-r-EQUTy, = In-BOT
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It-EQUTo; = B(al-H, al-H)

vs-EQUTp; = B(lc-H, Ic-H)

r-EQUT (01 = B(REL, H)

(H,H) (EQUTyo)) = EQUT 0

Equational characterization of some well-known classes of tree
transformations:

o rl-EQUT| 0] = BOT

o [-rl-EQUTp; = I-BOT

o [-vs-rl-EQUTp; = In-BOT
o vs-EQUTp; = In-XTOP
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Main results

EQUT o) = B(H, H)

EQUTy; = B(I-H, I-H)

It-EQUTo; = B(al-H, al-H)

vs-EQUTp; = B(lc-H, Ic-H)

r-EQUT (01 = B(REL, H)

(H,H) (EQUTyo)) = EQUT 0

Equational characterization of some well-known classes of tree
transformations:

o rl-EQUT| 0] = BOT

o [-rl-EQUTp; = I-BOT

o [-vs-rl-EQUTp; = In-BOT
o vs-EQUTp; = In-XTOP

o Mezei-Wright type result for EQUT|;0) and EQUTo,
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Abstraction to algebras

o A X-algebra
A= (AZH

where A is a nonempty set, called the domain set of A, and
YA = (04 | ¢ € X) such that Yk > 0 and o € X, we have
oA Ak S A
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Abstraction to algebras

o A X-algebra
A= (AZA

where A is a nonempty set, called the domain set of A, and
YA = (04 | ¢ € X) such that Yk > 0 and o € X, we have
oA AR — A

T = (T, X7) is a X-algebra with

U'T(Sl,...,sk) :U(Sl,...,Sk)

for every k >0, 0 € Xy, and s1,...,5¢ € Ty

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 25 /32



Abstraction to algebras

o A X-algebra
A= (AZA

where A is a nonempty set, called the domain set of A, and
YA = (04 | ¢ € X) such that Yk > 0 and o € X, we have
oA AR — A

T = (T, X7) is a X-algebra with

U'T(Sl,...,sk) :U(Sl,...,Sk)

for every k >0, 0 € Xy, and s1,...,5¢ € Ty

@ In fact 7 is the free L-algebra, i.e., for every other X-algebra A there
is a unique mapping (morphism) H, : Ty — A satysfying
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Abstraction to algebras

o A X-algebra
A= (AZA

where A is a nonempty set, called the domain set of A, and
YA = (04 | ¢ € X) such that Yk > 0 and o € X, we have
oA AR — A

T = (T, X7) is a X-algebra with

U'T(Sl,...,sk) :U(Sl,...,Sk)

for every k >0, 0 € Xy, and s1,...,5¢ € Ty

@ In fact 7 is the free L-algebra, i.e., for every other X-algebra A there
is a unique mapping (morphism) H, : Ty — A satysfying
o Hy(o(st,..., sk ) = A (Ha(s1), ..., Hu(sk)) Yk>0,0€X,
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Algebras: evaluations

o A= (AXA): X-algebra
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Algebras: evaluations

o A= (AXA): X-algebra
@ s ¢c Tz(X,,), (81,...,3,,) e A"
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Algebras: evaluations

o A= (AXA): X-algebra
@ s¢c Tz(Xn), (al, ...,a,,) e A"

@ evaluation of s at (ay,...,a,) in A is denoted by s[ai, ..., an|4, and
is defined inductively:
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Algebras: evaluations

o A= (AXA): X-algebra
@ s¢c Tz(Xn), (al, ...,a,,) e A"

e evaluation of s at (a1,...,ap) in A is denoted by s|ai, ..., an| 4, and
is defined inductively:

o if s=x;, thens[ay,..., an]4 = a;
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Algebras: evaluations

o A= (AXA): X-algebra
@ s¢c Tz(Xn), (al, ...,a,,) e A"

e evaluation of s at (a1,...,ap) in A is denoted by s|ai, ..., an| 4, and
is defined inductively:

o if s=x;, thenslaj,...,an|4 = a;
o ifs=0(sy,...,s¢) for k>0,0 €%y and s1,...,s, € Te(Xp), then
slag, ..., anla = o (sp]ar, ..., anl A, .-, Selat, -, anl4)
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Algebras: evaluations

o |s|, = A, all) = (agi),...,ag\i)) eAY V1<i<n
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Algebras: evaluations

o |s|, = A;, al) = (a&”,...,a&?) eAY V1<i<n
@ evaluation of s at (a(l), e a(”>) in A is denoted by
(1) (n) i (1) (n) i
s {a /Xx1,...,a /x,,L‘ (simply by s {a ,...,a A)' and is

defined inductively:
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Algebras: evaluations

o |s|, = A;, al) = (a&”,...,a&?) eAY V1<i<n
o evaluation of s at (aV),...,a(") in A is denoted by
(1) (n) i (1) (n) i
s {a /.xl,....,a /X"Ll (simply by s {a ,...,a A)' and is
defined inductively:

o if s=x;, thens {a(l) ..... a<”)} = agi)
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Algebras: evaluations

o Isl = An a = (af’,....a)) e AV vi<i<n

o evaluation of s at (aV),...,a(") in A is denoted by
s [zjl(l)/.xl, .. ..,a(”)/xnl4 (simply by s [a(l),...,a(”) A)' and is
defined inductively:

e if s=x;, thens [a(l) ..... a(”)} = agi)

A
o ifs=0(sy,..., sg) for k > 0and s, ..., sk € Tx(Xp), then let
Silx, = A1, ..., Sklx: = Ay i and let alli) alk) be the unique
|s1]x = A, |Skclx; = Ak, i q

decomposition of the vector al) into components of dimensional
Aljvo, Ay i, respectively, VI <i < n, (Aj = Ay +...+Aki)

s[au),...,a(”)Ll:
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
o (s,t) € Tx (Xy) x Ta (X,) with
Sl = Aiv [ty = sy = max{A;, i} V1< i<n
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
o (s,t) € Tx (Xy) X Ta (X,) with
Sl = Arv [ty = ps my = max{As i} V1< i <n

(08 (k) € o
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
o (s,t) € Tx (Xy) X Ta (X,) with
Sl = Arv [ty = ps my = max{As i} V1< i <n

o v ((ay), by)) '''' (ag;;, ,<,,>)) € (Ax B)m
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
o (s,t) € Tx (Xy) X Ta (X,) with
Sl = Arv [ty = ps my = max{As i} V1< i <n

o v() ((agi), bgi)) _____ (aﬁ,’,) bf,’))) € (Ax B)mi
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
o (s,t) € Tx (Xy) X Ta (X,) with
Sl = Arv [ty = ps my = max{As i} V1< i <n

o v ((ay), by)) '''' (ag;;, ,<,,>)) € (Ax B)m

o evaluation of (s, t) at (vV), ..., v(") in (A, B):
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Pairs of algebras: evaluations

o A= (AXA), B=(B,AP): arbitrary algebras
o (s,t) € Tx (Xy) X Ta (X,) with
Sl = Arv [ty = ps my = max{As i} V1< i <n

o v ((al.b") ..., ()bl ) € (A x B)™
e al) = (agi) ..... a&'?)
o b = (b",....5)
o evaluation of (s, t) at (vV, ... v in (A, B)
o () [V w0] =

(5 [a(l) ..... a(">h 't [b(l) ..... b<”>}6)
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Pairs of algebras: [IO]- and Ol-evaluations

o (s,t) € Tx (Xy) X Ta (Xn),
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Pairs of algebras: [IO]- and Ol-evaluations

) (S, t) c TE (Xn) X TA (Xn),
o [s|y, =Aj, |tlx =p, mi=max{A;, u;} V1<i<n,
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Pairs of algebras: [IO]- and Ol-evaluations

) (S, t) c TE (Xn) X TA (Xn),
o [s|, =Aj, tl, =m; mi=max{A;, pu;} V1I<i<n,
e U;,...,. U, CAxB
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Pairs of algebras: [IO]- and Ol-evaluations

o (s,t) € Tx (Xp) X Ta (Xn),

o [s|, =Aj, tl, =m; mi=max{A;, pu;} V1I<i<n,
o Up,...,U, CAXBE

o [IO]-evaluation of (s, t) at Ui,..., U, in (A, B):
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Pairs of algebras: [IO]- and Ol-evaluations

) (S, t) c TE (Xn) X TA (Xn),

Isl, = Aiv |ty =, mi=max{A;, u;} V1<i<n,
U,....,. U CAXB

[IO]-evaluation of (s, t) at Uy, ..., U, in (A, B):

(s, t)[Un,..., Uﬂ](A,B),[IO] ={(s[ar, ..., an] 4. t[b1,.... bnlg) |
(aj, bi) € Ui if mj >0, and (a;, b;) =arbitrary pairin A x B
otherwise, 1 < i < n}
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Pairs of algebras: [IO]- and Ol-evaluations

) (S, t) c TE (Xn) X TA (Xn),

o [l =i the = p; mi=max{Aj, p;} V1I<i<n,

o U;,....,. U, CAx B

o [IO]-evaluation of (s, t) at Uy, ..., U, in (A, B):

o (S, t) [U]_, ey U"](A,B),[IO] = {(S [a]_, ey a,,]A Tt [b]_, ey bn]B) |
(aj, bi) € U; if mj >0, and (a;, b;j) =arbitrary pairin Ax B
otherwise, 1 < i < n}

e Ol-evaluation of (s, t) at Ui, ..., Un in (A, B):
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Pairs of algebras: [IO]- and Ol-evaluations

o (s,t) € Tx (Xp) X Ta (Xn),

o [s|, =Aj, tl, =m; mi=max{A;, pu;} V1I<i<n,

o U,...,. U, CAXB

o [IO]-evaluation of (s, t) at Uy, ..., U, in (A, B):

o (s,t)[Ur,.... U] a0y = {(slar, - an] 4 t[b1,... bog) |
(aj, bi) € U; if mj >0, and (a;, b;j) =arbitrary pairin Ax B
otherwise, 1 < i < n}

e Ol-evaluation of (s, t) at Uy,..., U, in (A, B):

o (s,t)[Ur,....Unl(ap)0r =

{(s, t) [v(l) ..... v(”)} | vi) e Ur1<i< n}
(A.B)
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Pairs of algebras: [IO]- and Ol-evaluations

) (S, t) c TE (Xn) X TA (Xn),

o [s|, =Aj, tl, =m; mi=max{A;, pu;} V1I<i<n,

o U;,....,. U, CAx B

o [IO]-evaluation of (s, t) at Uy, ..., U, in (A, B):

o (S, t) [U]_, ey U"](A,B),[IO] = {(S [a]_, ey a,,]A Tt [b]_, ey bn]B) |
(aj, bi) € U; if mj >0, and (a;, b;j) =arbitrary pairin Ax B
otherwise, 1 < i < n}

e Ol-evaluation of (s, t) at Uy,..., U, in (A, B):

o (S, t) [Ul""’U”](.A,B),O/ =
(1) (n) () mi ;
{(s,t){v IRY }(A,B)‘v e U, ,1§l§n}
@ RC Ty (Xy) x Ta(Xy), u=[lO], Ol
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Pairs of algebras: [IO]- and Ol-evaluations

o (s,t) € Ty (Xp) X Ta (Xn),

o [s|, =Aj, tl, =m; mi=max{A;, pu;} V1I<i<n,
o Up,...,U, CAXBE

o [IO]-evaluation of (s, t) at Uy, ..., U, in (A, B):

o (S, t) [U]_, ey U"](A,B),[IO] = {(S [a]_, ey a,,]A Tt [b]_, ey bn]B) |
(aj, bi) € U; if mj >0, and (a;, b;j) =arbitrary pairin Ax B
otherwise, 1 < i < n}

e Ol-evaluation of (s, t) at Uy,..., U, in (A, B):
o (S, t) [Ulv ey U"](A,B),Ol —
{(s,t) [v(l),...,v(”)} \v(’)GU,-'"’,lgign}
(A.B)
e RC Ty (Xn) X Ta(Xn), u=[lO], Ol
o R [Ul ..... U”](.A,B),u = U(S,t)ER(S' t) [Ul ..... U”](A,B),u

George Rahonis (University of Thessaloniki) Equational Tree Transformations Linz, May 31, 2010 29 /32



Systems of equations: solutions in pairs of algebras

A system of equations of tree transformations over £ and A

(E) X,':R,',].SI'SI”I

o (Ui,...,U,) € (P(Ax B))"is a u-solution of (E) in (A, B) if
U,‘:R,'[Ul,...,U,,]u Vi<i<n
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A system of equations of tree transformations over £ and A
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Systems of equations: solutions in pairs of algebras

A system of equations of tree transformations over £ and A

(E) X,':R,',].SI'SH

o (Uy,..., Uy) € (P(Ax B))" is a u-solution of (E) in (A, B) if
U,'IR,'[Ul, ,U,,] V1<I<n
o (Uy,...,U,) € (P(Ax B))" is the least u-solution of (E) in (A, B)
if U C U (1 <i < n) for every other u-solution (Uj,..., U;) of (E)
n (A, B)

e Existence of the least u-solution of (E) in (A, B): as in tree
transformations case
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Systems of equations: solutions in pairs of algebras

A system of equations of tree transformations over £ and A

(E) X,':R,',].SI'SH

o (Uy,..., Uy) € (P(Ax B))" is a u-solution of (E) in (A, B) if
U,'IR,'[Ul, ,U,,] Vi<i<n

o (Uy,...,U,) € (P(Ax B))" is the least u-solution of (E) in (A, B)
if U C U (1 <i < n) for every other u-solution (Uj,..., U;) of (E)
n (A, B)

e Existence of the least u-solution of (E) in (A, B): as in tree
transformations case

e U e P (Ax B) is u-equational if it is the union of some components
of the least u-solution in (A, B3) of a system of equations of tree
transformations
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Mezei-Wright type result

Let A = (A Z4) and B = (B, AB) be arbitrary algebras and u=[IO], OI.
A relation U C A X B is u-equational iff there exists a u-equational tree
transformation S C Ts, x Ty such that H 4 z)(S) = U, where
Hiap)((s. t)) = (Ha(s), Hg(t)) for every (s, t) € Tg X Ta.
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Thank you
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