Equational Tree Transformations¹

George Rahonis

Department of Mathematics Aristotle University of Thessaloniki, Greece

> RISC Linz, May 31, 2010

Engelfriet & Schmidt 1977:

• ...In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...

- ...In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...
- Examples of syntactical objects:

- ...In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...
- Examples of syntactical objects:
 - finite automata,

- ...In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...
- Examples of syntactical objects:
 - finite automata,
 - context free grammars,

- ...In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...
- Examples of syntactical objects:
 - finite automata,
 - context free grammars,
 - tree automata,

- ...In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...
- Examples of syntactical objects:
 - finite automata,
 - context free grammars,
 - tree automata,
 - context free tree grammars,

Engelfriet & Schmidt 1977:

- ... In theoretical computer science there are two basic ways of describing the meaning of a *syntactical object*: *operational* and *equational*. Operational semantics is defined by some effective (eventually nondeterministic) stepwise process which, from the syntactical object, generates its meaning. Equational semantics is defined by interpreting the syntactical object as a system of equations to be solved in some space of meanings. ...
- Examples of syntactical objects:
 - finite automata,
 - context free grammars,
 - tree automata,
 - context free tree grammars,
 - transducers over words and trees,

. .

• Equational semantics provides the *algorithm* to specify the meaning of a syntactical object

- Equational semantics provides the algorithm to specify the meaning of a syntactical object
- Systems of equations can be solved in two ways: IO and OI

- Equational semantics provides the algorithm to specify the meaning of a syntactical object
- Systems of equations can be solved in two ways: IO and OI
- *IO* (*Inside-Out*) interprets the *Call-by-Value* method of "calling procedures, functions, etc." in programming languages

- Equational semantics provides the *algorithm* to specify the meaning of a syntactical object
- Systems of equations can be solved in two ways: IO and OI
- *IO* (*Inside-Out*) interprets the *Call-by-Value* method of "calling procedures, functions, etc." in programming languages
- OI (Outside-In) interprets the Call-by-Name (or Call-by-Reference) method of "calling procedures, functions, etc." in programming languages

ullet ranked alphabet: (Σ, rk) (simply Σ), $rk: \Sigma \to \mathbb{N}$

- ullet ranked alphabet: (Σ, rk) (simply Σ), $\mathit{rk}: \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, \ldots\}$: a countably infinite set of *variables*,

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, \ldots\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$

- ranked alphabet: (Σ, rk) (simply Σ), $rk: \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, \ldots\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$
- $T_{\Sigma}(X_n)$: the set of all *trees* over Σ indexed with variables from X_n , defined as:

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, \ldots\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$
- $T_{\Sigma}(X_n)$: the set of all *trees* over Σ indexed with variables from X_n , defined as:
- the least set T such that

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, \ldots\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$
- $T_{\Sigma}(X_n)$: the set of all *trees* over Σ indexed with variables from X_n , defined as:
- the least set T such that
 - $\Sigma_0 \cup X_n \subseteq T$

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, ...\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$
- $T_{\Sigma}(X_n)$: the set of all *trees* over Σ indexed with variables from X_n , defined as:
- the least set T such that
 - $\Sigma_0 \cup X_n \subseteq T$
 - $\sigma \in \Sigma_k$, k > 0, $t_1, \ldots, t_k \in T \Longrightarrow \sigma(t_1, \ldots, t_k) \in T$

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, ...\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$
- $T_{\Sigma}(X_n)$: the set of all *trees* over Σ indexed with variables from X_n , defined as:
- the least set T such that
 - $\Sigma_0 \cup X_n \subseteq T$
 - $\sigma \in \Sigma_k$, k > 0, $t_1, \ldots, t_k \in T \Longrightarrow \sigma(t_1, \ldots, t_k) \in T$
- T_{Σ} : the set of all *trees* over Σ (without variables)

- ranked alphabet: (Σ, rk) (simply Σ), $rk : \Sigma \to \mathbb{N}$
- $\Sigma_k = \{ \sigma \in \Sigma \mid rk(\sigma) = k \}, \ k \ge 0$
- $X = \{x_1, x_2, ...\}$: a countably infinite set of *variables*,
- $X_n = \{x_1, \ldots, x_n\} \ (n \ge 0), \ X_0 = \emptyset$
- $T_{\Sigma}(X_n)$: the set of all *trees* over Σ indexed with variables from X_n , defined as:
- the least set T such that
 - $\Sigma_0 \cup X_n \subseteq T$
 - $\sigma \in \Sigma_k$, k > 0, $t_1, \ldots, t_k \in T \Longrightarrow \sigma(t_1, \ldots, t_k) \in T$
- T_{Σ} : the set of all *trees* over Σ (without variables)
- Σ , Δ , Γ : ranked alphabets

ullet $s\in T_{\Sigma}(X_n)$, $x_i\in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}(X_n),$

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n)$, $s_1, \ldots, s_n \in T_{\Sigma}(X_n)$,
- $s[s_1/x_1, ..., s_n/x_n]$ (simply $s[s_1, ..., s_n]$): by substituting simultaneously s_i for every occurrence of x_i in s

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}(X_n),$
- $s[s_1/x_1, ..., s_n/x_n]$ (simply $s[s_1, ..., s_n]$): by substituting simultaneously s_i for every occurrence of x_i in s
- formally:

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n)$, $s_1, \ldots, s_n \in T_{\Sigma}(X_n)$,
- $s[s_1/x_1, ..., s_n/x_n]$ (simply $s[s_1, ..., s_n]$): by substituting simultaneously s_i for every occurrence of x_i in s
- formally:
 - for $s = x_i$, $s[s_1, \ldots, s_n] = s_i$

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n)$, $s_1, \ldots, s_n \in T_{\Sigma}(X_n)$,
- $s[s_1/x_1, ..., s_n/x_n]$ (simply $s[s_1, ..., s_n]$): by substituting simultaneously s_i for every occurrence of x_i in s
- formally:
 - for $s = x_i$, $s[s_1, ..., s_n] = s_i$
 - for $s = c \in \Sigma_0$, $s[s_1, \ldots, s_n] = c$

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}(X_n),$
- $s[s_1/x_1, ..., s_n/x_n]$ (simply $s[s_1, ..., s_n]$): by substituting simultaneously s_i for every occurrence of x_i in s
- formally:
 - for $s = x_i$, $s[s_1, ..., s_n] = s_i$
 - for $s=c\in\Sigma_0$, $s[s_1,\ldots,s_n]=c$
 - for $s = \sigma(t_1, \ldots, t_k)$, $k \ge 1$, $\sigma \in \Sigma_k$, $s[s_1, \ldots, s_n] = \sigma(t_1[s_1, \ldots, s_n], \ldots, t_k[s_1, \ldots, s_n])$

- $s \in T_{\Sigma}(X_n)$, $x_i \in X_n$, $|s|_{x_i}$: the number of occurrences of x_i in s
- s is linear if $|s|_{x_i} \le 1$, $\forall 1 \le i \le n$
- s is nondeleting if $|s|_{x_i} \ge 1$, $\forall 1 \le i \le n$
- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}(X_n),$
- $s[s_1/x_1, ..., s_n/x_n]$ (simply $s[s_1, ..., s_n]$): by substituting simultaneously s_i for every occurrence of x_i in s
- formally:
 - for $s = x_i$, $s[s_1, \ldots, s_n] = s_i$
 - for $s = c \in \Sigma_0$, $s[s_1, \ldots, s_n] = c$
 - for $s = \sigma(t_1, \ldots, t_k)$, $k \ge 1$, $\sigma \in \Sigma_k$, $s[s_1, \ldots, s_n] = \sigma(t_1[s_1, \ldots, s_n], \ldots, t_k[s_1, \ldots, s_n])$
- $L \subseteq T_{\Sigma}(X_n)$: tree language

 \bullet $\Xi=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X

- \bullet $\Xi=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X
- $\Xi_n = \{\xi_1, \ldots, \xi_n\} \ \forall n \geq 0$

6 / 32

- \bullet $\Xi=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X
- $\Xi_n = \{\xi_1, \ldots, \xi_n\} \ \forall n \geq 0$
- a tree homomorphism from Σ to Δ : $(h_k)_{k\geq 0}$, $h_k: \Sigma_k \to T_\Delta(\Xi_k)$, $k\geq 0$,

- \bullet $\Xi=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X
- $\Xi_n = \{\xi_1, \ldots, \xi_n\} \ \forall n \geq 0$
- a tree homomorphism from Σ to Δ : $(h_k)_{k\geq 0}$, $h_k: \Sigma_k \to T_\Delta\left(\Xi_k\right)$, $k\geq 0$,
- linear (for short I) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is linear in Ξ_k

- $oldsymbol{\Xi}=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X
- $\Xi_n = \{\xi_1, \ldots, \xi_n\} \ \forall n \geq 0$
- a tree homomorphism from Σ to Δ : $(h_k)_{k\geq 0}$, $h_k: \Sigma_k \to T_\Delta(\Xi_k)$, $k\geq 0$,
- linear (for short I) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is linear in Ξ_k
- nondeleting (or complete) (for short c) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is nondeleting in Ξ_k

- $oldsymbol{\Xi}=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X
- $\Xi_n = \{\xi_1, \ldots, \xi_n\} \ \forall n \geq 0$
- a tree homomorphism from Σ to Δ : $(h_k)_{k\geq 0}$, $h_k: \Sigma_k \to T_\Delta\left(\Xi_k\right)$, $k\geq 0$,
- linear (for short I) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is linear in Ξ_k
- nondeleting (or complete) (for short c) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is nondeleting in Ξ_k
- alphabetic (for short al) if it is linear and $\forall k \geq 0$, $\sigma \in \Sigma_k$ we have $h_k(\sigma) = \delta(\xi_{i_1}, \dots, \xi_{i_m})$ for some $\delta \in \Delta_m$ $(k \geq m \geq 0)$ or $h_k(\sigma) = \xi_i$

- $oldsymbol{\Xi}=\{\xi_1,\xi_2,\ldots\}$ another set of variables, disjoint from any ranked alphabet and X
- $\Xi_n = \{\xi_1, \ldots, \xi_n\} \ \forall n \geq 0$
- a tree homomorphism from Σ to Δ : $(h_k)_{k\geq 0}$, $h_k: \Sigma_k \to T_\Delta(\Xi_k)$, $k\geq 0$,
- linear (for short I) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is linear in Ξ_k
- nondeleting (or complete) (for short c) if $\forall k \geq 1$, $\sigma \in \Sigma_k$ the tree $h_k(\sigma)$ is nondeleting in Ξ_k
- alphabetic (for short al) if it is linear and $\forall k \geq 0$, $\sigma \in \Sigma_k$ we have $h_k(\sigma) = \delta(\xi_{i_1}, \dots, \xi_{i_m})$ for some $\delta \in \Delta_m$ $(k \geq m \geq 0)$ or $h_k(\sigma) = \xi_i$
- relabeling if $\forall k \geq 0$, $\sigma \in \Sigma_k$ we have $h_k(\sigma) = \delta(\xi_1, \dots, \xi_k)$ for some $\delta \in \Delta_k$

• $(h_k)_{k>0}$ induces a mapping

$$h: T_{\Sigma}(X_n) \to T_{\Delta}(X_n)$$

let
$$t \in T_{\Sigma}(X_n)$$

• $(h_k)_{k>0}$ induces a mapping

$$h: T_{\Sigma}(X_n) \to T_{\Delta}(X_n)$$

let
$$t \in T_{\Sigma}(X_n)$$

•
$$h(t) = t$$
 if $t \in X_n$

• $(h_k)_{k>0}$ induces a mapping

$$h: T_{\Sigma}(X_n) \to T_{\Delta}(X_n)$$

let
$$t \in T_{\Sigma}(X_n)$$

- h(t) = t if $t \in X_n$
- $h(t) = h_k(\sigma)[h(t_1)/\xi_1, ..., h(t_k)/\xi_k]$ if $t = \sigma(t_1, ..., t_k)$ with $k \ge 0$, $\sigma \in \Sigma_k$, $t_1, ..., t_k \in T_{\Sigma}(X_n)$

• $(h_k)_{k>0}$ induces a mapping

$$h: T_{\Sigma}(X_n) \to T_{\Delta}(X_n)$$

let
$$t \in T_{\Sigma}(X_n)$$

- h(t) = t if $t \in X_n$
- $h(t) = h_k(\sigma)[h(t_1)/\xi_1, \dots, h(t_k)/\xi_k]$ if $t = \sigma(t_1, \dots, t_k)$ with $k \ge 0$, $\sigma \in \Sigma_k$, $t_1, \dots, t_k \in T_{\Sigma}(X_n)$
- H: the class of all tree homomorphisms and,

• $(h_k)_{k>0}$ induces a mapping

$$h: T_{\Sigma}(X_n) \to T_{\Delta}(X_n)$$

let
$$t \in T_{\Sigma}(X_n)$$

- h(t) = t if $t \in X_n$
- $h(t) = h_k(\sigma)[h(t_1)/\xi_1, ..., h(t_k)/\xi_k]$ if $t = \sigma(t_1, ..., t_k)$ with $k \ge 0$, $\sigma \in \Sigma_k$, $t_1, ..., t_k \in T_{\Sigma}(X_n)$
- H: the class of all tree homomorphisms and,
- for any combination w of I, c, and al we denote by w-H the class of w-tree homomorphisms

• $(h_k)_{k>0}$ induces a mapping

$$h: T_{\Sigma}(X_n) \to T_{\Delta}(X_n)$$

let
$$t \in T_{\Sigma}(X_n)$$

- h(t) = t if $t \in X_n$
- $h(t) = h_k(\sigma)[h(t_1)/\xi_1, ..., h(t_k)/\xi_k]$ if $t = \sigma(t_1, ..., t_k)$ with $k \ge 0$, $\sigma \in \Sigma_k$, $t_1, ..., t_k \in T_{\Sigma}(X_n)$
- H: the class of all tree homomorphisms and,
- for any combination w of I, c, and al we denote by w-H the class of w-tree homomorphisms
- REL: the class of all relabelings

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

• A (deterministic) bottom-up tree automaton

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

• Q the finite state set

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- ullet Σ the input ranked alphabet

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- \bullet Σ the input ranked alphabet
- ullet $\delta=(\delta_\sigma)_{\sigma\in\Sigma}$ the family of transition mappings

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- \bullet Σ the input ranked alphabet
- ullet $\delta=(\delta_\sigma)_{\sigma\in\Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- \bullet Σ the input ranked alphabet
- $\delta = (\delta_{\sigma})_{\sigma \in \Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- ullet $\delta_\sigma:Q^k o Q$ for every $\sigma\in\Sigma_k$, $k\geq0$

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- \bullet Σ the input ranked alphabet
- ullet $\delta=(\delta_\sigma)_{\sigma\in\Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- $\delta_{\sigma}: Q^k \to Q$ for every $\sigma \in \Sigma_k$, $k \ge 0$
- ullet observe: if $\sigma \in \Sigma_0$, then $\delta_\sigma \in \mathcal{Q}$

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- ullet Σ the input ranked alphabet
- ullet $\delta=(\delta_\sigma)_{\sigma\in\Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- $\delta_{\sigma}: Q^k \to Q$ for every $\sigma \in \Sigma_k$, $k \ge 0$
- ullet observe: if $\sigma \in \Sigma_0$, then $\delta_{\sigma} \in Q$
- define a mapping $\delta: \mathcal{T}_{\Sigma} \to Q$ inductively as follows: for every $t \in \mathcal{T}_{\Sigma}$:

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- ullet Σ the input ranked alphabet
- ullet $\delta=(\delta_\sigma)_{\sigma\in\Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- $\delta_{\sigma}: Q^k \to Q$ for every $\sigma \in \Sigma_k$, $k \ge 0$
- ullet observe: if $\sigma \in \Sigma_0$, then $\delta_{\sigma} \in Q$
- define a mapping $\delta: \mathcal{T}_{\Sigma} \to Q$ inductively as follows: for every $t \in \mathcal{T}_{\Sigma}$:
 - ullet $\widetilde{\delta}(t)=\delta_{\sigma}$ if $t=\sigma\in\Sigma_{0}$,

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- ullet Σ the input ranked alphabet
- $\delta = (\delta_{\sigma})_{\sigma \in \Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- $\delta_{\sigma}: Q^k \to Q$ for every $\sigma \in \Sigma_k$, $k \ge 0$
- ullet observe: if $\sigma\in\Sigma_0$, then $\delta_\sigma\in Q$
- define a mapping $\delta: \mathcal{T}_{\Sigma} \to Q$ inductively as follows: for every $t \in \mathcal{T}_{\Sigma}$:
 - $\delta(t) = \delta_{\sigma}$ if $t = \sigma \in \Sigma_0$,
 - $\widetilde{\delta}(t) = \delta_{\sigma}(\widetilde{\delta}(t_1), \dots, \widetilde{\delta}(t_k))$ if $t = \sigma(t_1, \dots, t_k)$ with $k \ge 1$, $\sigma \in \Sigma_k$

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- ullet Σ the input ranked alphabet
- $\delta = (\delta_{\sigma})_{\sigma \in \Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- $\delta_{\sigma}: Q^k \to Q$ for every $\sigma \in \Sigma_k$, $k \ge 0$
- ullet observe: if $\sigma \in \Sigma_0$, then $\delta_{\sigma} \in Q$
- define a mapping $\delta: \mathcal{T}_{\Sigma} \to Q$ inductively as follows: for every $t \in \mathcal{T}_{\Sigma}$:
 - $\delta(t) = \delta_{\sigma}$ if $t = \sigma \in \Sigma_0$,
 - $\widetilde{\delta}(t) = \delta_{\sigma}(\widetilde{\delta}(t_1), \dots, \widetilde{\delta}(t_k))$ if $t = \sigma(t_1, \dots, t_k)$ with $k \ge 1$, $\sigma \in \Sigma_k$
- ullet $t\in T_\Sigma$ is accepted (or recognized) by ${\mathcal A}$ if $\widetilde{\delta}(t)\in {\mathcal T}$

$$\mathcal{A} = (Q, \Sigma, \delta, T)$$

- Q the finite state set
- ullet Σ the input ranked alphabet
- ullet $\delta=(\delta_\sigma)_{\sigma\in\Sigma}$ the family of transition mappings
- $T \subseteq Q$ the final state set
- $\delta_{\sigma}: Q^k \to Q$ for every $\sigma \in \Sigma_k$, $k \ge 0$
- ullet observe: if $\sigma \in \Sigma_0$, then $\delta_{\sigma} \in Q$
- define a mapping $\delta: \mathcal{T}_{\Sigma} \to Q$ inductively as follows: for every $t \in \mathcal{T}_{\Sigma}$:
 - $\delta(t) = \delta_{\sigma}$ if $t = \sigma \in \Sigma_0$,
 - $\widetilde{\delta}(t) = \delta_{\sigma}(\widetilde{\delta}(t_1), \dots, \widetilde{\delta}(t_k))$ if $t = \sigma(t_1, \dots, t_k)$ with $k \ge 1$, $\sigma \in \Sigma_k$
- $t \in T_{\Sigma}$ is accepted (or recognized) by \mathcal{A} if $\widetilde{\delta}(t) \in T$
- $L(A) = \{t \in T_{\Sigma} \mid \delta(t) \in T\}$: the *tree language of* (all trees accepted by) A

• $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages
- REC is closed under

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages
- REC is closed under
 - union,

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages
- REC is closed under
 - union,
 - intersection,

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages
- REC is closed under
 - union,
 - intersection,
 - complementation,

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages
- REC is closed under
 - union,
 - intersection,
 - complementation,
 - linear tree homomorphisms,

- $L \subseteq T_{\Sigma}$: recognizable if L = L(A) for some $A = (Q, \Sigma, \delta, T)$
- REC: class of all recognizable tree languages
- REC is closed under
 - union,
 - intersection,
 - complementation,
 - linear tree homomorphisms,
 - inverse tree homomorphisms

$$\bullet \ s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}, \ s[s_1, \ldots, s_n]$$

- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}, s[s_1, \ldots, s_n]$
- $L_1, \ldots, L_n \subseteq T_{\Sigma}$

- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}, s[s_1, \ldots, s_n]$
- $L_1, \ldots, L_n \subseteq T_{\Sigma}$
- IO-substitution of L_i at x_i $(1 \le i \le n)$ in s: $s[L_1, \ldots, L_n]_{IO} = \{s[s_1, \ldots, s_n] \mid s_i \in L_i, 1 \le i \le n\}$

- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}, s[s_1, \ldots, s_n]$
- $L_1, \ldots, L_n \subseteq T_{\Sigma}$
- *IO-substitution of* L_i at x_i $(1 \le i \le n)$ in s: $s[L_1, \ldots, L_n]_{IO} = \{s[s_1, \ldots, s_n] \mid s_i \in L_i, 1 \le i \le n\}$
- Example: $\sigma \in \Sigma_2$, $\sigma(x_1, x_1)[L_1, \emptyset]_{IO} = \emptyset$ even if $L_1 \neq \emptyset$

- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}, s[s_1, \ldots, s_n]$
- $L_1, \ldots, L_n \subseteq T_{\Sigma}$
- IO-substitution of L_i at x_i $(1 \le i \le n)$ in s: $s[L_1, \ldots, L_n]_{IO} = \{s[s_1, \ldots, s_n] \mid s_i \in L_i, 1 \le i \le n\}$
- Example: $\sigma \in \Sigma_2$, $\sigma(x_1, x_1)[L_1, \emptyset]_{IO} = \emptyset$ even if $L_1 \neq \emptyset$
- [IO]-substitution of L_i at x_i $(1 \le i \le n)$ in s:

- $s \in T_{\Sigma}(X_n)$, $s_1, \ldots, s_n \in T_{\Sigma}$, $s[s_1, \ldots, s_n]$
- $L_1, \ldots, L_n \subseteq T_{\Sigma}$
- IO-substitution of L_i at x_i $(1 \le i \le n)$ in s: $s[L_1, \ldots, L_n]_{IO} = \{s[s_1, \ldots, s_n] \mid s_i \in L_i, 1 \le i \le n\}$
- Example: $\sigma \in \Sigma_2$, $\sigma(x_1, x_1)[L_1, \emptyset]_{IO} = \emptyset$ even if $L_1 \neq \emptyset$
- [IO]-substitution of L_i at x_i $(1 \le i \le n)$ in s:
- $s[L_1, \ldots, L_n]_{[IO]} = \{s[s_1, \ldots, s_n] \mid s_i \in L_i \text{ if } |s|_{x_i} > 0$ and $s_i =$ arbitrary tree in T_{Σ} otherwise, $1 \leq i \leq n\}$

- $s \in T_{\Sigma}(X_n), s_1, \ldots, s_n \in T_{\Sigma}, s[s_1, \ldots, s_n]$
- $L_1, \ldots, L_n \subseteq T_{\Sigma}$
- *IO*-substitution of L_i at x_i $(1 \le i \le n)$ in s: $s[L_1, \ldots, L_n]_{IO} = \{s[s_1, \ldots, s_n] \mid s_i \in L_i, 1 \le i \le n\}$
- Example: $\sigma \in \Sigma_2$, $\sigma(x_1, x_1)[L_1, \emptyset]_{IO} = \emptyset$ even if $L_1 \neq \emptyset$
- [IO]-substitution of L_i at x_i $(1 \le i \le n)$ in s:
- $s[L_1,\ldots,L_n]_{[IO]}=\{s[s_1,\ldots,s_n]\mid s_i\in L_i \text{ if } |s|_{x_i}>0$ and $s_i=$ arbitrary tree in T_Σ otherwise, $1\leq i\leq n\}$
- Example: $\sigma \in \Sigma_2$, $\sigma(x_1, x_1)[L_1, \emptyset]_{[IO]} = \{\sigma(t, t) \mid t \in L_1\}$

$$\bullet \ |s|_{x_i} = \lambda_i \quad (\forall 1 \leq i \leq n), \quad \mathbf{s}^{(i)} = \left(s_1^{(i)}, \ldots, s_{\lambda_i}^{(i)}\right) \in \mathcal{T}_{\Sigma}^{\lambda_i}$$

- $|s|_{x_i} = \lambda_i$ $(\forall 1 \leq i \leq n)$, $\mathbf{s}^{(i)} = \left(s_1^{(i)}, \ldots, s_{\lambda_i}^{(i)}\right) \in T_{\Sigma}^{\lambda_i}$
- $s\left[\mathbf{s}^{(1)}/x_1,\ldots,\mathbf{s}^{(n)}/x_n\right]$ (simply $s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]$) (by substituting simultaneously $\left(s_1^{(i)},\ldots,s_{\lambda_i}^{(i)}\right)$ for the occurrences of x_i in s from left to right)

- $|s|_{x_i} = \lambda_i$ $(\forall 1 \leq i \leq n)$, $\mathbf{s}^{(i)} = \left(s_1^{(i)}, \ldots, s_{\lambda_i}^{(i)}\right) \in \mathcal{T}_{\Sigma}^{\lambda_i}$
- $s\left[\mathbf{s}^{(1)}/x_1,\ldots,\mathbf{s}^{(n)}/x_n\right]$ (simply $s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]$) (by substituting simultaneously $\left(s_1^{(i)},\ldots,s_{\lambda_i}^{(i)}\right)$ for the occurrences of x_i in s from left to right)
- OI-substitution of L_i at x_i $(1 \le i \le n)$ in s:

- $\bullet \ |s|_{x_i} = \lambda_i \quad (\forall 1 \leq i \leq n), \quad \mathbf{s}^{(i)} = \left(s_1^{(i)}, \ldots, s_{\lambda_i}^{(i)}\right) \in \mathcal{T}_{\Sigma}^{\lambda_i}$
- $s\left[\mathbf{s}^{(1)}/x_1,\ldots,\mathbf{s}^{(n)}/x_n\right]$ (simply $s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]$) (by substituting simultaneously $\left(s_1^{(i)},\ldots,s_{\lambda_i}^{(i)}\right)$ for the occurrences of x_i in s from left to right)
- OI-substitution of L_i at x_i $(1 \le i \le n)$ in s:
- $s[L_1,\ldots,L_n]_{OI}=\{s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]\mid\mathbf{s}^{(i)}\in L_i^{\lambda_i},1\leq i\leq n\}$

- $\bullet \ |s|_{\mathsf{x}_i} = \lambda_i \quad (\forall 1 \leq i \leq n), \quad \mathsf{s}^{(i)} = \left(\mathsf{s}_1^{(i)}, \ldots, \mathsf{s}_{\lambda_i}^{(i)}\right) \in \mathcal{T}_{\Sigma}^{\lambda_i}$
- $s\left[\mathbf{s}^{(1)}/x_1,\ldots,\mathbf{s}^{(n)}/x_n\right]$ (simply $s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]$) (by substituting simultaneously $\left(s_1^{(i)},\ldots,s_{\lambda_i}^{(i)}\right)$ for the occurrences of x_i in s from left to right)
- OI-substitution of L_i at x_i $(1 \le i \le n)$ in s:
- $s[L_1,...,L_n]_{OI} = \{s\left[\mathbf{s}^{(1)},...,\mathbf{s}^{(n)}\right] \mid \mathbf{s}^{(i)} \in L_i^{\lambda_i}, 1 \leq i \leq n\}$
- s linear $\Longrightarrow s[L_1, \ldots, L_n]_{[IO]} = s[L_1, \ldots, L_n]_{OI}$

- $|s|_{x_i} = \lambda_i$ $(\forall 1 \leq i \leq n)$, $\mathbf{s}^{(i)} = \left(s_1^{(i)}, \ldots, s_{\lambda_i}^{(i)}\right) \in \mathcal{T}_{\Sigma}^{\lambda_i}$
- $s\left[\mathbf{s}^{(1)}/x_1,\ldots,\mathbf{s}^{(n)}/x_n\right]$ (simply $s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]$) (by substituting simultaneously $\left(s_1^{(i)},\ldots,s_{\lambda_i}^{(i)}\right)$ for the occurrences of x_i in s from left to right)
- OI-substitution of L_i at x_i $(1 \le i \le n)$ in s:
- $s[L_1, ..., L_n]_{OI} = \{ s\left[\mathbf{s}^{(1)}, ..., \mathbf{s}^{(n)}\right] \mid \mathbf{s}^{(i)} \in L_i^{\lambda_i}, 1 \leq i \leq n \}$
- s linear $\Longrightarrow s[L_1,\ldots,L_n]_{[IO]}=s[L_1,\ldots,L_n]_{OI}$
- $L \subseteq T_{\Sigma}(X_n)$, $L_1, \ldots, L_n \subseteq T_{\Sigma}$, u=[IO], OI

- $\bullet \ |s|_{\mathsf{x}_i} = \lambda_i \quad (\forall 1 \leq i \leq n), \quad \mathsf{s}^{(i)} = \left(\mathsf{s}_1^{(i)}, \dots, \mathsf{s}_{\lambda_i}^{(i)}\right) \in \mathcal{T}_{\Sigma}^{\lambda_i}$
- $s\left[\mathbf{s}^{(1)}/x_1,\ldots,\mathbf{s}^{(n)}/x_n\right]$ (simply $s\left[\mathbf{s}^{(1)},\ldots,\mathbf{s}^{(n)}\right]$) (by substituting simultaneously $\left(s_1^{(i)},\ldots,s_{\lambda_i}^{(i)}\right)$ for the occurrences of x_i in s from left to right)
- OI-substitution of L_i at x_i $(1 \le i \le n)$ in s:
- $s[L_1, ..., L_n]_{OI} = \{ s\left[\mathbf{s}^{(1)}, ..., \mathbf{s}^{(n)}\right] \mid \mathbf{s}^{(i)} \in L_i^{\lambda_i}, 1 \leq i \leq n \}$
- s linear $\Longrightarrow s[L_1,\ldots,L_n]_{[IO]}=s[L_1,\ldots,L_n]_{OI}$
- $L \subseteq T_{\Sigma}(X_n)$, $L_1, \ldots, L_n \subseteq T_{\Sigma}$, u=[IO], OI
- $L[L_1,\ldots,L_n]_u=\bigcup_{s\in L}s[L_1,\ldots,L_n]_u$

ullet A system of equations of tree languages over Σ is a system

(E)
$$x_i = K_i, 1 \le i \le n,$$

ullet A system of equations of tree languages over Σ is a system

(E)
$$x_i = K_i, 1 \le i \le n$$
,

where $K_i \subseteq T_{\Sigma}(X_n)$ are finite tree languages

u=[IO], OI

ullet A system of equations of tree languages over Σ is a system

(E)
$$x_i = K_i, 1 \le i \le n$$
,

- u=[IO], OI
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is a *u-solution* of (E) if $L_i = K_i[L_1, ..., L_n]_u$, $\forall 1 \leq i \leq n$

ullet A system of equations of tree languages over Σ is a system

(E)
$$x_i = K_i, 1 \le i \le n,$$

- u=[IO], OI
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is a *u-solution* of (E) if $L_i = \mathcal{K}_i[L_1, ..., L_n]_u$, $\forall 1 \leq i \leq n$
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is the *least u-solution* of (E) if $L_i \subseteq L'_i$ $(1 \le i \le n)$ for every other *u*-solution $(L'_1, ..., L'_n)$ of (E)

ullet A system of equations of tree languages over Σ is a system

(E)
$$x_i = K_i, 1 \leq i \leq n,$$

- u=[IO], OI
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is a *u-solution* of (E) if $L_i = \mathcal{K}_i[L_1, ..., L_n]_u$, $\forall 1 \leq i \leq n$
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is the *least u-solution* of (E) if $L_i \subseteq L_i'$ $(1 \le i \le n)$ for every other *u*-solution $(L_1', ..., L_n')$ of (E)
- Existence of the least u-solution of (E), by:

ullet A system of equations of tree languages over Σ is a system

(E)
$$x_i = K_i, 1 \le i \le n,$$

- *u*=[*IO*], *OI*
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is a *u-solution* of (E) if $L_i = \mathcal{K}_i[L_1, ..., L_n]_u$, $\forall 1 \leq i \leq n$
- $(L_1, ..., L_n) \in (\mathcal{P}(T_{\Sigma}))^n$ is the *least u-solution* of (E) if $L_i \subseteq L_i'$ $(1 \le i \le n)$ for every other *u*-solution $(L_1', ..., L_n')$ of (E)
- Existence of the least u-solution of (E), by:
- Tarski's fixpoint theorem: Let (V, \leq) be an ω -complete poset with least element \bot and $f: V \to V$ an ω -continuous mapping, i.e., $f(\sup\{a_i \mid i \geq 0\}) = \sup\{f(a_i) \mid i \geq 0\}$ for every ω -chain $a_0 \leq a_1 \leq \ldots$ in V. Then f has a least fixpoint fix f, and fix $f = \sup\{f^{(i)}(\bot) \mid i \geq 0\}$.

• $L \subseteq T_{\Sigma}$: *u-equational* if it is the union of some components of the least *u*-solution of a system of equations of tree languages

- $L \subseteq T_{\Sigma}$: *u-equational* if it is the union of some components of the least *u*-solution of a system of equations of tree languages
- Mezei & Wright 1967:

- $L \subseteq T_{\Sigma}$: *u-equational* if it is the union of some components of the least *u*-solution of a system of equations of tree languages
- Mezei & Wright 1967:
 - recognizable tree languages = *OI*-equational tree languages

- $L \subseteq T_{\Sigma}$: *u-equational* if it is the union of some components of the least *u*-solution of a system of equations of tree languages
- Mezei & Wright 1967:
 - recognizable tree languages = OI-equational tree languages
- Bozapalidis & Rahonis 2004:

- $L \subseteq T_{\Sigma}$: *u-equational* if it is the union of some components of the least *u*-solution of a system of equations of tree languages
- Mezei & Wright 1967:
 - recognizable tree languages = OI-equational tree languages
- Bozapalidis & Rahonis 2004:
 - [IO]-equational tree languages = closure of OI-equational tree languages under tree homomorphisms

• $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]} = \{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n]) \mid (s_i,t_i) \in R_i \text{ if } |s|_{x_i} > 0 \text{ or } |t|_{x_i} > 0 \text{ and } (s_i,t_i) = \text{arbitrary pair in } T_\Sigma \times T_\Delta \text{ otherwise, } 1 \leq i \leq n\}$

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $\bullet |s|_{x_i} = \lambda_i, |t|_{x_i} = \mu_i, m_i = \max\{\lambda_i, \mu_i\} \forall 1 \le i \le n,$

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $\bullet |s|_{x_i} = \lambda_i, |t|_{x_i} = \mu_i, m_i = \max\{\lambda_i, \mu_i\} \forall 1 \le i \le n,$
- $\bullet \ \mathbf{r}^{(i)} = \left(\left(s_1^{(i)}, t_1^{(i)}\right), \ldots, \left(s_{m_i}^{(i)}, t_{m_i}^{(i)}\right)\right) \in (T_\Sigma \times T_\Delta)^{m_i},$

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $\bullet |s|_{x_i} = \lambda_i, |t|_{x_i} = \mu_i, m_i = \max\{\lambda_i, \mu_i\} \forall 1 \le i \le n,$
- $\bullet \ \mathbf{r}^{(i)} = \left(\left(s_1^{(i)}, t_1^{(i)}\right), \ldots, \left(s_{m_i}^{(i)}, t_{m_i}^{(i)}\right)\right) \in (\mathcal{T}_{\Sigma} \times \mathcal{T}_{\Delta})^{m_i},$
- $\bullet \ \mathbf{s}^{(i)} = \left(s_1^{(i)}, \dots, s_{\lambda_i}^{(i)}\right), \ \mathbf{t}^{(i)} = \left(t_1^{(i)}, \dots, t_{\mu_i}^{(i)}\right)$

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $\bullet |s|_{x_i} = \lambda_i, |t|_{x_i} = \mu_i, m_i = \max\{\lambda_i, \mu_i\} \forall 1 \le i \le n,$
- $\bullet \ \mathbf{r}^{(i)} = \left(\left(\mathbf{s}_1^{(i)}, \mathbf{t}_1^{(i)}\right), \ldots, \left(\mathbf{s}_{m_i}^{(i)}, \mathbf{t}_{m_i}^{(i)}\right)\right) \in (\mathcal{T}_{\Sigma} \times \mathcal{T}_{\Delta})^{m_i},$
- $\bullet \ \mathbf{s}^{(i)} = \left(s_1^{(i)}, \dots, s_{\lambda_i}^{(i)}\right), \ \mathbf{t}^{(i)} = \left(t_1^{(i)}, \dots, t_{\mu_i}^{(i)}\right)$
- substitution of $\mathbf{r}^{(i)}$ at x_i $(1 \le i \le n)$ in (s, t):

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \leq i \leq n$,
- $\bullet \ \mathbf{r}^{(i)} = \left(\left(s_1^{(i)}, t_1^{(i)}\right), \ldots, \left(s_{m_i}^{(i)}, t_{m_i}^{(i)}\right)\right) \in (\mathcal{T}_{\Sigma} \times \mathcal{T}_{\Delta})^{m_i},$
- $\bullet \ \mathbf{s}^{(i)} = \left(s_1^{(i)}, \dots, s_{\lambda_i}^{(i)}\right), \ \mathbf{t}^{(i)} = \left(t_1^{(i)}, \dots, t_{\mu_i}^{(i)}\right)$
- substitution of $\mathbf{r}^{(i)}$ at x_i $(1 \le i \le n)$ in (s, t):
- $\bullet \ (s,t) \left[\mathbf{r}^{(1)}, \dots, \mathbf{r}^{(n)} \right] = \left(s \left[\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(n)} \right], t \left[\mathbf{t}^{(1)}, \dots, \mathbf{t}^{(n)} \right] \right)$

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \leq i \leq n$,
- $\bullet \ \mathbf{r}^{(i)} = \left(\left(s_1^{(i)}, t_1^{(i)}\right), \ldots, \left(s_{m_i}^{(i)}, t_{m_i}^{(i)}\right)\right) \in (\mathcal{T}_{\Sigma} \times \mathcal{T}_{\Delta})^{m_i},$
- $\bullet \ \mathbf{s}^{(i)} = \left(s_1^{(i)}, \dots, s_{\lambda_i}^{(i)}\right), \ \mathbf{t}^{(i)} = \left(t_1^{(i)}, \dots, t_{\mu_i}^{(i)}\right)$
- substitution of $\mathbf{r}^{(i)}$ at x_i $(1 \le i \le n)$ in (s, t):
- $\bullet (s,t) \left[\mathbf{r}^{(1)}, \dots, \mathbf{r}^{(n)} \right] = \left(s \left[\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(n)} \right], t \left[\mathbf{t}^{(1)}, \dots, \mathbf{t}^{(n)} \right] \right)$
- OI-substitution of R_i at x_i in (s, t):

- $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$
- [IO]-substitution of R_i at x_i $(1 \le i \le n)$ in (s, t):
- $(s,t)[R_1,\ldots,R_n]_{[IO]}=\{(s[s_1,\ldots,s_n],t[t_1,\ldots,t_n])\mid (s_i,t_i)\in R_i \text{ if } |s|_{x_i}>0 \text{ or } |t|_{x_i}>0 \text{ and } (s_i,t_i)=\text{arbitrary pair in } T_\Sigma\times T_\Delta \text{ otherwise, } 1\leq i\leq n\}$
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \leq i \leq n$,
- $\bullet \ \mathbf{r}^{(i)} = \left(\left(s_1^{(i)}, t_1^{(i)}\right), \ldots, \left(s_{m_i}^{(i)}, t_{m_i}^{(i)}\right)\right) \in (\mathcal{T}_{\Sigma} \times \mathcal{T}_{\Delta})^{m_i},$
- $\bullet \ \mathbf{s}^{(i)} = \left(s_1^{(i)}, \dots, s_{\lambda_i}^{(i)}\right), \ \mathbf{t}^{(i)} = \left(t_1^{(i)}, \dots, t_{\mu_i}^{(i)}\right)$
- substitution of $\mathbf{r}^{(i)}$ at x_i $(1 \le i \le n)$ in (s, t):
- $(s, t) \left[\mathbf{r}^{(1)}, \dots, \mathbf{r}^{(n)} \right] = \left(s \left[\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(n)} \right], t \left[\mathbf{t}^{(1)}, \dots, \mathbf{t}^{(n)} \right] \right)$
- OI-substitution of R_i at x_i in (s, t):
- $\bullet (s,t) [R_1,\ldots,R_n]_{OI} =$ $\left\{ (s,t) \left[\mathbf{r}^{(1)},\ldots,\mathbf{r}^{(n)} \right] \mid \mathbf{r}^{(i)} \in R_i^{m_i}, 1 \leq i \leq n \right\}$

Example

$$\sigma \in \Sigma_{3}, \ \delta \in \Delta_{2}, \ (s, t) = (\sigma(x_{1}, x_{1}, x_{3}), \delta(x_{3}, x_{1})),
R_{1} = \{(s_{1}, t_{1}), (s'_{1}, t'_{1})\}, \ R_{2} = \emptyset, \ R_{3} = \{(s_{3}, t_{3})\}
(s, t) [R_{1}, R_{2}, R_{3}]_{[IO]} = \{(\sigma(s_{1}, s_{1}, s_{3}), \delta(t_{3}, t_{1})), (\sigma(s'_{1}, s'_{1}, s_{3}), \delta(t_{3}, t'_{1}))\}
(s, t) [R_{1}, R_{2}, R_{3}]_{OI} = \{(\sigma(s_{1}, s_{1}, s_{3}), \delta(t_{3}, t_{1})), (\sigma(s_{1}, s'_{1}, s_{3}), \delta(t_{3}, t'_{1})), (\sigma(s'_{1}, s'_{1}, s_{3}), \delta(t_{3}, t'_{1}))\}$$

•
$$R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$$
, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$, $u = [IO]$, OI

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$, u = [IO], OI
- $R[R_1,...,R_n]_u = \bigcup_{(s,t)\in R}(s,t)[R_1,...,R_n]_u$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$, u = [IO], OI
- $R[R_1,...,R_n]_u = \bigcup_{(s,t)\in R}(s,t)[R_1,...,R_n]_u$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$: linear if for every $(s, t) \in R$, s and t are linear trees

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, $R_1, \ldots, R_n \subseteq T_{\Sigma} \times T_{\Delta}$, u = [IO], OI
- $R[R_1,\ldots,R_n]_u = \bigcup_{(s,t)\in R}(s,t)[R_1,\ldots,R_n]_u$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$: linear if for every $(s, t) \in R$, s and t are linear trees
- $\bullet \ R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n) \text{ linear} \\ \Longrightarrow R[R_1, \dots, R_n]_{[IO]} = R[R_1, \dots, R_n]_{OI}$

Bimorphisms

• $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms

Bimorphisms

- ullet $h: T_{\Gamma}(X_n) o T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) o T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

Bimorphisms

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

where

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

where

• $L \subseteq T_{\Gamma}$ is a recognizable tree language,

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

- $L \subseteq T_{\Gamma}$ is a recognizable tree language,
- $h: T_{\Gamma} \to T_{\Sigma}$ the *input* tree homomorphism,

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

- $L \subseteq T_{\Gamma}$ is a recognizable tree language,
- $h: T_{\Gamma} \to T_{\Sigma}$ the *input* tree homomorphism,
- $h': T_{\Gamma} \to T_{\Delta}$ the *output* tree homomorphism

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

- $L \subseteq T_{\Gamma}$ is a recognizable tree language,
- $h: T_{\Gamma} \to T_{\Sigma}$ the *input* tree homomorphism,
- $h': T_{\Gamma} \to T_{\Delta}$ the *output* tree homomorphism
- $\langle h, h' \rangle (L)$: the tree transformation computed by (h, L, h')

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

- $L \subseteq T_{\Gamma}$ is a recognizable tree language,
- $h: T_{\Gamma} \to T_{\Sigma}$ the *input* tree homomorphism,
- $h': T_{\Gamma} \to T_{\Delta}$ the *output* tree homomorphism
- $\langle h, h' \rangle (L)$: the tree transformation computed by (h, L, h')
- w_1 and w_2 combinations of l, c, and al (including the empty combination)

- $h: T_{\Gamma}(X_n) \to T_{\Sigma}(X_n), \ h': T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ tree homomorphisms
- h and h' define a tree transformation for every $L \subseteq T_{\Gamma}(X_n)$:

$$\langle h, h' \rangle (L) = \{ (h(t), h'(t)) \mid t \in L \}$$

• A bimorphism over Γ, Σ , and Δ

- $L \subseteq T_{\Gamma}$ is a recognizable tree language,
- $h: T_{\Gamma} \to T_{\Sigma}$ the *input* tree homomorphism,
- $h': T_{\Gamma} \to T_{\Delta}$ the *output* tree homomorphism
- $\langle h, h' \rangle (L)$: the tree transformation computed by (h, L, h')
- w_1 and w_2 combinations of l, c, and al (including the empty combination)
- $B(w_1-H, w_2-H)$: the class of all tree transformations computed by bimorphisms with input homomorphism of type w_1 and output homomorphism of type w_2

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, 1 \leq i \leq n,$$

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, \ 1 \leq i \leq n,$$

where $R_1, \ldots, R_n \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ are finite tree transformations.

• $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is a *u-solution* of (E) if $S_i = R_i[S_1, ..., S_n]_u \ \forall 1 \le i \le n$

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, \ 1 \leq i \leq n,$$

- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is a *u-solution* of (E) if $S_i = R_i[S_1, ..., S_n]_u \ \forall 1 \leq i \leq n$
- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is the *least u-solution* of (E) if $S_i \subseteq S_i'$ $(1 \le i \le n)$ for every other *u*-solution $(S_1', ..., S_n')$ of (E)

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, \ 1 \leq i \leq n,$$

- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is a *u-solution* of (E) if $S_i = R_i[S_1, ..., S_n]_u \ \forall 1 \leq i \leq n$
- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is the *least u-solution* of (E) if $S_i \subseteq S_i'$ $(1 \le i \le n)$ for every other *u*-solution $(S_1', ..., S_n')$ of (E)
- Existence of the least *u*-solution of (E): $(\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ is ω -complete and

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, \ 1 \leq i \leq n,$$

- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is a *u-solution* of (E) if $S_i = R_i[S_1, ..., S_n]_u \ \forall 1 \leq i \leq n$
- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is the *least u-solution* of (E) if $S_i \subseteq S_i'$ $(1 \le i \le n)$ for every other *u*-solution $(S_1', ..., S_n')$ of (E)
- Existence of the least *u*-solution of (E): $(\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ is ω -complete and
- $\Phi_{E,u}: (\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n \to (\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ given by $(F_1, \ldots, F_n) \longmapsto (R_1[F_1, \ldots, F_n]_u, \ldots, R_n[F_1, \ldots, F_n]_u)$ is ω -continuous,

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, 1 \le i \le n$$
,

- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is a *u-solution* of (E) if $S_i = R_i[S_1, ..., S_n]_u \ \forall 1 \leq i \leq n$
- $(S_1, \ldots, S_n) \in (\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ is the *least u-solution* of (E) if $S_i \subseteq S_i'$ $(1 \le i \le n)$ for every other *u*-solution (S_1', \ldots, S_n') of (E)
- Existence of the least *u*-solution of (E): $(\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ is ω -complete and
- $\Phi_{E,u}: (\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n \to (\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ given by $(F_1, \ldots, F_n) \longmapsto (R_1[F_1, \ldots, F_n]_u, \ldots, R_n[F_1, \ldots, F_n]_u)$ is ω -continuous,
- Tarski: "least fixpoint of $\Phi_{E,u}$ exists"

Definition

A system of equations of tree transformations over Σ and Δ is a system

(E)
$$x_i = R_i, 1 \le i \le n$$
,

- $(S_1, ..., S_n) \in (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ is a *u-solution* of (E) if $S_i = R_i[S_1, ..., S_n]_u \ \forall 1 \leq i \leq n$
- $(S_1, \ldots, S_n) \in (\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ is the *least u-solution* of (E) if $S_i \subseteq S_i'$ $(1 \le i \le n)$ for every other *u*-solution (S_1', \ldots, S_n') of (E)
- Existence of the least *u*-solution of (E): $(\mathcal{P}(T_{\Sigma} \times T_{\Delta}))^n$ is ω -complete and
- $\Phi_{E,u}: (\mathcal{P}(T_\Sigma \times T_\Delta))^n \to (\mathcal{P}(T_\Sigma \times T_\Delta))^n$ given by $(F_1, \ldots, F_n) \longmapsto (R_1[F_1, \ldots, F_n]_u, \ldots, R_n[F_1, \ldots, F_n]_u)$ is ω -continuous,
- Tarski: "least fixpoint of $\Phi_{E,u}$ exists" and equals the least u-solution \circ

Systems of equations of tree transformations: least u-solutions

$$\bullet \ \operatorname{fix} \Phi_{E,u} = \sup_{k \geq 0} \left(\left(S_{1,k}, \dots, S_{n,k} \right) \right)$$

Systems of equations of tree transformations: least u-solutions

•
$$\operatorname{fix}\Phi_{E,u} = \sup_{k\geq 0} \left(\left(S_{1,k}, \ldots, S_{n,k} \right) \right)$$

• $S_{i,0} = \emptyset$, for $1 \le i \le n$, and

Systems of equations of tree transformations: least u-solutions

- $\operatorname{fix}\Phi_{E,u} = \sup_{k>0} ((S_{1,k}, \ldots, S_{n,k}))$
- $S_{i,0} = \emptyset$, for $1 \le i \le n$, and
- $S_{i,k+1} = R_i [S_{1,k}, ..., S_{n,k}]_u$, for $1 \le i \le n$ and $k \ge 0$

u-equational tree transformations

Definition

 $S \subseteq T_{\Sigma} \times T_{\Delta}$ is *u-equational* (*u*-[IO], OI) if it is the union of some components of the least *u*-solution of a system of equations of tree transformations over Σ and Δ .

ullet EQUT_[IO] the class of all [IO]-equational tree transformations

u-equational tree transformations

Definition

 $S \subseteq T_{\Sigma} \times T_{\Delta}$ is *u-equational* (*u*-[IO], OI) if it is the union of some components of the least *u*-solution of a system of equations of tree transformations over Σ and Δ .

- ullet EQUT $_{[IO]}$ the class of all [IO]-equational tree transformations
- EQUT_{OI} the class of all OI-equational tree transformations

• $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s, t) \in R$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s,t) \in R$
 - $\bullet |s|_{X_i} = |t|_{X_i} \forall 1 \leq i \leq n$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s, t) \in R$
 - $|s|_{x_i} = |t|_{x_i} \quad \forall 1 \leq i \leq n$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is rule-like if $\forall (s, t) \in R$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s, t) \in R$
 - $|s|_{x_i} = |t|_{x_i} \quad \forall 1 \leq i \leq n$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is rule-like if $\forall (s, t) \in R$
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ is linear where $k \geq 0$, $\sigma \in \Sigma_k$,

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s, t) \in R$
 - $|s|_{x_i} = |t|_{x_i} \quad \forall 1 \leq i \leq n$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is rule-like if $\forall (s, t) \in R$
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ is linear where $k \geq 0$, $\sigma \in \Sigma_k$,
 - $\bullet \ t \in T_{\Delta}(\{x_{i_1},\ldots,x_{i_k}\})$

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s, t) \in R$
 - $|s|_{x_i} = |t|_{x_i} \quad \forall 1 \leq i \leq n$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is rule-like if $\forall (s, t) \in R$
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ is linear where $k \geq 0$, $\sigma \in \Sigma_k$,
 - $t \in T_{\Delta}(\{x_{i_1}, \ldots, x_{i_k}\})$
 - or

- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is letter-like if $\forall (s, t) \in R$
 - s, t are linear
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ where $k \ge 0$, $\sigma \in \Sigma_k$ or $s = x_i$,
 - $t = \delta(x_{j_1}, \dots, x_{j_m})$ where $m \ge 0$, $\delta \in \Delta_m$ or $t = x_j$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is variable symmetric if $\forall (s, t) \in R$
 - $|s|_{x_i} = |t|_{x_i} \quad \forall 1 \leq i \leq n$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ is rule-like if $\forall (s, t) \in R$
 - $s = \sigma(x_{i_1}, \dots, x_{i_k})$ is linear where $k \geq 0$, $\sigma \in \Sigma_k$,
 - $\bullet \ t \in T_{\Delta}(\{x_{i_1},\ldots,x_{i_k}\})$
 - or
 - $\bullet (s,t) = (x_j,x_j)$

A system of equations

(E)
$$x_i = R_i, 1 \leq i \leq n,$$

of tree transformations over Σ and Δ is letter-like (resp. variable symmetric, rule-like) if R_i is letter-like (resp. variable symmetric, rule-like) $\forall 1 \leq i \leq n$

A system of equations

(E)
$$x_i = R_i, 1 \le i \le n,$$

of tree transformations over Σ and Δ is letter-like (resp. variable symmetric, rule-like) if R_i is letter-like (resp. variable symmetric, rule-like) $\forall 1 \leq i \leq n$

• $S \subseteq T_\Sigma \times T_\Delta$: It-u-equational (resp. vs-u-equational, rl-u-equational) if it is the union of some components of the least u-solution of a letter-like (resp. variable symmetric, rule-like) system of tree transformations over Σ and Δ

A system of equations

(E)
$$x_i = R_i, 1 \le i \le n,$$

of tree transformations over Σ and Δ is letter-like (resp. variable symmetric, rule-like) if R_i is letter-like (resp. variable symmetric, rule-like) $\forall 1 \leq i \leq n$

- $S\subseteq T_\Sigma \times T_\Delta$: It-u-equational (resp. vs-u-equational, rl-u-equational) if it is the union of some components of the least u-solution of a letter-like (resp. variable symmetric, rule-like) system of tree transformations over Σ and Δ
- It-EQUT_u, vs-EQUT_u, rl-EQUT_u

A system of equations

(E)
$$x_i = R_i, 1 \le i \le n,$$

of tree transformations over Σ and Δ is letter-like (resp. variable symmetric, rule-like) if R_i is letter-like (resp. variable symmetric, rule-like) $\forall 1 \leq i \leq n$

- $S \subseteq T_\Sigma \times T_\Delta$: It-u-equational (resp. vs-u-equational, rl-u-equational) if it is the union of some components of the least u-solution of a letter-like (resp. variable symmetric, rule-like) system of tree transformations over Σ and Δ
- It-EQUT_u, vs-EQUT_u, rl-EQUT_u
- I-rl-EQUT_{OI}, I-vs-rl-EQUT_{OI}

Main results

• $EQUT_{[IO]} = B(H, H)$

Main results

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$

Main results

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- lt- $EQUT_{OI} = B(al$ -H, al-H)

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- It- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- It- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- It- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\bullet \ \langle H, H \rangle \left(EQUT_{OI} \right) = EQUT_{[IO]}$

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- lt- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\langle H, H \rangle (EQUT_{OI}) = EQUT_{[IO]}$
- Equational characterization of some well-known classes of tree transformations:

- $\bullet \ EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- It- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\bullet \ \langle H, H \rangle \left(EQUT_{OI} \right) = EQUT_{[IO]}$
- Equational characterization of some well-known classes of tree transformations:
 - rI- $EQUT_{[IO]} = BOT$

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- lt- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\langle H, H \rangle (EQUT_{OI}) = EQUT_{[IO]}$
- Equational characterization of some well-known classes of tree transformations:
 - rI- $EQUT_{[IO]} = BOT$
 - I-rI- $EQUT_{OI} = I$ -BOT

- $\bullet \ EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- lt- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\langle H, H \rangle (EQUT_{OI}) = EQUT_{[IO]}$
- Equational characterization of some well-known classes of tree transformations:
 - rI- $EQUT_{[IO]} = BOT$
 - I-rI- $EQUT_{OI} = I$ -BOT
 - I-vs-rI- $EQUT_{OI} = In$ -BOT

- $\bullet \ EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- lt- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\langle H, H \rangle (EQUT_{OI}) = EQUT_{[IO]}$
- Equational characterization of some well-known classes of tree transformations:
 - rI- $EQUT_{[IO]} = BOT$
 - I-rI- $EQUT_{OI} = I$ -BOT
 - I-vs-rI- $EQUT_{OI} = In$ -BOT
 - vs- $EQUT_{OI} = In$ -XTOP

- $EQUT_{[IO]} = B(H, H)$
- $EQUT_{OI} = B(I-H, I-H)$
- lt- $EQUT_{OI} = B(al$ -H, al-H)
- vs- $EQUT_{OI} = B(Ic$ -H, Ic-H)
- rI- $EQUT_{[IO]} = B(REL, H)$
- $\langle H, H \rangle (EQUT_{OI}) = EQUT_{[IO]}$
- Equational characterization of some well-known classes of tree transformations:
 - rl- $EQUT_{[IO]} = BOT$
 - I-rI- $EQUT_{OI} = I$ -BOT
 - I-vs-rI- $EQUT_{OI} = In$ -BOT
 - vs- $EQUT_{OI} = In$ -XTOP
- ullet Mezei-Wright type result for $EQUT_{[IO]}$ and $EQUT_{OI}$

A Σ-algebra

$$\mathcal{A}=(A,\Sigma^{\mathcal{A}})$$

where A is a nonempty set, called the domain set of A, and $\Sigma^{A} = (\sigma^{A} \mid \sigma \in \Sigma)$ such that $\forall k \geq 0$ and $\sigma \in \Sigma_{k}$, we have $\sigma^{A} : A^{k} \to A$

A Σ-algebra

$$\mathcal{A}=(A,\Sigma^{\mathcal{A}})$$

where A is a nonempty set, called the domain set of A, and $\Sigma^{A} = (\sigma^{A} \mid \sigma \in \Sigma)$ such that $\forall k \geq 0$ and $\sigma \in \Sigma_{k}$, we have $\sigma^{A} : A^{k} \to A$

Example

 $\mathcal{T} = (\mathcal{T}_{\Sigma}, \Sigma^{\mathcal{T}})$ is a Σ -algebra with

$$\sigma^{\mathcal{T}}(s_1,\ldots,s_k)=\sigma(s_1,\ldots,s_k)$$

for every $k \geq 0$, $\sigma \in \Sigma_k$, and $s_1, \ldots, s_k \in \mathcal{T}_{\Sigma}$

A Σ-algebra

$$\mathcal{A}=(A,\Sigma^{\mathcal{A}})$$

where A is a nonempty set, called the domain set of A, and $\Sigma^{A} = (\sigma^{A} \mid \sigma \in \Sigma)$ such that $\forall k \geq 0$ and $\sigma \in \Sigma_{k}$, we have $\sigma^{A} : A^{k} \to A$

Example

 $\mathcal{T} = (\mathcal{T}_{\Sigma}, \Sigma^{\mathcal{T}})$ is a Σ -algebra with

$$\sigma^{\mathcal{T}}(s_1,\ldots,s_k)=\sigma(s_1,\ldots,s_k)$$

for every $k \geq 0$, $\sigma \in \Sigma_k$, and $s_1, \ldots, s_k \in T_{\Sigma}$

• In fact T is the *free* Σ -algebra, i.e., for every other Σ -algebra $\mathcal A$ there is a unique mapping (morphism) $H_{\mathcal A}: T_{\Sigma} \to A$ satysfying

A Σ-algebra

$$\mathcal{A}=(A,\Sigma^{\mathcal{A}})$$

where A is a nonempty set, called the domain set of A, and $\Sigma^{A} = (\sigma^{A} \mid \sigma \in \Sigma)$ such that $\forall k \geq 0$ and $\sigma \in \Sigma_{k}$, we have $\sigma^{A} : A^{k} \to A$

Example

 $\mathcal{T} = (\mathcal{T}_{\Sigma}, \Sigma^{\mathcal{T}})$ is a Σ -algebra with

$$\sigma^{\mathcal{T}}(s_1,\ldots,s_k)=\sigma(s_1,\ldots,s_k)$$

for every $k \geq 0$, $\sigma \in \Sigma_k$, and $s_1, \ldots, s_k \in \mathcal{T}_{\Sigma}$

- In fact $\mathcal T$ is the free Σ -algebra, i.e., for every other Σ -algebra $\mathcal A$ there is a unique mapping (morphism) $\mathcal H_{\mathcal A}:\mathcal T_\Sigma\to\mathcal A$ satysfying
 - $H_{\mathcal{A}}(\sigma(s_1,\ldots,s_k)) = \sigma^{\mathcal{A}}(H_{\mathcal{A}}(s_1),\ldots,H_{\mathcal{A}}(s_k)) \quad \forall k \geq 0, \ \sigma \in \Sigma_k$

• $\mathcal{A} = (A, \Sigma^{\mathcal{A}})$: Σ -algebra

- $\mathcal{A} = (A, \Sigma^{\mathcal{A}})$: Σ -algebra
- ullet $s\in \mathcal{T}_{\Sigma}(X_n)$, $(a_1,\ldots,a_n)\in \mathcal{A}^n$

- $\mathcal{A} = (\mathcal{A}, \Sigma^{\mathcal{A}})$: Σ -algebra
- $s \in T_{\Sigma}(X_n)$, $(a_1, \ldots, a_n) \in A^n$
- evaluation of s at (a_1, \ldots, a_n) in \mathcal{A} is denoted by $s[a_1, \ldots, a_n]_{\mathcal{A}}$, and is defined inductively:

- ullet $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$: Σ -algebra
- $s \in T_{\Sigma}(X_n)$, $(a_1, \ldots, a_n) \in A^n$
- evaluation of s at (a_1, \ldots, a_n) in \mathcal{A} is denoted by $s[a_1, \ldots, a_n]_{\mathcal{A}}$, and is defined inductively:
 - if $s = x_i$, then $s[a_1, \ldots, a_n]_A = a_i$

- ullet $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$: Σ -algebra
- $s \in T_{\Sigma}(X_n)$, $(a_1, \ldots, a_n) \in A^n$
- evaluation of s at (a_1, \ldots, a_n) in \mathcal{A} is denoted by $s[a_1, \ldots, a_n]_{\mathcal{A}}$, and is defined inductively:
 - if $s = x_i$, then $s[a_1, \ldots, a_n]_{\mathcal{A}} = a_i$
 - if $s = \sigma(s_1, \ldots, s_k)$ for $k \ge 0$, $\sigma \in \Sigma_k$ and $s_1, \ldots, s_k \in T_{\Sigma}(X_n)$, then $s[a_1, \ldots, a_n]_{\mathcal{A}} = \sigma^{\mathcal{A}}(s_1[a_1, \ldots, a_n]_{\mathcal{A}}, \ldots, s_k[a_1, \ldots, a_n]_{\mathcal{A}})$

•
$$|s|_{x_i} = \lambda_i$$
, $\mathbf{a}^{(i)} = \left(a_1^{(i)}, \dots, a_{\lambda_i}^{(i)}\right) \in A^{\lambda_i} \ \forall 1 \leq i \leq n$

- $|s|_{x_i} = \lambda_i$, $\mathbf{a}^{(i)} = \left(a_1^{(i)}, \dots, a_{\lambda_i}^{(i)}\right) \in A^{\lambda_i} \ \forall 1 \leq i \leq n$
- evaluation of s at $(a^{(1)}, \ldots, a^{(n)})$ in \mathcal{A} is denoted by $s\left[\mathbf{a}^{(1)}/x_1, \ldots, \mathbf{a}^{(n)}/x_n\right]_{\mathcal{A}}$ (simply by $s\left[\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(n)}\right]_{\mathcal{A}}$), and is defined inductively:

- $|s|_{x_i} = \lambda_i$, $\mathbf{a}^{(i)} = \left(a_1^{(i)}, \ldots, a_{\lambda_i}^{(i)}\right) \in A^{\lambda_i} \ \forall 1 \leq i \leq n$
- evaluation of s at $(\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(n)})$ in \mathcal{A} is denoted by $s\left[\mathbf{a}^{(1)}/x_1,\ldots,\mathbf{a}^{(n)}/x_n\right]_{\mathcal{A}}$ (simply by $s\left[\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(n)}\right]_{\mathcal{A}}$), and is defined inductively:
 - if $s = x_i$, then $s \left[\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(n)} \right]_{\mathcal{A}} = a_1^{(i)}$

- $|s|_{x_i} = \lambda_i$, $\mathbf{a}^{(i)} = \left(a_1^{(i)}, \dots, a_{\lambda_i}^{(i)}\right) \in A^{\lambda_i} \ \forall 1 \leq i \leq n$
- evaluation of s at $(\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(n)})$ in \mathcal{A} is denoted by $s\left[\mathbf{a}^{(1)}/x_1,\ldots,\mathbf{a}^{(n)}/x_n\right]_{\mathcal{A}}$ (simply by $s\left[\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(n)}\right]_{\mathcal{A}}$), and is defined inductively:
 - if $s=x_i$, then $s\left[\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(n)}\right]_{\mathcal{A}}=a_1^{(i)}$
 - if $s=\sigma(s_1,\ldots,s_k)$ for $k\geq 0$ and $s_1,\ldots,s_k\in T_\Sigma(X_n)$, then let $|s_1|_{X_i}=\lambda_{1,i},\ldots,|s_k|_{X_i}=\lambda_{k,i}$ and let $\mathbf{a}^{(1,i)},\ldots,\mathbf{a}^{(k,i)}$ be the unique decomposition of the vector $\mathbf{a}^{(i)}$ into components of dimensional $\lambda_{1,i},\ldots,\lambda_{k,i}$, respectively, $\forall 1\leq i\leq n,\ (\lambda_i=\lambda_{1,i}+\ldots+\lambda_{k,i})$ $s\left[\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(n)}\right]_{\mathcal{A}}=\sigma^{\mathcal{A}}\left(s_1\left[\mathbf{a}^{(1,1)},\ldots,\mathbf{a}^{(1,n)}\right]_{\mathcal{A}},\ldots,s_k\left[\mathbf{a}^{(k,1)},\ldots,\mathbf{a}^{(k,n)}\right]_{\mathcal{A}}\right).$

• $\mathcal{A}=(A,\Sigma^{\mathcal{A}}),~\mathcal{B}=(B,\Delta^{\mathcal{B}})$: arbitrary algebras

- ullet $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$, $\mathcal{B}=(\mathcal{B},\Delta^{\mathcal{B}})$: arbitrary algebras
- $\bullet \ (s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n) \text{ with } \\ |s|_{x_i} = \lambda_i, \quad |t|_{x_i} = \mu_i, \quad m_i = \max\{\lambda_i, \mu_i\} \quad \forall 1 \leq i \leq n$

- $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$, $\mathcal{B}=(\mathcal{B},\Delta^{\mathcal{B}})$: arbitrary algebras
- $(s, t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ with $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\} \ \forall 1 \leq i \leq n$
- $\bullet \mathbf{v}^{(i)}\left(\left(a_1^{(i)},b_1^{(i)}\right),\ldots,\left(a_{m_i}^{(i)},b_{m_i}^{(i)}\right)\right)\in (A\times B)^{m_i}$

- $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$, $\mathcal{B}=(\mathcal{B},\Delta^{\mathcal{B}})$: arbitrary algebras
- $(s, t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ with $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\} \ \forall 1 \leq i \leq n$
- $\bullet \ \mathbf{v}^{(i)}\left(\left(a_1^{(i)},b_1^{(i)}\right),\ldots,\left(a_{m_i}^{(i)},b_{m_i}^{(i)}\right)\right)\in (A\times B)^{m_i}$
- $\bullet \ \mathbf{a}^{(i)} = \left(a_1^{(i)}, \ldots, a_{\lambda_i}^{(i)}\right)$

- ullet $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$, $\mathcal{B}=(\mathcal{B},\Delta^{\mathcal{B}})$: arbitrary algebras
- $(s, t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ with $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\} \ \forall 1 \leq i \leq n$
- $\bullet \ \mathbf{v}^{(i)}\left(\left(a_1^{(i)},b_1^{(i)}\right),\ldots,\left(a_{m_i}^{(i)},b_{m_i}^{(i)}\right)\right)\in (A\times B)^{m_i}$
- ullet $\mathbf{a}^{(i)}=\left(a_1^{(i)},\ldots,a_{\lambda_i}^{(i)}
 ight)$
- ullet ${f b}^{(i)} = \left(b_1^{(i)}, \ldots, b_{\mu_i}^{(i)}\right)$

- $\mathcal{A}=(A,\Sigma^{\mathcal{A}})$, $\mathcal{B}=(B,\Delta^{\mathcal{B}})$: arbitrary algebras
- $(s, t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ with $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\} \ \forall 1 \leq i \leq n$
- $\bullet \ \mathbf{v}^{(i)}\left(\left(a_1^{(i)},b_1^{(i)}\right),\ldots,\left(a_{m_i}^{(i)},b_{m_i}^{(i)}\right)\right)\in (A\times B)^{m_i}$
- $\bullet \ \mathbf{a}^{(i)} = \left(\mathbf{a}_1^{(i)}, \ldots, \mathbf{a}_{\lambda_i}^{(i)}\right)$
- $m{b}^{(i)} = \left(b_1^{(i)}, \dots, b_{\mu_i}^{(i)}\right)$
- evaluation of (s, t) at $(v^{(1)}, \ldots, v^{(n)})$ in (A, B):

- $\mathcal{A}=(\mathcal{A},\Sigma^{\mathcal{A}})$, $\mathcal{B}=(\mathcal{B},\Delta^{\mathcal{B}})$: arbitrary algebras
- $(s, t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$ with $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\} \ \forall 1 \leq i \leq n$
- $\bullet \ \mathbf{v}^{(i)}\left(\left(a_1^{(i)},b_1^{(i)}\right),\ldots,\left(a_{m_i}^{(i)},b_{m_i}^{(i)}\right)\right)\in (A\times B)^{m_i}$
- $\bullet \ \mathbf{a}^{(i)} = \left(\mathbf{a}_1^{(i)}, \ldots, \mathbf{a}_{\lambda_i}^{(i)} \right)$
- $m{b}^{(i)} = \left(b_1^{(i)}, \dots, b_{\mu_i}^{(i)}\right)$
- evaluation of (s,t) at $(v^{(1)},\ldots,v^{(n)})$ in $(\mathcal{A},\mathcal{B})$:
- $\bullet (s,t) \left[\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)} \right]_{(\mathcal{A},\mathcal{B})} = \\ \left(s \left[\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(n)} \right]_{\mathcal{A}}, t \left[\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(n)} \right]_{\mathcal{B}} \right)$

ullet $\left(s,t
ight) \in T_{\Sigma }\left(X_{n}
ight) imes T_{\Delta }\left(X_{n}
ight)$,

- ullet $(s,t)\in T_{\Sigma}\left(X_{n}
 ight) imes T_{\Delta}\left(X_{n}
 ight)$,
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \le i \le n$,

- \bullet $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$,
- $\bullet |s|_{x_i} = \lambda_i, \quad |t|_{x_i} = \mu_i, \quad m_i = \max\{\lambda_i, \mu_i\} \quad \forall 1 \le i \le n,$
- $U_1, \ldots, U_n \subseteq A \times B$

- \bullet $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$,
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \leq i \leq n$,
- $U_1, \ldots, U_n \subseteq A \times B$
- [IO]-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):

- \bullet $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$,
- $\bullet |s|_{x_i} = \lambda_i, \quad |t|_{x_i} = \mu_i, \quad m_i = \max\{\lambda_i, \mu_i\} \quad \forall 1 \le i \le n,$
- $U_1, \ldots, U_n \subseteq A \times B$
- [IO]-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $(s,t)[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),[IO]} = \{(s[a_1,\ldots,a_n]_{\mathcal{A}},t[b_1,\ldots,b_n]_{\mathcal{B}}) \mid (a_i,b_i) \in U_i \text{ if } m_i > 0, \text{ and } (a_i,b_i) = \text{arbitrary pair in } A \times B \text{ otherwise, } 1 \leq i \leq n\}$

- \bullet $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$,
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \le i \le n$,
- $U_1, \ldots, U_n \subseteq A \times B$
- [IO]-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $(s,t)[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),[IO]}=\{(s[a_1,\ldots,a_n]_{\mathcal{A}},t[b_1,\ldots,b_n]_{\mathcal{B}})\mid (a_i,b_i)\in U_i \text{ if } m_i>0, \text{ and } (a_i,b_i)=\text{arbitrary pair in } A\times B \text{ otherwise, } 1\leq i\leq n\}$
- OI-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):

- ullet $\left(s,t
 ight) \in \mathcal{T}_{\Sigma }\left(X_{n}
 ight) imes \mathcal{T}_{\Delta }\left(X_{n}
 ight)$,
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \le i \le n$,
- $U_1, \ldots, U_n \subseteq A \times B$
- [IO]-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $(s,t)[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),[IO]}=\{(s[a_1,\ldots,a_n]_{\mathcal{A}},t[b_1,\ldots,b_n]_{\mathcal{B}})\mid (a_i,b_i)\in U_i \text{ if } m_i>0, \text{ and } (a_i,b_i)=\text{arbitrary pair in } A\times B \text{ otherwise, } 1\leq i\leq n\}$
- OI-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $\bullet (s,t) [U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),Ol} = \\ \left\{ (s,t) \left[\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(n)} \right]_{(\mathcal{A},\mathcal{B})} \mid \mathbf{v}^{(i)} \in U_i^{m_i}, 1 \leq i \leq n \right\}$

- \bullet $(s,t) \in T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$,
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \le i \le n$,
- $U_1, \ldots, U_n \subseteq A \times B$
- [IO]-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $(s,t)[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),[IO]}=\{(s[a_1,\ldots,a_n]_{\mathcal{A}},t[b_1,\ldots,b_n]_{\mathcal{B}})\mid (a_i,b_i)\in U_i \text{ if } m_i>0, \text{ and } (a_i,b_i)=\text{arbitrary pair in } A\times B \text{ otherwise, } 1\leq i\leq n\}$
- OI-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, u=[IO], OI

- ullet $(s,t)\in T_{\Sigma}\left(X_{n}
 ight) imes T_{\Delta}\left(X_{n}
 ight)$,
- $|s|_{x_i} = \lambda_i$, $|t|_{x_i} = \mu_i$, $m_i = \max\{\lambda_i, \mu_i\}$ $\forall 1 \le i \le n$,
- $U_1, \ldots, U_n \subseteq A \times B$
- [IO]-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $(s,t)[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),[IO]}=\{(s[a_1,\ldots,a_n]_{\mathcal{A}},t[b_1,\ldots,b_n]_{\mathcal{B}})\mid (a_i,b_i)\in U_i \text{ if } m_i>0, \text{ and } (a_i,b_i)=\text{arbitrary pair in } A\times B \text{ otherwise, } 1\leq i\leq n\}$
- OI-evaluation of (s, t) at U_1, \ldots, U_n in (A, B):
- $\bullet (s,t) [U_1, \ldots, U_n]_{(\mathcal{A},\mathcal{B}),OI} =$ $\left\{ (s,t) \left[\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)} \right]_{(\mathcal{A},\mathcal{B})} \mid \mathbf{v}^{(i)} \in U_i^{m_i}, 1 \leq i \leq n \right\}$
- $R \subseteq T_{\Sigma}(X_n) \times T_{\Delta}(X_n)$, u=[IO], OI
- $R[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),u}=\bigcup_{(s,t)\in R}(s,t)[U_1,\ldots,U_n]_{(\mathcal{A},\mathcal{B}),u}$

A system of equations of tree transformations over Σ and Δ

(E)
$$x_i = R_i, \ 1 \le i \le n$$

• $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is a *u-solution* of (E) in $(\mathcal{A}, \mathcal{B})$ if $U_i = R_i[U_1, \ldots, U_n]_u \ \forall 1 \leq i \leq n$

A system of equations of tree transformations over Σ and Δ

$$(E) x_i = R_i, \ 1 \le i \le n$$

- $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is a *u-solution* of (E) in $(\mathcal{A}, \mathcal{B})$ if $U_i = R_i[U_1, \ldots, U_n]_u \ \forall 1 \leq i \leq n$
- $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is the *least u-solution* of (E) in (A, B) if $U_i \subseteq U_i'$ $(1 \le i \le n)$ for every other *u*-solution (U_1', \ldots, U_n') of (E) in (A, B)

A system of equations of tree transformations over Σ and Δ

(E)
$$x_i = R_i, 1 \le i \le n$$

- $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is a *u-solution* of (E) in $(\mathcal{A}, \mathcal{B})$ if $U_i = R_i[U_1, \ldots, U_n]_u \ \forall 1 \leq i \leq n$
- $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is the *least u-solution* of (E) in (A, \mathcal{B}) if $U_i \subseteq U_i'$ $(1 \le i \le n)$ for every other *u*-solution (U_1', \ldots, U_n') of (E) in (A, \mathcal{B})
- Existence of the least *u*-solution of (E) in (A, B): as in tree transformations case

A system of equations of tree transformations over Σ and Δ

(E)
$$x_i = R_i, \ 1 \leq i \leq n$$

- $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is a *u-solution* of (E) in $(\mathcal{A}, \mathcal{B})$ if $U_i = R_i[U_1, \ldots, U_n]_u \ \forall 1 \leq i \leq n$
- $(U_1, \ldots, U_n) \in (\mathcal{P}(A \times B))^n$ is the *least u-solution* of (E) in (A, \mathcal{B}) if $U_i \subseteq U_i'$ $(1 \le i \le n)$ for every other *u*-solution (U_1', \ldots, U_n') of (E) in (A, \mathcal{B})
- Existence of the least u-solution of (E) in $(\mathcal{A}, \mathcal{B})$: as in tree transformations case
- $U \in \mathcal{P}(A \times B)$ is *u-equational* if it is the union of some components of the least *u*-solution in $(\mathcal{A}, \mathcal{B})$ of a system of equations of tree transformations

Mezei-Wright type result

Theorem

Let $\mathcal{A}=(A,\Sigma^{\mathcal{A}})$ and $\mathcal{B}=(B,\Delta^{\mathcal{B}})$ be arbitrary algebras and u=[IO], OI. A relation $U\subseteq A\times B$ is u-equational iff there exists a u-equational tree transformation $S\subseteq T_\Sigma\times T_\Delta$ such that $H_{(\mathcal{A},\mathcal{B})}(S)=U$, where $H_{(\mathcal{A},\mathcal{B})}(s,t)=(H_{\mathcal{A}}(s),H_{\mathcal{B}}(s))$ for every $(s,t)\in T_\Sigma\times T_\Delta$.

Thank you