SMT SOLVING: COMBINING DECISION PROCEDURES

Course "Computational Logic"

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at

Lemmas on Demand

How to decide $T \models F$ for unquantified formula F and decidable theory T?

- So far: convert *F* into a disjunctive normal form $C_1 \vee \ldots \vee C_n$.
 - *F* is *T*-satisfiable if and only if some C_i is *T*-satisfiable.
 - Problem: the number *n* of clauses may be exponential in the size of *F*.
- Better: combine the decision procedure for *T* with a SAT solver.
 - The SAT solver is applied to the propositional skeleton \overline{F} .
 - Every atomic formula A in F is abstracted to a propositional variable \overline{A} .
 - If \overline{F} is unsatisfiable, F is unsatisfiable and we are done.
 - Otherwise, the SAT solver produces a satisfying assignment represented by a conjunction $\overline{L_1} \land \ldots \land \overline{L_m}$ of propositional literals.
 - The decision procedure is applied to the *T*-formula $L_1 \land \ldots \land L_m$.
 - Propositional variable $\overline{L_i}$ is expanded into the atomic formula L_i it represents.
 - If the formula is satisfiable, *F* is satisfiable and we are done.
 - Otherwise, the decision procedure determines a minimal unsatisfiable subformula *C* of $L_1 \land \ldots \land L_m$ and we repeat the process with $F \land \neg C$.

Each formula $\neg C$ produced represents a "lemma" deduced from *F*. 1/10

Example

E-satisfiability of $F : \Leftrightarrow x = y \land ((y = z \land x \neq z) \lor x = z).$

- First iteration:
 - Propositional skeleton: $a \land ((b \land \neg c) \lor c)$
 - Satisfying assignment: $a \land b \land \neg c$
 - Unsatisfiable concretization: $x = y \land y = z \land x \neq z$
 - Strengthened formula: $F \land \neg (x = y \land y = z \land x \neq z)$
- Second iteration:
 - Propositional Skeleton: $a \land ((b \land \neg c) \lor c) \land \neg (a \land b \land \neg c)$
 - Satisfying assignment: $a \land b \land c$
 - Satisfiable concretization: $x = y \land y = z \land x = z$

Formula *F* is *E*-satisfiable.

Algorithm

function SMT(*F*) $\overline{F} := \mathbf{A}\mathsf{B}\mathsf{S}\mathsf{T}\mathsf{R}\mathsf{A}\mathsf{C}\mathsf{T}(F)$ loop $(sat, \overline{Ls}) := \mathsf{SAT}(\overline{F})$ if $\neg sat$ return false $Ls := CONCRETIZE(\overline{Ls})$ $(sat, C) := \mathsf{SMT}(Ls)$ if sat return true $\overline{F} := \overline{F} \land \mathsf{ABSTRACT}(\neg C)$ end loop end function

 \triangleright decides *T*-satisfiability of formula *F*

▶ decides satisfiability of propositional skeleton of F

▶ decides *T*-satisfiability of literal set *Ls*

This basic approach can be further optimized, e.g., by integrating the interaction with the decision procedure directly into a DPLL-based SAT solver ("lazy encoding").

Combining Decision Procedures

How to decide a conjunction of atomic formulas with operations from different decidable theories such as LRA and EUF?

 $(y \ge z) \land (x - z \ge y) \land (z \ge 0) \land (f(f(x) - f(y)) \neq f(z))$

- Theory combination problem: decide $T_1 \cup T_2 \models F$ for formula *F* and theories T_1, T_2 .
 - Problem: even if T_1 and T_2 are decidable, $T_1 \cup T_2$ may be undecidable.
- Definition: a theory *T* is stably infinite, if for every quantifier-free formula *F* that is *T*-satisfiable, there exists an infinite domain that satisfies *F*.
 - Theories *LRA* and *EUF* are stably infinite.
 - The theory $\{x = a \lor x = b\}$ with constants *a*, *b* is not stably infinite (why?).
- Theorem: let T_1 and T_2 be theories for which the quantifier-free fragment is decidable and that have no common constants, functions, or predicates (except for "="). If T_1 and T_2 are stably infinite, then the quantifier-free fragment of $T_1 \cup T_2$ is decidable.

Under some constraints, the theory combination problem is indeed solvable.

Formula Purification

Before proceeding, let us tidy the formula a bit.

- Purification: ensure that every atom is from only one theory.
 - Repeatedly replace in the formula each "alien" subexpression *E* by a fresh variable v_E and add the constraint $v_E = E$.
 - The transformation preserves the satisfiability of the formula.
- Example: $(f(x, 0) \ge z) \land (f(y, 0) \le z) \land (x \ge y) \land (y \le x) \land (z f(x, 0) \ge 1).$

$$(v_1 \ge z) \land (v_2 \le z) \land (x \ge y) \land (y \le x) \land (z - v_1 \ge 1) \land$$

 $v_1 = f(x, v_3) \land v_2 = f(y, v_3) \land v_3 = 0$

A preparatory step for theory combination.

The Nelson-Oppen Method (for Convex Theories)

Greg Nelson and Derek C. Oppen (1979).

```
▶ decides T_1 \cup ... \cup T_n-satisfiability of literal conjunction F

▶ for <u>convex</u> theories T_1, ..., T_n
```

loop

function NELSONOPPEN(F)

 $F_1, \ldots, F_n := \mathsf{PURIFY}(F)$

if $\exists i. \neg SMT_i(F_i)$ return false if $\neg \exists x, y, j.$ INFERRED_j(x, y) return true choose x, y, j with INFERRED_j(x, y) $F_j := F_j \cup \{x = y\}$ end loop end function

 $\mathsf{INFERRED}_j(x, y) :\Leftrightarrow \exists i. \; (\mathsf{SHARED}(F_i, F_j, \{x, y\})) \land \mathsf{INFER}_i(F_i, (x = y)) \land \neg \mathsf{INFER}_j(F_j, (x = y)))$

- SHARED $(F_i, F_j, \{x, y\})$: variables x, y are shared by formulas F_i and F_j .
- INFER_{*i*}(F_i , (x = y)): variable equality (x = y) can be inferred from F_i in theory T_i .

• $F_i \Rightarrow x = y$ is T_i -valid ($F_i \land \neg(x = y)$ is T_i -unsatisfiable).

The iterative propagation of inferred variable equalities between theories. 6/10

Example

$$(f(x,0) \ge z) \land (f(y,0) \le z) \land (x \ge y) \land (y \ge x) \land (z - f(x,0) \ge 1)$$

• Purified formula:

$$(v_1 \ge z) \land (v_2 \le z) \land (x \ge y) \land (y \ge x) \land (z - v_1 \ge 1) \land$$
$$v_1 = f(x, v_3) \land v_2 = f(y, v_3) \land v_3 = 0$$

• Equality propagation:

$F_1(LRA)$		$F_2(EUF)$	
$v_1 \ge z$		$v_1 = f(x, v_3)$	
$v_2 \leq z$		$v_2 = f(y, v_3)$	
$x \ge y$			
$y \ge x$			
$z - v_1 \ge 1$			
$v_3 = 0$			
x = y	\rightarrow	x = y	
$v_1 = v_2$	\leftarrow	$v_1 = v_2$	
$v_1 = z$			
unsat			

Example

$$(y \ge x) \land (x - z \ge y) \land (z \ge 0) \land (f(f(x) - f(y)) \neq f(z))$$

• Purified formula:

$$(y \ge x) \land (x - z \ge y) \land (z \ge 0) \land (f(v_1) \ne f(z)) \land$$
$$v_1 = v_2 - v_3 \land v_2 = f(x) \land v_3 = f(y)$$

• Equality propagation:

$F_1(LRA)$		$F_2(EUF)$
$y \ge x$		$f(v_1) \neq f(z)$
$x - z \ge y$		$v_2 = f(x)$
$z \ge 0$		$v_3 = f(y)$
$v_1 = v_2 - v_3$		
z = 0		
x = y	\rightarrow	x = y
$v_2 = v_3$	\leftarrow	$v_2 = v_3$
$v_1 = 0$		
$v_1 = z$	\rightarrow	$v_1 = z$
-		unsat

Convex Theories

• Definition: Theory *T* is convex, if for every formula $F := L_1 \land \ldots \land L_m$ with literals L_1, \ldots, L_m the following holds (for variables x_1, \ldots, x_n and y_1, \ldots, y_n):

• If $T \models F \Rightarrow x_1 = y_1 \lor \ldots \lor x_n = y_n$, then $T \models (F \Rightarrow x_i = y_i)$ for some $i \in \{1, \ldots, n\}$.

• If F implies in T a disjunction of equalities, it already implies one of these equalities.

- Thus F cannot express "real" disjunctions and it suffices to infer plain equalities.
- Examples:
 - *LRA* is convex: a "real" disjunction corresponds to a finite set of $n \ge 2$ geometric points; however, by a conjunction of linear inequalities (which represents an intersection of half-planes), we can only define a point set that is empty, singleton, or infinite.
 - *EUF* is convex: if $F \Rightarrow x_1 = y_1 \lor \ldots \lor x_n = y_n$, then $F \land x_1 \neq y_1 \land \ldots \land x_n \neq y_n$ is unsatisfiable. The congruence closure algorithm shows this by demonstrating for some *i* that $F \land x_i \neq y_i$ is unsatisfiable, i.e., that $F \Rightarrow x_i = y_i$ is valid.
 - *LIA* (linear integer arithmetic) is not convex: take $F :\Leftrightarrow 1 \le x \land x \le 2 \land y = 1 \land z = 2$; then *F* implies $x = y \lor x = z$ but neither x = y nor x = z.

Non-Convex Theories

How to combine with a non-convex theory T_i ?

- We may infer in T_i from formula F_i only a disjunction $x_1 = y_1 \lor \ldots \lor x_n = y_n$.
 - But not any equality $x_i = y_i$ of this disjunction.
- However, this disjunction can be made minimal (strongest).
 - Start with the disjunction of all possible variable equalities.
 - If it cannot be inferred, no smaller disjunction can be inferred either.
 - Otherwise, strip every $x_i = y_i$ if this keeps the disjunction inferred.
- For each remaining $x_i = y_i$, recursively call NELSONOPPEN $(F \land x_i = y_i)$.
 - Return "true" if any call returns "true" and "false", otherwise.

Thus the Nelson-Oppen method is also applicable to non-convex theories (but with generally much greater complexity).