
SMT SOLVING:
DECIDABLE THEORIES
Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at

Theories

• A theory 𝑇 is a set of first-order sentences (closed formulas) that is closed
under logical consequence:

𝑇 |= 𝐹 if and only if 𝐹 ∈ 𝑇 , for every first-order formula 𝐹.

• 𝑇 may be defined as the set Th (M) := {𝐹 | ∀𝑀 ∈ M . 𝑀 |= 𝐹} of all sentences
that hold in (every element of) some class M of structures.

◦ Notation Th (N, 0, 1, +, ·, ≤): the theory where 0, 1, +, ·, ≤ are interpreted as the
usual natural number constants, functions, predicates.

• 𝑇 may be also defined as the set Cn (𝐴) := {𝐹 | 𝐴 |= 𝐹} of consequences of
some recursively enumerable set 𝐴 of first-order formulas called axioms.

◦ A set is recursively enumerable if a machine can produce a list of its elements.
◦ If 𝑇 = Cn (𝐴) for some (finite) set 𝐴, then 𝑇 is (finitely) axiomatizable.
◦ Undefinability theorem (Gödel/Tarski): Th (N, 0, 1, +, ·, ≤) is not axiomatizable.

A theory describes a “domain of interest”.
1/25

Decision Problems

Theories give rise to two related decision problems.

• The problem of Validity Modulo Theories:
◦ Given: a first-order formula 𝐹 and a first-order theory 𝑇 .
◦ Decide: does 𝑇 |= 𝐹 hold, i.e., is 𝐹 is a logical consequence of 𝑇?

• The problem of Satisfiability Modulo Theories (SMT):
◦ Given: a first-order formula 𝐹 and a first-order theory 𝑇 .
◦ Decide: is 𝑇 ∪ {𝐹} satisfiable?

• Duality: 𝑇 |= 𝐹 if and only if 𝑇 ∪ {¬𝐹} is not satisfiable.

An SMT solver is a decision procedure for the SMT problem (with respect to some
theory or combination of theories); thus it also decides the dual validity problem.

2/25

Decidable Problems

For certain classes of formulas/theories, the satisfiability problem is decidable.

• Prenex normal form ∀𝑛∃𝑚 (validity) or ∃𝑛∀𝑚 (satisfiability) (“AE/EA fragment”).

• Formulas without functions and with only unary predicates (“monadic fragment”).

• Every theory with only finite models (e.g., the theory of fixed-size bit vectors).

• Quantifier-free theory of equality with uninterpreted functions (“equational logic”).

• Theory of arrays, theory of recursive data structures.

• Linear arithmetic over integers (“Presburger arithmetic”), natural numbers, reals.

• Theory of reals (“elementary algebra”), complex numbers, algebraically closed fields.

• Logical consequences of equalities over groups, rings, fields (“word problems”).

• . . .

As we will see later, also any combination of decidable theories is decidable.

3/25

SMT-LIB: The Satisfiability Modulo Theories Library

http://smt-lib.org

• A library of theories/logics of practical relevance.

• A common input language for SMT solvers.

• A repository of benchmarks.
• The basis of the yearly SMT-COMP competition.

◦ https://smt-comp.github.io

Many automated/interactive reasoners and program verifiers are equipped with
SMT-LIB interfaces to external SMT solvers.

4/25

http://smt-lib.org
https://smt-comp.github.io

The SMT-LIB Library

• QF_UF: Unquantified formulas built over a signature of uninterpreted (i.e., free) sort
and function symbols.

• QF_LIA: Unquantified linear integer arithmetic. In essence, Boolean combinations of
inequations between linear polynomials over integer variables.

Not every logic is decidable, e.g., NIA (non-linear integer arithmetic). 5/25

Z3: An SMT solver with SMT-LIB Support

Software: https://github.com/Z3Prover
Tutorial: https://microsoft.github.io/z3guide

• An SMT solver developed since 2007 at Microsoft Research.
◦ Nikolaj Bjørner and Leonardo de Moura.
◦ Open source since 2015 under the MIT License.

• Highly efficient and versatile.
◦ Frequent winner of various divisions of the SMT-COMP series.
◦ Backend of various software verification systems (e.g., Microsoft Boogie).

• Uses the SMT-LIB language and supports various SMT-LIB logics.
◦ Uninterpreted functions, linear arithmetic, fixed-size bit-vectors, algebraic

datatypes, arrays, polynomial arithmetic, . . .
• Also supports quantification.

◦ However, when using quantifiers, the solver is generally incomplete.

Z3 gradually evolves into a full-fledged automated theorem prover. 6/25

https://github.com/Z3Prover
https://microsoft.github.io/z3guide

The SMT-LIB Language

; file example1.smt2: Integer arithmetic
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
(exit)

debian10!1> z3 example1.smt
unsat

; file example2.smt2: Getting values or models
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (+ x (* 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)
(get-value (x y))
(get-model)
(exit)

debian10!1> z3 example2.smt2
sat
((x 8) (y 6))
(model

(define-fun y () Int 6)
(define-fun x () Int 8)

)
7/25

The SMT-LIB Language
; file example3.smt2:
; Modeling sequential code in SSA form
; Buggy swap: int x, y; int t = x; x = y; y = x;
(set-logic QF_UFLIA)

(declare-fun x (Int) Int)
(declare-fun y (Int) Int)
(declare-fun t (Int) Int)
(assert (= (t 0) (x 0)))
(assert (= (x 1) (y 0)))
(assert (= (y 1) (x 1)))
(assert (not

(and (= (x 1) (y 0))
(= (y 1) (x 0)))))

(check-sat)
(get-value ((x 0) (y 0) (x 1) (y 1)))
(get-model)
(exit)

sat
(((x 0) 2)
((y 0) 3)
((x 1) 3)
((y 1) 3))

(model
(define-fun y ((x!1 Int)) Int

(ite (= x!1 0) 3
(ite (= x!1 1) 3

3)))
(define-fun t ((x!1 Int)) Int

(ite (= x!1 0) 2
2))

(define-fun x ((x!1 Int)) Int
(ite (= x!1 0) 2
(ite (= x!1 1) 3

2)))
)

8/25

Example Application: Program Verification
We can reduce the verification of programs to deciding the satisfiability of formulas.

• Verification of program with respect to pre- and post-condition:
{𝑎[0] = 𝑥 ∧ 𝑎[1] = 𝑦 ∧ 𝑎[2] = 𝑧}
i = 0; m = a[i];
i = i+1; if (a[i] < m) m = a[i];
i = i+1; if (a[i] < m) m = a[i];

{𝑚 ≤ 𝑥 ∧ 𝑚 ≤ 𝑦 ∧ 𝑚 ≤ 𝑧 ∧ (𝑚 = 𝑥 ∨ 𝑚 = 𝑦 ∨ 𝑚 = 𝑧)}

• Satisfiability of formula:
𝑎[0] = 𝑥 ∧ 𝑎[1] = 𝑦 ∧ 𝑎[2] = 𝑧 ∧
𝑖0 = 0 ∧𝑚0 = 𝑎[𝑖0] ∧
𝑖1 = 𝑖0 + 1 ∧ (if 𝑎[𝑖1] < 𝑚0 then 𝑚1 = 𝑎[𝑖1] else 𝑚1 = 𝑚0) ∧
𝑖2 = 𝑖1 + 1 ∧ (if 𝑎[𝑖2] < 𝑚1 then 𝑚2 = 𝑎[𝑖2] else 𝑚2 = 𝑚1) ∧
¬(𝑚2 ≤ 𝑥 ∧𝑚2 ≤ 𝑦 ∧𝑚2 ≤ 𝑧 ∧ (𝑚2 = 𝑥 ∨𝑚2 = 𝑦 ∨𝑚2 = 𝑧))

The unsatisfiability of the formula establishes the correctness of the program with
respect to its specification; a satisfying valuation determines a violating program run.

9/25

Program Verification: SMT-LIB Script
; file minimum.smt2:
(set-logic QF_UFLIA)

(declare-fun a (Int) Int)
(declare-const x Int) (declare-const y Int) (declare-const z Int)
(declare-const i0 Int) (declare-const i1 Int) (declare-const i2 Int)
(declare-const m0 Int) (declare-const m1 Int) (declare-const m2 Int)

(assert (= (a 0) x)) (assert (= (a 1) y)) (assert (= (a 2) z))
(assert (= i0 0)) (assert (= m0 (a i0)))
(assert (= i1 (+ i0 1))) (assert (ite (< (a i1) m0) (= m1 (a i1)) (= m1 m0)))
(assert (= i2 (+ i1 1))) (assert (ite (< (a i2) m1) (= m2 (a i2)) (= m2 m1)))
(assert (not

(and (and (and (<= m2 x) (<= m2 y)) (<= m2 z))
(or (or (= m2 x) (= m2 y)) (= m2 z)))))

(check-sat) (exit)

debian10!1> z3 minimum.smt2
unsat 10/25

Program Verification: SMT-LIB Script
; file minimum2.smt2:
...
; BUG: ">" rather than "<"
(assert (ite (> (a i2) m1) (= m2 (a i2)) (= m2 m1)))
...
(check-sat) (get-value (x y z i0 m0 i1 m1 i2 m2)) (get-model) (exit)

alan!89> z3 minimum2.smt2
sat
((x 1) (y 0) (z 2) (i0 0) (m0 1) (i1 1) (m1 0) (i2 2) (m2 2))
(model

(define-fun m0 () Int 1) (define-fun i1 () Int 1) (define-fun m2 () Int 2)
(define-fun y () Int 0) (define-fun m1 () Int 0) (define-fun i2 () Int 2)
(define-fun i0 () Int 0) (define-fun z () Int 2) (define-fun x () Int 1)
(define-fun a ((x!1 Int)) Int (ite (= x!1 0) 1 (ite (= x!1 1) 0 (ite (= x!1 2) 2 1)))))

The assignments of a buggy program with an inverted test operation.

11/25

The Theory LRA: Linear Real Arithmetic

Essentially the SMT-LIB logic QF_LRA.

• LRA is a quantifier-free first-order theory.
◦ Interpretation over the domain R of real numbers.
◦ Only atomic formulas are inequalties 𝑎 ≤ 𝑏 with polynomials 𝑎, 𝑏.

Integer and rational constants, functions + and ·, predicate ≤.
Also −, <, >, ≥,= are allowed: 𝑎 − 𝑏 can be reduced to 𝑎 + (−1) · 𝑏; {<, >} can be
reduced to {=, ≤, ≥}; = can be reduced to {≤, ≥}; ≥ can be reduced to ≤.

◦ Linear: in every multiplication 𝑎 · 𝑏, 𝑎 must be a constant.
• LRA-Satisfiability of formula 𝐹:

◦ Convert 𝐹 into its disjunctive normal form 𝐶1 ∨ . . . ∨ 𝐶𝑛.
◦ 𝐹 is LRA-satisfiable if and only if some 𝐶𝑖 is LRA-satisfiable.

To decide the LRA-Satisfiability of 𝐹, it suffices to decide the satisfiability of a
conjunction of (possibly negated) inequalities 𝑎 ≤ 𝑏 with linear polynomials 𝑎, 𝑏 (in
the following, we only consider conjunctions of unnegated inequalities). 12/25

Deciding LRA-Satisfiability by Fourier-Motzkin Elimination

Joseph Fourier (1826), Theodore Motzkin (1936).

function FOURIERMOTZKIN(𝐹) ⊲ 𝐹 is a conjunction of inequalities 𝑎 ≤ 𝑏 with linear polynomials 𝑎, 𝑏

while 𝐹 contains a variable do
Choose some variable 𝑥 in 𝐹

Arithmetically transform every inequality in which 𝑥 occurs into the form 𝑎 ≤ 𝑥 or 𝑥 ≤ 𝑏

Let 𝐴 be the set of all 𝑎 where 𝑎 ≤ 𝑥 is an inequality in 𝐹.
Let 𝐵 be the set of all 𝑏 where 𝑥 ≤ 𝑏 is an inequality in 𝐹.
Remove from 𝐹 all inequalities of form 𝑎 ≤ 𝑥 and 𝑥 ≤ 𝑏.
Add to 𝐹 a (possibly simplified version of the) inequality 𝑎 ≤ 𝑏 for every pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵

end while
if 𝐹 contains a constraint 𝑐1 ≤ 𝑐2 with constant 𝑐1 greater than constant 𝑐2 then

return false ⊲ unsatisfiabile
else

return true ⊲ satisfiable
end if

end function

13/25

Example

LRA-Satisfiability of formula 𝐹 :⇔ (𝑧 ≤ 𝑥 − 𝑦) ∧ (𝑥 + 2 · 𝑦 ≤ 5) ∧ (𝑦 ≤ 4 · 𝑧 − 2 · 𝑥)

• Eliminate 𝑥:
◦ Transform: (𝑧 + 𝑦 ≤ 𝑥) ∧ (𝑥 ≤ 5 − 2 · 𝑦) ∧ (𝑥 ≤ 2 · 𝑧 − 1

2 · 𝑦)
◦ Eliminate: (𝑧 + 𝑦 ≤ 5 − 2 · 𝑦) ∧ (𝑧 + 𝑦 ≤ 2 · 𝑧 − 1

2 · 𝑦)
◦ Simplify: (𝑧 ≤ 5 − 3 · 𝑦) ∧ (32 · 𝑦 ≤ 𝑧)

• Eliminate 𝑧:
◦ Transform: (32 · 𝑦 ≤ 𝑧) ∧ (𝑧 ≤ 5 − 3 · 𝑦)
◦ Eliminate: (32 · 𝑦 ≤ 5 − 3 · 𝑦)
◦ Simplify: (92 · 𝑦 ≤ 5)

• Eliminate 𝑦:
◦ Transform: (𝑦 ≤ 10

9)
◦ Eliminate: ⊤

𝐹 is LRA-satisfiable (by, e.g., 𝑦 := 0 ∈ [−∞, 109], 𝑧 := 0 ∈ [0, 5], 𝑥 := 0 ∈ [0, 0]).
14/25

Example

LRA-Satisfiability of formula 𝐹 :⇔ (𝑥 ≤ 𝑦) ∧ (𝑥 ≤ 𝑧) ∧ (𝑦 + 2 · 𝑧 ≤ 𝑥) ∧ (1 ≤ 𝑥)

• Eliminate 𝑥:
◦ Transform: (𝑦 + 2 · 𝑧 ≤ 𝑥) ∧ (1 ≤ 𝑥) ∧ (𝑥 ≤ 𝑦) ∧ (𝑥 ≤ 𝑧)
◦ Eliminate: (𝑦 + 2 · 𝑧 ≤ 𝑦) ∧ (𝑦 + 2 · 𝑧 ≤ 𝑧) ∧ (1 ≤ 𝑦) ∧ (1 ≤ 𝑧)
◦ Simplify: (𝑧 ≤ 0) ∧ (𝑦 + 𝑧 ≤ 0) ∧ (1 ≤ 𝑦) ∧ (1 ≤ 𝑧)

• Eliminate 𝑧:
◦ Transform: (1 ≤ 𝑧) ∧ (𝑧 ≤ 0) ∧ (𝑧 ≤ −𝑦) ∧ (1 ≤ 𝑦)
◦ Eliminate: (1 ≤ 0) ∧ (1 ≤ −𝑦) ∧ (1 ≤ 𝑦)
◦ Simplify: (1 ≤ 0) ∧ (𝑦 ≤ −1) ∧ (1 ≤ 𝑦)

• Eliminate 𝑦:
◦ Transform: (1 ≤ 𝑦) ∧ (𝑦 ≤ −1) ∧ (1 ≤ 0)
◦ Eliminate: (1 ≤ −1) ∧ (1 ≤ 0)

𝐹 is LRA-unsatisfiable.
15/25

The Theory EUF : Equality with Uninterpreted Functions

Essentially the SMT-LIB logic QF_UF.

• EUF is a quantifier-free first-order theory with only predicate “=”.
◦ Syntax: an arbitrary propositional combination of equalities.
◦ Semantics: the fixed interpretation of “=” as “equality”.

• EUF is sufficient to also deal with arbitrary other predicates in a formula 𝐹:
◦ Introduce a fresh constant 𝑇 and a fresh function 𝑓𝑝 for every other predicate 𝑝.
◦ Transform every atomic formula 𝑝(. . .) into an equality 𝑓𝑝 (. . .) = 𝑇 .
◦ Formula 𝐹 is satisfiable if and only if its transformed version is EUF -satisfiable.

• EUF -satisfiability of formula 𝐹:
◦ Convert 𝐹 into its disjunctive normal form 𝐶1 ∨ . . . ∨ 𝐶𝑛.
◦ 𝐹 is EUF -satisfiable if and only if some 𝐶𝑖 is EUF -satisfiable.

It suffices to decide the satisfiability of a conjunction of (negated) equalities.

16/25

Deciding EUF -Satisfiability by Congruence Closure

Greg Nelson and Derek C. Oppen (1980).

• 𝑅 ⊆ 𝑆 × 𝑆 is a congruence relation if it is an equivalence relation
◦ 𝑅 is reflexive, symmetric, and transitive

that satisfies for every 𝑛-ary function 𝑓 the congruence condition of 𝑓 :
◦ ∀𝑡, 𝑢 ∈ 𝑆𝑛. (∀1 ≤ 𝑖 ≤ 𝑛. 𝑅(𝑡𝑖 , 𝑢𝑖)) ⇒ 𝑅(𝑓 (𝑡), 𝑓 (𝑢))

• The congruence closure 𝑅𝑐 is the smallest congruence relation covering 𝑅:
◦ 𝑅𝑐 is a congruence relation with 𝑅 ⊆ 𝑅𝑐

◦ ∀𝑅′. (𝑅′ is a congruence relation with 𝑅 ⊆ 𝑅′) ⇒ (𝑅𝑐 ⊆ 𝑅′)
• EUF -satisfiablity of formula 𝐹 :⇔ (∧𝑛

𝑖=1 𝑡𝑖 = 𝑢𝑖) ∧ (∧𝑛+𝑚
𝑗=𝑛+1 𝑡 𝑗 ≠ 𝑢 𝑗):

◦ Let 𝑅 be the relation {(𝑡𝑖 , 𝑢𝑖) | 1 ≤ 𝑖 ≤ 𝑛} on the set 𝑆 of subterms of 𝐹.
◦ 𝐹 is EUF -satisfiable if and only if ∀𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑚. ¬𝑅𝑐 (𝑡 𝑗 , 𝑢 𝑗).

To decide the EUF -satisfiability of 𝐹, it suffices to compute the congruence closure
of the term equalities in 𝐹 and check that it is compatible with the term inequalities.

17/25

Congruence Closure: Basic Idea
We compute the congruence closure by partitioning 𝑆 into classes of congruent terms.

• Partition 𝑆/𝑅𝑐 := {[𝑡]𝑅𝑐 | 𝑡 ∈ 𝑆}.
◦ Congruence class [𝑡]𝑅𝑐 : 𝑅𝑐 (𝑡, 𝑢) if and only if [𝑡]𝑅𝑐 = [𝑢]𝑅𝑐 .
◦ Given 𝐹 with equations 𝑡1 = 𝑢1, . . . , 𝑡𝑛 = 𝑢𝑛, compute partitions 𝑃0, 𝑃1, . . . , 𝑃𝑛 = 𝑆/𝑅𝑐.

𝑃0: every element of 𝑆 represents a separate congruence class.
𝑃𝑖+1: determined from 𝑃𝑖 by merging [𝑡𝑖+1] and [𝑢𝑖+1], i.e., by forming their union
and propagating new congruences that arise within this union.

• Example: satisfiability of 𝐹 :⇔ 𝑓 (𝑎, 𝑏) = 𝑎 ∧ 𝑓 (𝑓 (𝑎, 𝑏), 𝑏) ≠ 𝑎

◦ Set 𝑆 := {𝑎, 𝑏, 𝑓 (𝑎, 𝑏), 𝑓 (𝑓 (𝑎, 𝑏), 𝑏)}, single equation 𝑓 (𝑎, 𝑏) = 𝑎.
◦ 𝑃0 := {{𝑎}, {𝑏}, { 𝑓 (𝑎, 𝑏)}, { 𝑓 (𝑓 (𝑎, 𝑏), 𝑏)}}
◦ 𝑃1 := {{𝑏}, {𝑎, 𝑓 (𝑎, 𝑏), 𝑓 (𝑓 (𝑎, 𝑏), 𝑏)}}

Union of [𝑓 (𝑎, 𝑏)] and [𝑎]: {{𝑏}, {𝑎, 𝑓 (𝑎, 𝑏)}, { 𝑓 (𝑓 (𝑎, 𝑏), 𝑏)}}
Propagation: [𝑓 (𝑎, 𝑏)] = [𝑎] implies [𝑓 (𝑓 (𝑎, 𝑏), 𝑏)] = [𝑓 (𝑎, 𝑏)]

◦ 𝐹 is EUF -unsatisfiable: [𝑓 (𝑓 (𝑎, 𝑏), 𝑏)] = [𝑎].

18/25

Congrence Closure: Algorithm

function CONGRUENCECLOSURE(𝑆, 𝑅)
𝑃 := {{𝑡 } | 𝑡 ∈ 𝑆} ⊲ compute partition 𝑃 := 𝑆/(𝑅𝑐)
for (𝑡 , 𝑢) ∈ 𝑅 do

𝑃 := MERGE (𝑆, 𝑃, 𝑡 , 𝑢)
end for ⊲ return relation determined by 𝑃

return { (𝑡 , 𝑢) ∈ 𝑆 × 𝑆 | FIND (𝑃, 𝑡) = FIND (𝑃, 𝑢) }
end function

function CONGRUENT(𝑃, 𝑡, 𝑢)
if 𝑡 and 𝑢 are 𝑓 (𝑡1, . . . , 𝑡𝑛) and 𝑓 (𝑢1, . . . , 𝑢𝑛) then

return ∀1 ≤ 𝑖 ≤ 𝑛. FIND (𝑃, 𝑡𝑖) = FIND (𝑃, 𝑢𝑖)
else

return false
end if

end function

𝑃 can be represented by a “disjoint-set” data
structure with efficient merge/find algorithms.

function MERGE(𝑆, 𝑃, 𝑡, 𝑢) ⊲ merge [𝑡] and [𝑢]
𝑝𝑡 , 𝑝𝑢 := FIND (𝑃, 𝑡) , FIND (𝑃, 𝑢)
if 𝑝𝑡 = 𝑝𝑢 return 𝑃

𝑃 := (𝑃\{𝑝𝑡 , 𝑝𝑢 }) ∪ {𝑝𝑡 ∪ 𝑝𝑢 }
for (𝑡1, 𝑡2) ∈ 𝑆 × 𝑆 do

𝑝1, 𝑝2 := FIND (𝑃, 𝑡1) , FIND (𝑃, 𝑡2)
if 𝑝1 ≠ 𝑝2 ∧ CONGRUENT (𝑃, 𝑡1, 𝑡2) then

𝑃 := MERGE (𝑃, 𝑡1, 𝑡2)
end if

end for
return 𝑃

end function

function FIND(𝑃, 𝑡) ⊲ find congruence class [𝑡] ∈ 𝑃

choose 𝑝 ∈ 𝑃 with 𝑡 ∈ 𝑝

return 𝑝

end function

19/25

Congruence Closure: More Examples

• Example: satisfiability of 𝐹 :⇔ 𝑓 (𝑓 (𝑓 (𝑎))) = 𝑎 ∧ 𝑓 (𝑓 (𝑓 (𝑓 (𝑓 (𝑎))))) = 𝑎 ∧ 𝑓 (𝑎) ≠ 𝑎.
◦ 𝑃0 := {{𝑎}, { 𝑓 (𝑎)}, { 𝑓 2 (𝑎)}, { 𝑓 3 (𝑎)}, { 𝑓 4 (𝑎)}, { 𝑓 5 (𝑎)}}
◦ 𝑃1 := {{𝑎, 𝑓 3 (𝑎)}, { 𝑓 (𝑎), 𝑓 4 (𝑎)}, { 𝑓 2 (𝑎), 𝑓 5 (𝑎)}}}

Union of [𝑓 3 (𝑎)] and [𝑎]: {{𝑎, 𝑓 3 (𝑎)}, { 𝑓 (𝑎)}, { 𝑓 2 (𝑎)}, { 𝑓 4 (𝑎)}, { 𝑓 5 (𝑎)}}
Propagation: [𝑓 3 (𝑎)] = [𝑎] implies [𝑓 4 (𝑎)] = [𝑓 (𝑎)] and [𝑓 5 (𝑎)] = [𝑓 2 (𝑎)].

◦ 𝑃2 := {{𝑎, 𝑓 (𝑎), 𝑓 2 (𝑎), 𝑓 3 (𝑎), 𝑓 4 (𝑎), 𝑓 5 (𝑎)}}
Union of [𝑓 5 (𝑎)] and [𝑎]: {{𝑎, 𝑓 2 (𝑎), 𝑓 3 (𝑎), 𝑓 5 (𝑎)}, { 𝑓 (𝑎), 𝑓 4 (𝑎)}}
Propagation: [𝑓 2 (𝑎)] = [𝑎] implies [𝑓 3 (𝑎)] = [𝑓 (𝑎)].

◦ 𝐹 is EUF -unsatisfiable: [𝑓 (𝑎)] = [𝑎].

• Example: satisfiability of 𝐹 :⇔ 𝑓 (𝑥) = 𝑦 ∧ 𝑥 ≠ 𝑓 (𝑦).
◦ 𝑃0 := {{𝑥}, {𝑦}, { 𝑓 (𝑥)}, { 𝑓 (𝑦)}}
◦ 𝑃1 := {{𝑥}, {𝑦, 𝑓 (𝑥)}, { 𝑓 (𝑦)}}

Union of [𝑓 (𝑥)] and [𝑦]: {{𝑥}, {𝑦, 𝑓 (𝑥)}, { 𝑓 (𝑦)}}
No more propagation.

◦ 𝐹 is EUF -satisfiable: [𝑥] ≠ [𝑓 (𝑦)].
20/25

Congruence Closure in OCaml

let congruent eqv (s,t) = (* Test whether subterms are congruent under an equivalence. *)
match (s,t) with

Fn(f,a1),Fn(g,a2) -> f = g & forall2 (equivalent eqv) a1 a2
| _ -> false;;

let rec emerge (s,t) (eqv,pfn) = (* Merging of terms, with congruence closure. *)
let s’ = canonize eqv s and t’ = canonize eqv t in
if s’ = t’ then (eqv,pfn) else
let sp = tryapplyl pfn s’ and tp = tryapplyl pfn t’ in
let eqv’ = equate (s,t) eqv in
let st’ = canonize eqv’ s’ in
let pfn’ = (st’ |-> union sp tp) pfn in
itlist (fun (u,v) (eqv,pfn) ->

if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
else eqv,pfn)

(allpairs (fun u v -> (u,v)) sp tp) (eqv’,pfn’);;

21/25

EUF -Satisfiability/Validity in OCaml
let predecessors t pfn =

match t with
Fn(f,a) -> itlist (fun s f -> (s |-> insert t (tryapplyl f s)) f) (setify a) pfn

| _ -> pfn;;
let ccsatisfiable fms = (* Satisfiability of conjunction of ground equations and inequations. *)

let pos,neg = partition positive fms in
let eqps = map dest_eq pos and eqns = map (dest_eq ** negate) neg in
let lrs = map fst eqps @ map snd eqps @ map fst eqns @ map snd eqns in
let pfn = itlist predecessors (unions(map subterms lrs)) undefined in
let eqv,_ = itlist emerge eqps (unequal,pfn) in
forall (fun (l,r) -> not(equivalent eqv l r)) eqns;;

let ccvalid fm = (* Validity checking a universal formula. *)
let fms = simpdnf(askolemize(Not(generalize fm))) in
not (exists ccsatisfiable fms);;

ccvalid <<f(f(f(f(f(c))))) = c /\ f(f(f(c))) = c ==> f(c) = c \/ f(g(c)) = g(f(c))>>;;
- : bool = true
ccvalid <<f(f(f(f(c)))) = c /\ f(f(c)) = c ==> f(c) = c>>;;
- : bool = true

22/25

The Theory 𝐸: Equality Logic

EUF without uninterpreted functions (i.e., only with constants).

• Decision of 𝐸-satisfiability:
◦ Computation of congruence closure without the need to propagate congruences:

function MERGE(𝑆, 𝑃, 𝑡, 𝑢)
𝑝𝑡 , 𝑝𝑢 := FIND (𝑃, 𝑡) , FIND (𝑃, 𝑢)
return (𝑃\{𝑝𝑡 , 𝑝𝑢 }) ∪ {𝑝𝑡 ∪ 𝑝𝑢 } ⊲ equals 𝑃, if 𝑝𝑡 = 𝑝𝑢

end function

• Ackermann’s Reduction: transformation of an EUF -formula into an 𝐸-formula.
◦ Replace every function application 𝑓 (𝑡1, . . . , 𝑡𝑛) by a fresh constant 𝑓𝑡1 ,...,𝑡𝑛 .
◦ For every pair of applications 𝑓 (𝑡1, . . . , 𝑡𝑛) and 𝑓 (𝑢1, . . . , 𝑢𝑛), add the constraint

(𝑡1 = 𝑢1 ∧ . . . ∧ 𝑡𝑛 = 𝑢𝑛) ⇒ 𝑓𝑡1 ,...,𝑡𝑛 = 𝑓𝑢1 ,...,𝑢𝑛

◦ The result is 𝐸-satisfiable if and only if the original formula is EUF -satisfiable.

The theory 𝐸 needs larger formulas but has a simpler decision algorithm than EUF .
23/25

𝐸-Satisfiability: Example

EUF -satisfiability of formula 𝐹 :⇔ 𝑥2 = 𝑥3 ∧ 𝑓 (𝑥1) = 𝑓 (𝑥3) ∧ 𝑓 (𝑥1) ≠ 𝑓 (𝑥2)

• Ackermann’s reduction to 𝐸-formula 𝐹′:
𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧
(𝑥1 = 𝑥2 ⇒ 𝑓1 = 𝑓2) ∧ (𝑥1 = 𝑥3 ⇒ 𝑓1 = 𝑓3) ∧ (𝑥2 = 𝑥3 ⇒ 𝑓2 = 𝑓3)

• Disjunctive normal form of 𝐹′:
(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑥1 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑥2 ≠ 𝑥3) ∨
(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑥1 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑓2 = 𝑓3) ∨
(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑥1 ≠ 𝑥2 ∧ 𝑓1 = 𝑓3 ∧ 𝑥2 ≠ 𝑥3) ∨
(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑥1 ≠ 𝑥2 ∧ 𝑓1 = 𝑓3 ∧ 𝑓2 = 𝑓3) ∨
(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑓1 = 𝑓2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑥2 ≠ 𝑥3) ∨

(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑓1 = 𝑓2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑓2 = 𝑓3) ∨

(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑓1 = 𝑓2 ∧ 𝑓1 = 𝑓3 ∧ 𝑥2 ≠ 𝑥3) ∨

(𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑓1 = 𝑓2 ∧ 𝑓1 = 𝑓3 ∧ 𝑓2 = 𝑓3) 24/25

𝐸-Satisfiability: Example

𝐸-satisfiability of DNF of 𝐹′: only two clauses do not have conflicting literals.

• Satisfiability of (𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑥1 ≠ 𝑥2 ∧ 𝑥1 ≠ 𝑥3 ∧ 𝑓2 = 𝑓3):
◦ 𝑃0 := {{𝑥1}, {𝑥2}, {𝑥3}, { 𝑓1}, { 𝑓2}, { 𝑓3}}
◦ 𝑃1 := {{𝑥1}, {𝑥2, 𝑥3}, { 𝑓1}, { 𝑓2}, { 𝑓3}}
◦ 𝑃2 := {{𝑥1}, {𝑥2, 𝑥3}, { 𝑓1, 𝑓3}, { 𝑓2}}
◦ 𝑃3 := {{𝑥1}, {𝑥2, 𝑥3}, { 𝑓1, 𝑓2, 𝑓3}}
◦ [𝑓1] = [𝑓2]: clause is 𝐸-unsatisfiable.

• Satisfiability of (𝑥2 = 𝑥3 ∧ 𝑓1 = 𝑓3 ∧ 𝑓1 ≠ 𝑓2 ∧ 𝑥1 ≠ 𝑥2 ∧ 𝑓1 = 𝑓3 ∧ 𝑓2 = 𝑓3):
◦ 𝑃0 := {{𝑥1}, {𝑥2}, {𝑥3}, { 𝑓1}, { 𝑓2}, { 𝑓3}}
◦ 𝑃1 := {{𝑥1}, {𝑥2, 𝑥3}, { 𝑓1}, { 𝑓2}, { 𝑓3}}
◦ 𝑃2 := {{𝑥1}, {𝑥2, 𝑥3}, { 𝑓1, 𝑓3}, { 𝑓2}}
◦ 𝑃3 := {{𝑥1}, {𝑥2, 𝑥3}, { 𝑓1, 𝑓2, 𝑓3}}
◦ [𝑓1] = [𝑓2]: clause is 𝐸-unsatisfiable.

DNF of 𝐹′ is 𝐸-unsatisfiable, thus 𝐹 is EUF -unsatisfiable. 25/25

