SMT SOLVING: DECIDABLE THEORIES

Course "Computational Logic"

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at

Theories

• A theory *T* is a set of first-order sentences (closed formulas) that is closed under logical consequence:

 $T \models F$ if and only if $F \in T$, for every first-order formula F.

- *T* may be defined as the set $Th(\mathcal{M}) := \{F \mid \forall M \in \mathcal{M}. M \models F\}$ of all sentences that hold in (every element of) some class \mathcal{M} of structures.
 - Notation *Th*(ℕ, 0, 1, +, ·, ≤): the theory where 0, 1, +, ·, ≤ are interpreted as the usual natural number constants, functions, predicates.
- *T* may be also defined as the set *Cn*(*A*) := {*F* | *A* ⊨ *F*} of consequences of some recursively enumerable set *A* of first-order formulas called axioms.
 - A set is recursively enumerable if a machine can produce a list of its elements.
 - If T = Cn(A) for some (finite) set A, then T is (finitely) axiomatizable.
 - Undefinability theorem (Gödel/Tarski): $Th(\mathbb{N}, 0, 1, +, \cdot, \leq)$ is <u>not</u> axiomatizable.

A theory describes a "domain of interest".

Decision Problems

Theories give rise to two related decision problems.

- The problem of Validity Modulo Theories:
 - Given: a first-order formula *F* and a first-order theory *T*.
 - Decide: does $T \models F$ hold, i.e., is F is a logical consequence of T?
- The problem of Satisfiability Modulo Theories (SMT):
 - Given: a first-order formula *F* and a first-order theory *T*.
 - Decide: is $T \cup \{F\}$ satisfiable?
- Duality: $T \models F$ if and only if $T \cup \{\neg F\}$ is <u>not</u> satisfiable.

An SMT solver is a decision procedure for the SMT problem (with respect to some theory or combination of theories); thus it also decides the dual validity problem.

Decidable Problems

For certain classes of formulas/theories, the satisfiability problem is decidable.

- Prenex normal form $\forall^n \exists^m$ (validity) or $\exists^n \forall^m$ (satisfiability) ("AE/EA fragment").
- Formulas without functions and with only unary predicates ("monadic fragment").
- Every theory with only finite models (e.g., the theory of fixed-size bit vectors).
- Quantifier-free theory of equality with uninterpreted functions ("equational logic").
- Theory of arrays, theory of recursive data structures.
- Linear arithmetic over integers ("Presburger arithmetic"), natural numbers, reals.
- Theory of reals ("elementary algebra"), complex numbers, algebraically closed fields.
- Logical consequences of equalities over groups, rings, fields ("word problems").

• ...

As we will see later, also any <u>combination</u> of decidable theories is decidable.

SMT-LIB: The Satisfiability Modulo Theories Library

http://smt-lib.org

- A library of theories/logics of practical relevance.
- A common input language for SMT solvers.
- A repository of benchmarks.
- The basis of the yearly SMT-COMP competition.

o https://smt-comp.github.io

Many automated/interactive reasoners and program verifiers are equipped with SMT-LIB interfaces to external SMT solvers.

The SMT-LIB Library

- QF_UF: Unquantified formulas built over a signature of uninterpreted (i.e., free) sort and function symbols.
- QF_LIA: Unquantified linear integer arithmetic. In essence, Boolean combinations of inequations between linear polynomials over integer variables.

Not every logic is decidable, e.g., NIA (non-linear integer arithmetic). 5/25

Z3: An SMT solver with SMT-LIB Support

Software: https://github.com/Z3Prover Tutorial: https://microsoft.github.io/z3guide

- An SMT solver developed since 2007 at Microsoft Research.
 - Nikolaj Bjørner and Leonardo de Moura.
 - Open source since 2015 under the MIT License.
- Highly efficient and versatile.
 - Frequent winner of various divisions of the SMT-COMP series.
 - Backend of various software verification systems (e.g., Microsoft Boogie).
- Uses the SMT-LIB language and supports various SMT-LIB logics.
 - Uninterpreted functions, linear arithmetic, fixed-size bit-vectors, algebraic datatypes, arrays, polynomial arithmetic, ...
- Also supports quantification.
 - However, when using quantifiers, the solver is generally incomplete.

Z3 gradually evolves into a full-fledged automated theorem prover.

The SMT-LIB Language

```
; file example1.smt2: Integer arithmetic
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
(exit)
```

```
debian10!1> z3 example1.smt
unsat
```

```
; file example2.smt2: Getting values or models
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (+ x (* 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)
(get-value (x y))
(get-model)
(exit)
```

```
debian10!1> z3 example2.smt2
sat
((x 8) (y 6))
(model
  (define-fun y () Int 6)
  (define-fun x () Int 8)
)
```

The SMT-LIB Language

```
; file example3.smt2:
                                                  sat
; Modeling sequential code in SSA form
; Buggy swap: int x, y; int t = x; x = y; y = x;
(set-logic QF_UFLIA)
                                                   (model
(declare-fun x (Int) Int)
(declare-fun y (Int) Int)
(declare-fun t (Int) Int)
(assert (= (t 0) (x 0)))
(assert (= (x 1) (y 0)))
(assert (= (v 1) (x 1)))
(assert (not
 (and (= (x 1) (v 0))
       (= (y 1) (x 0))))
(check-sat)
(get-value ((x 0) (y 0) (x 1) (y 1)))
(get-model)
(exit)
```

```
(((x \ 0) \ 2)
((y 0) 3)
 ((x 1) 3)
 ((y 1) 3))
  (define-fun y ((x!1 Int)) Int
    (ite (= x!1 0) 3
    (ite (= x!1 1) 3)
      3)))
  (define-fun t ((x!1 Int)) Int
    (ite (= x!1 0) 2
      2))
  (define-fun x ((x!1 Int)) Int
    (ite (= x!1 0) 2
    (ite (= x!1 1) 3)
      2)))
```

Example Application: Program Verification

We can reduce the verification of programs to deciding the satisfiability of formulas.

• Verification of program with respect to pre- and post-condition:

 $\{a[0] = x \land a[1] = y \land a[2] = z\}$ i = 0; m = a[i]; i = i+1; if (a[i] < m) m = a[i]; i = i+1; if (a[i] < m) m = a[i]; $\{m \le x \land m \le y \land m \le z \land (m = x \lor m = y \lor m = z)\}$

• Satisfiability of formula:

$$\begin{split} a[0] &= x \land a[1] = y \land a[2] = z \land \\ i_0 &= 0 \land m_0 = a[i_0] \land \\ i_1 &= i_0 + 1 \land (\text{if } a[i_1] < m_0 \text{ then } m_1 = a[i_1] \text{ else } m_1 = m_0) \land \\ i_2 &= i_1 + 1 \land (\text{if } a[i_2] < m_1 \text{ then } m_2 = a[i_2] \text{ else } m_2 = m_1) \land \\ \neg (m_2 \le x \land m_2 \le y \land m_2 \le z \land (m_2 = x \lor m_2 = y \lor m_2 = z)) \end{split}$$

The unsatisfiability of the formula establishes the correctness of the program with respect to its specification; a satisfying valuation determines a violating program run. $\frac{9/25}{9/25}$

Program Verification: SMT-LIB Script

; file minimum.smt2: (set-logic QF_UFLIA)

```
(declare-fun a (Int) Int)
(declare-const x Int) (declare-const y Int) (declare-const z Int)
(declare-const i0 Int) (declare-const i1 Int) (declare-const i2 Int)
(declare-const m0 Int) (declare-const m1 Int) (declare-const m2 Int)
(assert (= (a 0) x)) (assert (= (a 1) y)) (assert (= (a 2) z))
(assert (= i0 0)) (assert (= m0 (a i0)))
(assert (= i1 (+ i0 1))) (assert (ite (< (a i1) m0) (= m1 (a i1)) (= m1 m0)))
(assert (= i2 (+ i1 1))) (assert (ite (< (a i2) m1) (= m2 (a i2)) (= m2 m1)))
(assert (not
 (and (and (<= m2 x) (<= m2 y)) (<= m2 z))
       (or (or (= m2 x) (= m2 y)) (= m2 z))))
```

(check-sat) (exit)

debian10!1> z3 minimum.smt2
unsat

Program Verification: SMT-LIB Script

```
: file minimum2.smt2:
. . .
: BUG: ">" rather than "<"
(assert (ite (> (a i2) m1) (= m2 (a i2)) (= m2 m1)))
. . .
(check-sat) (get-value (x y z i0 m0 i1 m1 i2 m2)) (get-model) (exit)
alan!89> z3 minimum2.smt2
sat
((x 1) (y 0) (z 2) (i0 0) (m0 1) (i1 1) (m1 0) (i2 2) (m2 2))
(model
  (define-fun m0 () Int 1) (define-fun i1 () Int 1) (define-fun m2 () Int 2)
  (define-fun v () Int 0) (define-fun m1 () Int 0) (define-fun i2 () Int 2)
  (define-fun i0 () Int 0) (define-fun z () Int 2) (define-fun x () Int 1)
  (define-fun a ((x!1 Int)) Int (ite (= x!1 0) 1 (ite (= x!1 1) 0 (ite (= x!1 2) 2 1))))
```

The assignments of a buggy program with an inverted test operation.

The Theory LRA: Linear Real Arithmetic

Essentially the SMT-LIB logic QF_LRA.

- *LRA* is a quantifier-free first-order theory.
 - Interpretation over the domain \mathbb{R} of real numbers.
 - Only atomic formulas are inequalties $a \le b$ with polynomials a, b.
 - Integer and rational constants, functions + and \cdot , predicate \leq .
 - Also $-, <, >, \ge$, = are allowed: a b can be reduced to $a + (-1) \cdot b$; $\{<, >\}$ can be reduced to $\{=, \le, \ge\}$; = can be reduced to $\{\le, \ge\}$; \ge can be reduced to \le .
 - Linear: in every multiplication $a \cdot b$, a must be a constant.
- *LRA*-Satisfiability of formula *F*:
 - Convert *F* into its disjunctive normal form $C_1 \vee \ldots \vee C_n$.
 - *F* is *LRA*-satisfiable if and only if some C_i is *LRA*-satisfiable.

To decide the *LRA*-Satisfiability of *F*, it suffices to decide the satisfiability of a conjunction of (possibly negated) inequalities $a \le b$ with linear polynomials *a*, *b* (in the following, we only consider conjunctions of unnegated inequalities). 12/25

Deciding *LRA*-Satisfiability by Fourier-Motzkin Elimination

Joseph Fourier (1826), Theodore Motzkin (1936).

```
function FOURIERMOTZKIN(F)
                                           \triangleright F is a conjunction of inequalities a \leq b with linear polynomials a, b
   while F contains a variable do
       Choose some variable x in F
       Arithmetically transform every inequality in which x occurs into the form a \le x or x \le b
       Let A be the set of all a where a \leq x is an inequality in F.
       Let B be the set of all b where x \le b is an inequality in F.
       Remove from F all inequalities of form a \le x and x \le b.
       Add to F a (possibly simplified version of the) inequality a \le b for every pair (a, b) \in A \times B
   end while
   if F contains a constraint c_1 \le c_2 with constant c_1 greater than constant c_2 then
       return false
                                                                                                     ▶ unsatisfiabile
   else
       return true
                                                                                                        ▹ satisfiable
   end if
end function
```

Example

LRA-Satisfiability of formula $F :\Leftrightarrow (z \le x - y) \land (x + 2 \cdot y \le 5) \land (y \le 4 \cdot z - 2 \cdot x)$

- Eliminate *x*:
 - Transform: $(z + y \le x) \land (x \le 5 2 \cdot y) \land (x \le 2 \cdot z \frac{1}{2} \cdot y)$
 - Eliminate: $(z + y \le 5 2 \cdot y) \land (z + y \le 2 \cdot z \frac{1}{2} \cdot y)$
 - Simplify: $(z \le 5 3 \cdot y) \land (\frac{3}{2} \cdot y \le z)$
- Eliminate z:
 - Transform: $(\frac{3}{2} \cdot y \leq z) \land (z \leq 5 3 \cdot y)$
 - Eliminate: $(\frac{3}{2} \cdot y \le 5 3 \cdot y)$
 - Simplify: $(\frac{9}{2} \cdot y \le 5)$
- Eliminate *y*:
 - Transform: $(y \le \frac{10}{9})$
 - Eliminate: ⊤

F is *LRA*-satisfiable (by, e.g., $y := 0 \in [-\infty, \frac{10}{9}], z := 0 \in [0, 5], x := 0 \in [0, 0]).$

Example

LRA-Satisfiability of formula $F :\Leftrightarrow (x \le y) \land (x \le z) \land (y + 2 \cdot z \le x) \land (1 \le x)$

- Eliminate *x*:
 - Transform: $(y + 2 \cdot z \le x) \land (1 \le x) \land (x \le y) \land (x \le z)$
 - Eliminate: $(y + 2 \cdot z \le y) \land (y + 2 \cdot z \le z) \land (1 \le y) \land (1 \le z)$
 - Simplify: $(z \le 0) \land (y + z \le 0) \land (1 \le y) \land (1 \le z)$
- Eliminate z:
 - Transform: $(1 \le z) \land (z \le 0) \land (z \le -y) \land (1 \le y)$
 - Eliminate: $(1 \le 0) \land (1 \le -y) \land (1 \le y)$
 - Simplify: $(1 \le 0) \land (y \le -1) \land (1 \le y)$
- Eliminate y:
 - Transform: $(1 \le y) \land (y \le -1) \land (1 \le 0)$
 - Eliminate: $(1 \le -1) \land (1 \le 0)$

F is LRA-unsatisfiable.

The Theory *EUF*: Equality with Uninterpreted Functions

Essentially the SMT-LIB logic QF_UF.

- *EUF* is a quantifier-free first-order theory with only predicate "=".
 - Syntax: an arbitrary propositional combination of equalities.
 - Semantics: the fixed interpretation of "=" as "equality".
- *EUF* is sufficient to also deal with arbitrary other predicates in a formula *F*:
 - Introduce a fresh constant T and a fresh function f_p for every other predicate p.
 - Transform every atomic formula $p(\ldots)$ into an equality $f_p(\ldots) = T$.
 - Formula *F* is satisfiable if and only if its transformed version is *EUF*-satisfiable.
- *EUF*-satisfiability of formula *F*:
 - Convert *F* into its disjunctive normal form $C_1 \vee \ldots \vee C_n$.
 - *F* is *EUF*-satisfiable if and only if some C_i is *EUF*-satisfiable.

It suffices to decide the satisfiability of a conjunction of (negated) equalities.

Deciding *EUF*-Satisfiability by Congruence Closure

Greg Nelson and Derek C. Oppen (1980).

• $R \subseteq S \times S$ is a congruence relation if it is an equivalence relation

• *R* is reflexive, symmetric, and transitive that satisfies for every *n*-ary function f the congruence condition of f:

 $\circ \ \forall t, u \in S^n. \ (\forall 1 \le i \le n. \ R(t_i, u_i)) \Longrightarrow R(f(t), f(u))$

- The congruence closure R^c is the smallest congruence relation covering R:
 - R^c is a congruence relation with $R \subseteq R^c$
 - $\forall R'$. (*R'* is a congruence relation with $R \subseteq R'$) \Rightarrow ($R^c \subseteq R'$)
- *EUF*-satisfiablity of formula $F :\Leftrightarrow (\bigwedge_{i=1}^{n} t_i = u_i) \land (\bigwedge_{j=n+1}^{n+m} t_j \neq u_j)$:
 - Let *R* be the relation $\{(t_i, u_i) \mid 1 \le i \le n\}$ on the set *S* of subterms of *F*.
 - *F* is *EUF*-satisfiable if and only if $\forall n + 1 \le j \le n + m$. $\neg R^c(t_j, u_j)$.

To decide the EUF-satisfiability of F, it suffices to compute the congruence closure of the term equalities in F and check that it is compatible with the term inequalities.

Congruence Closure: Basic Idea

We compute the congruence closure by partitioning *S* into classes of congruent terms.

- Partition $S/R^c := \{ [t]_{R^c} \mid t \in S \}.$
 - Congruence class $[t]_{R^c}$: $R^c(t, u)$ if and only if $[t]_{R^c} = [u]_{R^c}$.
 - Given F with equations $t_1 = u_1, \ldots, t_n = u_n$, compute partitions $P_0, P_1, \ldots, P_n = S/R^c$.
 - *P*₀: every element of *S* represents a separate congruence class.
 - P_{i+1} : determined from P_i by merging $[t_{i+1}]$ and $[u_{i+1}]$, i.e., by forming their union and propagating new congruences that arise within this union.
- Example: satisfiability of $F :\Leftrightarrow f(a, b) = a \land f(f(a, b), b) \neq a$
 - Set $S := \{a, b, f(a, b), f(f(a, b), b)\}$, single equation f(a, b) = a.
 - $P_0 := \{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$
 - $P_1 := \{\{b\}, \{a, f(a, b), f(f(a, b), b)\}\}$
 - Union of [f(a, b)] and [a]: {{b}, {a, f(a, b)}, {f(f(a, b), b)}}
 - Propagation: [f(a, b)] = [a] implies [f(f(a, b), b)] = [f(a, b)]
 - *F* is *EUF*-unsatisfiable: [f(f(a, b), b)] = [a].

Congrence Closure: Algorithm

```
function CONGRUENCECLOSURE(S, R)

P := \{\{t\} \mid t \in S\} 
ightarrow compute partition P := S/(R^c)

for (t, u) \in R do

P := MERGE(S, P, t, u)

end for 
ightarrow return relation determined by P

return \{(t, u) \in S \times S \mid FIND(P, t) = FIND(P, u)\}

end function
```

```
function CONGRUENT(P, t, u)

if t and u are f(t_1, \ldots, t_n) and f(u_1, \ldots, u_n) then

return \forall 1 \le i \le n. FIND(P, t_i) = FIND(P, u_i)

else

return false

end if

end function
```

P can be represented by a "disjoint-set" data structure with efficient merge/find algorithms.

function MERGE(S, P, t, u) \triangleright merge [t] and [u] $p_t, p_u := \mathsf{FIND}(P, t), \mathsf{FIND}(P, u)$ if $p_t = p_u$ return P $P := (P \setminus \{p_t, p_u\}) \cup \{p_t \cup p_u\}$ for $(t_1, t_2) \in S \times S$ do $p_1, p_2 := FIND(P, t_1), FIND(P, t_2)$ if $p_1 \neq p_2 \land \text{CONGRUENT}(P, t_1, t_2)$ then $P := \mathsf{MERGE}(P, t_1, t_2)$ end if end for return P end function **function** FIND(P, t) \triangleright find congruence class $[t] \in P$ choose $p \in P$ with $t \in p$ return p

end function

Congruence Closure: More Examples

- Example: satisfiability of $F :\Leftrightarrow f(f(f(a))) = a \land f(f(f(f(a))))) = a \land f(a) \neq a$.
 - $\circ \ P_0 := \{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$
 - $\circ \ P_1 := \{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}\}$
 - Union of $[f^3(a)]$ and [a]: {{ $a, f^3(a)$ }, {f(a)}, { $f^2(a)$ }, { $f^4(a)$ }, { $f^5(a)$ }}
 - Propagation: $[f^3(a)] = [a]$ implies $[f^4(a)] = [f(a)]$ and $[f^5(a)] = [f^2(a)]$.
 - $\circ \ P_2 := \{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$
 - Union of $[f^5(a)]$ and [a]: {{ $a, f^2(a), f^3(a), f^5(a)$ }, { $f(a), f^4(a)$ }}
 - Propagation: $[f^2(a)] = [a]$ implies $[f^3(a)] = [f(a)]$.
 - *F* is *EUF*-unsatisfiable: [f(a)] = [a].
- Example: satisfiability of $F :\Leftrightarrow f(x) = y \land x \neq f(y)$.
 - $P_0 := \{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
 - $P_1 := \{\{x\}, \{y, f(x)\}, \{f(y)\}\}$
 - Union of [f(x)] and [y]: {{x}, {y, f(x)}, {f(y)}}
 - No more propagation.
 - *F* is *EUF*-satisfiable: $[x] \neq [f(y)]$.

Congruence Closure in OCaml

```
let congruent eqv (s,t) = (* Test whether subterms are congruent under an equivalence. *)
 match (s.t) with
   Fn(f,a1), Fn(g,a2) \rightarrow f = g \& forall2 (equivalent eqv) a1 a2
 -> false::
let rec emerge (s,t) (eqv,pfn) = (* Merging of terms, with congruence closure. *)
  let s' = canonize eqv s and t' = canonize eqv t in
 if s' = t' then (eqv,pfn) else
 let sp = tryapplyl pfn s' and tp = tryapplyl pfn t' in
 let eqv' = equate (s,t) eqv in
  let st' = canonize eqv' s' in
  let pfn' = (st' |-> union sp tp) pfn in
  itlist (fun (u,v) (eqv,pfn) ->
                if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
                else eqv,pfn)
         (allpairs (fun u v -> (u,v)) sp tp) (eqv',pfn');;
```

EUF-Satisfiability/Validity in OCaml

```
let predecessors t pfn =
 match t with
   Fn(f.a) -> itlist (fun s f -> (s |-> insert t (tryapplyl f s)) f) (setify a) pfn
 _ -> pfn;;
let ccsatisfiable fms = (* Satisfiability of conjunction of ground equations and inequations. *)
  let pos, neg = partition positive fms in
  let eqps = map dest_eq pos and eqns = map (dest_eq ** negate) neg in
  let lrs = map fst eqps 0 map snd eqps 0 map fst eqns 0 map snd eqns in
 let pfn = itlist predecessors (unions(map subterms lrs)) undefined in
  let eqv._ = itlist emerge eqps (unequal.pfn) in
 forall (fun (1,r) -> not(equivalent eqv l r)) eqns;;
let ccvalid fm = (* Validity checking a universal formula. *)
  let fms = simpdnf(askolemize(Not(generalize fm))) in
 not (exists ccsatisfiable fms)::
# ccvalid \langle f(f(f(f(c)))) = c / f(f(f(c))) = c => f(c) = c / f(g(c)) = g(f(c)) >>;;
```

```
- : bool = true
```

```
# ccvalid <<f(f(f(f(c)))) = c /\ f(f(c)) = c ==> f(c) = c>>;;
```

```
- : bool = true
```

The Theory E: Equality Logic

EUF without uninterpreted functions (i.e., only with constants).

- Decision of *E*-satisfiability:
 - Computation of congruence closure without the need to propagate congruences:

```
function MERGE(S, P, t, u)

p_t, p_u := FIND(P, t), FIND(P, u)

return (P \setminus \{p_t, p_u\}) \cup \{p_t \cup p_u\} \triangleright equals P, if p_t = p_u

end function
```

- Ackermann's Reduction: transformation of an *EUF*-formula into an *E*-formula.
 - Replace every function application $f(t_1, \ldots, t_n)$ by a fresh constant f_{t_1, \ldots, t_n} .
 - For every pair of applications $f(t_1, \ldots, t_n)$ and $f(u_1, \ldots, u_n)$, add the constraint

$$(t_1 = u_1 \land \ldots \land t_n = u_n) \Rightarrow f_{t_1,\ldots,t_n} = f_{u_1,\ldots,u_n}$$

• The result is E-satisfiable if and only if the original formula is EUF-satisfiable.

The theory E needs larger formulas but has a simpler decision algorithm than EUF.

E-Satisfiability: Example

EUF-satisfiability of formula $F :\Leftrightarrow x_2 = x_3 \land f(x_1) = f(x_3) \land f(x_1) \neq f(x_2)$

• Ackermann's reduction to *E*-formula *F*':

$$\begin{aligned} x_2 &= x_3 \wedge f_1 = f_3 \wedge f_1 \neq f_2 \wedge \\ (x_1 &= x_2 \Rightarrow f_1 = f_2) \wedge (x_1 = x_3 \Rightarrow f_1 = f_3) \wedge (x_2 = x_3 \Rightarrow f_2 = f_3) \end{aligned}$$

• Disjunctive normal form of F':

$$(\underbrace{x_2 = x_3}_{13} \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land \underline{x_2 \neq x_3}) \lor (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land f_2 = f_3) \lor (\underbrace{x_2 = x_3}_{13} \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land \underline{x_2 \neq x_3}) \lor (x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land f_2 = f_3) \lor (x_2 = x_3 \land f_1 = f_3 \land \underline{f_1 \neq f_2} \land \underline{f_1 = f_2} \land x_1 \neq x_3 \land x_2 \neq x_3) \lor (x_2 = x_3 \land f_1 = f_3 \land \underline{f_1 \neq f_2} \land \underline{f_1 = f_2} \land x_1 \neq x_3 \land f_2 = f_3) \lor (x_2 = x_3 \land f_1 = f_3 \land \underline{f_1 \neq f_2} \land \underline{f_1 = f_2} \land f_1 = f_3 \land x_2 \neq x_3) \lor (x_2 = x_3 \land f_1 = f_3 \land \underline{f_1 \neq f_2} \land \underline{f_1 = f_2} \land f_1 = f_3 \land x_2 \neq x_3) \lor (x_2 = x_3 \land f_1 = f_3 \land \underline{f_1 \neq f_2} \land \underline{f_1 = f_2} \land f_1 = f_3 \land x_2 \neq x_3) \lor (x_2 = x_3 \land f_1 = f_3 \land \underline{f_1 \neq f_2} \land \underline{f_1 = f_2} \land f_1 = f_3 \land x_2 \neq x_3) \lor$$

24/25

E-Satisfiability: Example

E-satisfiability of DNF of F': only two clauses do not have conflicting literals.

• Satisfiability of $(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land f_2 = f_3)$:

• $P_0 := \{\{x_1\}, \{x_2\}, \{x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$

- $P_1 := \{\{x_1\}, \{x_2, x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
- $\circ \ P_2 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_3\}, \{f_2\}\}$
- $P_3 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_2, f_3\}\}$
- $[f_1] = [f_2]$: clause is *E*-unsatisfiable.
- Satisfiability of $(x_2 = x_3 \land f_1 = f_3 \land f_1 \neq f_2 \land x_1 \neq x_2 \land f_1 = f_3 \land f_2 = f_3)$:
 - $P_0 := \{\{x_1\}, \{x_2\}, \{x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $\circ \ P_1 := \{\{x_1\}, \{x_2, x_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$
 - $P_2 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_3\}, \{f_2\}\}$
 - $P_3 := \{\{x_1\}, \{x_2, x_3\}, \{f_1, f_2, f_3\}\}$
 - $[f_1] = [f_2]$: clause is *E*-unsatisfiable.

DNF of *F*′ is *E*-unsatisfiable, thus *F* is *EUF*-unsatisfiable.