
FIRST-ORDER LOGIC:
THE RESOLUTION METHOD
Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at

Clause Form
Resolution can show the unsatisfiability of first-order formulas in clause form.

• Clause Form: a conjunction 𝐶1 ∧ . . . ∧ 𝐶𝑛 of clauses.
◦ Clause: a closed formula ∀𝑥1, . . . , 𝑥𝑛. 𝐿1 ∨ . . . ∨ 𝐿𝑚 with literals 𝐿1, . . . , 𝐿𝑚.
◦ Literal: an atomic formula 𝑝(𝑡1, . . . , 𝑡𝑛) or its negation ¬𝑝(𝑡1, . . . , 𝑡𝑛).

• Convention: quantifiers are dropped.
◦ Every clause is implicitly universally quantified over its free variables.
◦ Thus a first-order clause form can be represented as a set of sets of literals.

• Theorem: for every first-order formula 𝐹 there exists a clause form that is
satisfiable if and only if 𝐹 is satisfiable.

◦ Proof sketch: Convert 𝐹 into Skolem normal form ∀𝑥1, . . . , 𝑥𝑛 . 𝐺 and convert matrix 𝐺 into
conjunctive normal form 𝐺1 ∧ . . . ∧𝐺𝑚. The resulting formula ∀𝑥1, . . . , 𝑥𝑛 . 𝐺1 ∧ . . . ∧𝐺𝑚 is
logically equivalent to (∀𝑥1, . . . , 𝑥𝑛 . 𝐺1) ∧ . . . ∧ (∀𝑥1, . . . , 𝑥𝑛 . 𝐺𝑚).

◦ 𝐹 = 𝐹1 ∧ . . . ∧ 𝐹𝑛 with closed 𝐹1, . . . , 𝐹𝑛: we may convert each 𝐹𝑖 individually into clauses.

To show that 𝐹 is valid, it suffices to show that the clause form of ¬𝐹 is unsatisfiable.
1/28

Example
Assume our goal is to show the validity of formula ∀𝑦. ∃𝑧. (𝑝(𝑧, 𝑦) ⇔ ∃𝑥. (𝑝(𝑧, 𝑥) ∧ 𝑝(𝑥, 𝑧)).

• Negation: (connective ¬ “pushed down” to literals)
∃𝑦. ∀𝑧. (𝑝 (𝑧, 𝑦) ⇔ ∀𝑥. ¬𝑝 (𝑧, 𝑥) ∨ ¬𝑝 (𝑥, 𝑧))

• Eliminate ⇔: (𝐴 ⇔ 𝐵 ≡ (𝐴 ⇒ 𝐵) ∧ (𝐵 ⇒ 𝐴) ≡ (¬𝐴 ∨ 𝐵) ∧ (𝐴 ∨ ¬𝐵))
∃𝑦. ∀𝑧. (¬𝑝 (𝑧, 𝑦) ∨ ∀𝑥. ¬𝑝 (𝑧, 𝑥) ∨ ¬𝑝 (𝑥, 𝑧)) ∧ (𝑝 (𝑧, 𝑦) ∨ ∃𝑥. 𝑝 (𝑧, 𝑥) ∧ 𝑝 (𝑥, 𝑧))

• Skolemization: (constant 𝑐 for 𝑦, function 𝑓 for 𝑥)
∀𝑧. (¬𝑝 (𝑧, 𝑐) ∨ ∀𝑥. ¬𝑝 (𝑧, 𝑥) ∨ ¬𝑝 (𝑥, 𝑧)) ∧ (𝑝 (𝑧, 𝑐) ∨ (𝑝 (𝑧, 𝑓 (𝑧)) ∧ 𝑝 (𝑓 (𝑧) , 𝑧)))

• Prenex Form:
∀𝑧. ∀𝑥. (¬𝑝 (𝑧, 𝑐) ∨ ¬𝑝 (𝑧, 𝑥) ∨ ¬𝑝 (𝑥, 𝑧)) ∧ (𝑝 (𝑧, 𝑐) ∨ (𝑝 (𝑧, 𝑓 (𝑧)) ∧ 𝑝 (𝑓 (𝑧) , 𝑧)))

• Conjunctive Normal Form:
∀𝑧. ∀𝑥. (¬𝑝 (𝑧, 𝑐) ∨ ¬𝑝 (𝑧, 𝑥) ∨ ¬𝑝 (𝑥, 𝑧)) ∧ (𝑝 (𝑧, 𝑐) ∨ 𝑝 (𝑧, 𝑓 (𝑧))) ∧ (𝑝 (𝑧, 𝑐) ∨ 𝑝 (𝑓 (𝑧) , 𝑧))

• Clause Form:
(∀𝑧. ∀𝑥. ¬𝑝 (𝑧, 𝑐) ∨ ¬𝑝 (𝑧, 𝑥) ∨ ¬𝑝 (𝑥, 𝑧)) ∧ (∀𝑧. 𝑝 (𝑧, 𝑐) ∨ 𝑝 (𝑧, 𝑓 (𝑧))) ∧ (∀𝑧. 𝑝 (𝑧, 𝑐) ∨ 𝑝 (𝑓 (𝑧) , 𝑧))

Set of set of literals {{¬𝑝(𝑧, 𝑐),¬𝑝(𝑧, 𝑥),¬𝑝(𝑥, 𝑧)}, {𝑝(𝑧, 𝑐), 𝑝(𝑧, 𝑓 (𝑧))}, {𝑝(𝑧, 𝑐), 𝑝(𝑓 (𝑧), 𝑧)}}.
2/28

Ground Resolution
(Davis Putnam, 1960)

• Our goal is to show the unsatisfiability of the clause form
{{¬𝑝(𝑧, 𝑐),¬𝑝(𝑧, 𝑥),¬𝑝(𝑥, 𝑧)}, {𝑝(𝑧, 𝑐), 𝑝(𝑧, 𝑓 (𝑧))}, {𝑝(𝑧, 𝑐), 𝑝(𝑓 (𝑧), 𝑧)}}.

◦ Herbrand’s Theorem: it suffices to show the unsatisfiability of a set of ground instances.

• We show the unsatisfiability of
{{¬𝑝(𝑐, 𝑐)}, {{¬𝑝(𝑓 (𝑐), 𝑐),¬𝑝(𝑐, 𝑓 (𝑐))}, {𝑝(𝑐, 𝑐), 𝑝(𝑐, 𝑓 (𝑐))}, {𝑝(𝑐, 𝑐), 𝑝(𝑓 (𝑐), 𝑐)}}

◦ Two instances of clause 1, one instance of clause 2, and one instance of clause 3.

• For this, we may apply the resolution method of propositional logic:

{ }

{¬𝑝(𝑐, 𝑓 (𝑐))}

{¬𝑝(𝑓 (𝑐), 𝑐),¬𝑝(𝑐, 𝑓 (𝑐))}

{𝑝(𝑓 (𝑐), 𝑐)}

{𝑝(𝑐, 𝑐), 𝑝(𝑓 (𝑐), 𝑐)}

{𝑝(𝑐, 𝑓 (𝑐))}

{¬𝑝(𝑐, 𝑐)}{𝑝(𝑐, 𝑐), 𝑝(𝑐, 𝑓 (𝑐))}

Rather than “guessing” appropriate instances, we better apply unification. 3/28

First-Order Resolution
John Alan Robinson, 1965: a calculus with judgement 𝐹 ⊢ (“𝐹 is unsatisfiable”).

{ } ∈ 𝐹

𝐹 ⊢ (AX)
𝐶 ∈ 𝐹 𝜎 is a bijective renaming of the variables in 𝐶 𝐹 ∪ {𝐶𝜎} ⊢

𝐹 ⊢ (REN)

𝐶 ∪ {𝑝 (𝑡1, . . . , 𝑡𝑛) , 𝑝 (𝑢1, . . . , 𝑢𝑛) } ∈ 𝐹 𝜎 is mgu of { (𝑡1, 𝑢1) , . . . , (𝑡𝑛 , 𝑢𝑛) }
𝐹 ∪ {𝐶𝜎 ∪ {𝑝 (𝑡1𝜎, . . . , 𝑡𝑛𝜎) } } ⊢

𝐹 ⊢ (FACT)

𝐶 ∪ {𝑝 (𝑡1, . . . , 𝑡𝑛) } ∈ 𝐹 𝐷 ∪ {¬𝑝 (𝑢1, . . . , 𝑢𝑛) } ∈ 𝐹 𝜎 is mgu of { (𝑡1, 𝑢1) , . . . , (𝑡𝑛 , 𝑢𝑛) }
𝐶 ∪ {𝑝 (𝑡1, . . . , 𝑡𝑛) } and 𝐷 ∪ {¬𝑝 (𝑢1, . . . , 𝑢𝑛) } have no common variables 𝐹 ∪ {𝐶𝜎 ∪ 𝐷𝜎} ⊢

𝐹 ⊢ (RES)

• Axiom (AX): a formula with an empty clause is unsatisfiable.
• Resolution (RES): if two clauses contain literals that become complimentary when applying most

general unifier 𝜎, we may combine the clauses after dropping these literals and applying 𝜎.
• To make (RES) applicable, it may be necessary to apply two auxiliary rules:

◦ Renaming (REN): rename the variables in a clause to become distinct from those in another clause.
◦ Factoring (FACT): if a clause contains two literals that become identical when applying most general

unifier 𝜎, we may drop one of the literals and apply 𝜎 to the resulting clause.
4/28

A Simple Example
We show the unsatisfiability of the formula

(∀𝑥, 𝑦. ¬𝑝(𝑥, 𝑦) ∨ 𝑞(𝑥, 𝑦)) ∧ (∀𝑥, 𝑦. 𝑝(𝑥, 𝑦) ∨ 𝑞(𝑦, 𝑥)) ∧ (¬𝑞(𝑎, 𝑎) ∨ ¬𝑞(𝑏, 𝑏))

which is represented by the set of clauses (with no common variables)
{{¬𝑝(𝑥1, 𝑦1), 𝑞(𝑥1, 𝑦1)}, {𝑝(𝑥2, 𝑦2), 𝑞(𝑦2, 𝑥2)}, {¬𝑞(𝑎, 𝑎),¬𝑞(𝑏, 𝑏)}}

by the following refutation proof:

{ }

{¬𝑞(𝑏, 𝑏)}

{¬𝑞(𝑎, 𝑎),¬𝑞(𝑏, 𝑏)}

{𝑞(𝑦2, 𝑦2)}

{𝑞(𝑥2, 𝑦2), 𝑞(𝑦2, 𝑥2)}

{𝑝(𝑥2, 𝑦2), 𝑞(𝑦2, 𝑥2)}{¬𝑝(𝑥1, 𝑦1), 𝑞(𝑥1, 𝑦1)}

Three resolution steps and one factoring step. 5/28

Original Example

We show the unsatisfiability of
{{¬𝑝(𝑧1, 𝑐),¬𝑝(𝑧1, 𝑥),¬𝑝(𝑥, 𝑧1)}, {𝑝(𝑧2, 𝑐), 𝑝(𝑧2, 𝑓 (𝑧2))}, {𝑝(𝑧3, 𝑐), 𝑝(𝑓 (𝑧3), 𝑧3)}}.

by the following refutation proof:

{ }

{¬𝑝(𝑐, 𝑓 (𝑐))}

{¬𝑝(𝑧1, 𝑐),¬𝑝(𝑐, 𝑧1)}{𝑝(𝑓 (𝑐), 𝑐)}

{𝑝(𝑧3, 𝑐), 𝑝(𝑓 (𝑧3), 𝑧3)}

{¬𝑝(𝑐, 𝑐)}

{¬𝑝(𝑧1, 𝑐),¬𝑝(𝑧1, 𝑥),¬𝑝(𝑥, 𝑧1)}

{𝑝(𝑐, 𝑓 (𝑐))}

{𝑝(𝑧2, 𝑐), 𝑝(𝑧2, 𝑓 (𝑧2))}

Four resolution steps and two factoring steps. 6/28

The Importance of Factoring
Consider clause form {{𝑝(𝑥, 𝑥), 𝑝(𝑐, 𝑥)}, {¬𝑝(𝑦, 𝑦),¬𝑝(𝑐, 𝑦)}}.

• Without Factoring:
{𝑝 (𝑥, 𝑥) , 𝑝 (𝑐, 𝑥) }, {¬𝑝 (𝑦, 𝑦) , ¬𝑝 (𝑐, 𝑦) } → {𝑝 (𝑐, 𝑦) , ¬𝑝 (𝑐, 𝑦) } ≡ ⊤

{𝑝 (𝑥, 𝑥) , 𝑝 (𝑐, 𝑥) }, {¬𝑝 (𝑦, 𝑦) , ¬𝑝 (𝑐, 𝑦) } → {𝑝 (𝑐, 𝑐) , ¬𝑝 (𝑐, 𝑐) } ≡ ⊤

{𝑝 (𝑥, 𝑥) , 𝑝 (𝑐, 𝑥) }, {¬𝑝 (𝑦, 𝑦) , ¬𝑝 (𝑐, 𝑦) } → {𝑝 (𝑐, 𝑐) , ¬𝑝 (𝑐, 𝑐) } ≡ ⊤

{𝑝 (𝑥, 𝑥) , 𝑝 (𝑐, 𝑥) }, {¬𝑝 (𝑦, 𝑦) , ¬𝑝 (𝑐, 𝑦) } → {𝑝 (𝑦, 𝑦) , ¬𝑝 (𝑦, 𝑦) } ≡ ⊤

◦ By using only resolution, just trivial consequences can be derived.
◦ Thus no progress towards proof of unsatisfiability can be made.

• With Factoring:

{ }

{ ¬𝑝(𝑐, 𝑐)}

{¬𝑝(𝑦, 𝑦),¬𝑝(𝑐, 𝑦)}

{ 𝑝(𝑐, 𝑐)}

{𝑝(𝑥, 𝑥), 𝑝(𝑐, 𝑥)}

◦ By using also factoring, unsatisfiability can be easily shown.

Factoring is indeed essential for the completeness of the calculus. 7/28

First-Order Resolution

Actually, a single rule may subsume the work of renaming, factoring, and resolution.

𝐶 ∈ 𝐹 𝐷 ∈ 𝐹 𝐶′ ⊆ 𝐶 𝐷′ ⊆ 𝐷

all literals in 𝐶′ are unnegated, all literals in 𝐷′ are negated (or the other way round)
𝜎1 and 𝜎2 are bijective renamings of the variables in 𝐶 and 𝐷

such that 𝐶𝜎1 and 𝐷𝜎2 have no common variables
𝜎 is mgu of all pairs of literals in 𝐶′𝜎1 ∪ 𝐷′𝜎2

𝐶′′ = (𝐶\𝐶′)𝜎1 𝐷′′ = (𝐷\𝐷′)𝜎2 𝐹 ∪ {𝐶′′𝜎 ∪ 𝐷′′𝜎} ⊢
𝐹 ⊢ (RES’)

• Generalized Resolution (RES’):
◦ Renames clauses to have disjoint sets of variables.
◦ Resolves a set of positive literals with a set of negative literals.
◦ Factors the literals within each set.

The calculus only requires the two rules (AX) and (RES’).

8/28

A Simple Example (Revisited)
We show the unsatisfiability of the formula

(∀𝑥, 𝑦. ¬𝑝(𝑥, 𝑦) ∨ 𝑞(𝑥, 𝑦)) ∧ (∀𝑥, 𝑦. 𝑝(𝑥, 𝑦) ∨ 𝑞(𝑦, 𝑥)) ∧ (¬𝑞(𝑎, 𝑎) ∨ ¬𝑞(𝑏, 𝑏))

which is represented by the set of clauses (with no common variables)
{{¬𝑝(𝑥1, 𝑦1), 𝑞(𝑥1, 𝑦1)}, {𝑝(𝑥2, 𝑦2), 𝑞(𝑦2, 𝑥2)}, {¬𝑞(𝑎, 𝑎),¬𝑞(𝑏, 𝑏)}}

by the following refutation proof:

{ }

{¬𝑞(𝑏, 𝑏)}

{¬𝑞(𝑎, 𝑎),¬𝑞(𝑏, 𝑏)}

{𝑞(𝑥2, 𝑦2), 𝑞(𝑦2, 𝑥2)}

{𝑝(𝑥2, 𝑦2), 𝑞(𝑦2, 𝑥2)}{¬𝑝(𝑥1, 𝑦1), 𝑞(𝑥1, 𝑦1)}

Three (generalized) resolution steps.

9/28

Original Example (Revisited)

We show the unsatisfiability of

{{¬𝑝(𝑧1, 𝑐),¬𝑝(𝑧1, 𝑥),¬𝑝(𝑥, 𝑧1)}, {𝑝(𝑧2, 𝑐), 𝑝(𝑧2, 𝑓 (𝑧2))}, {𝑝(𝑧3, 𝑐), 𝑝(𝑓 (𝑧3), 𝑧3)}}.

by the following refutation proof:

{ }

{¬𝑝(𝑐, 𝑓 (𝑐))}

{𝑝(𝑓 (𝑐), 𝑐)}

{𝑝(𝑧3, 𝑐), 𝑝(𝑓 (𝑧3), 𝑧3)}{¬𝑝(𝑧1, 𝑐),¬𝑝(𝑧1, 𝑥),¬𝑝(𝑥, 𝑧1)}

{𝑝(𝑐, 𝑓 (𝑐))}

{𝑝(𝑧2, 𝑐), 𝑝(𝑧2, 𝑓 (𝑧2))}

Four (generalized) resolution steps.

10/28

Soundness and Completeness of First-Order Resolution

• Soundness: if 𝐹 ⊢ can be derived, 𝐹 is unsatisfiable.
◦ Proof sketch: The soundness of each rule can be shown according to the semantics of first-order logic

(compare also with the proof sketch of the soundness of resolution in propositional logic).

• Completeness: if 𝐹 is unsatisfiable, 𝐹 ⊢ can be derived.
◦ Proof sketch: Assume that 𝐹 is unsatisfiable. By the corollory of Herbrand’s theorem and the

compactness theorem, some finite set 𝑆 of ground instances of clauses of 𝐹 is unsatisfiable. Thus, by
the completeness of propositional resolution, there exists a propositional refutation proof of 𝑆. Now,
one can show that for each application of rule (RES) in propositional resolution to derive a new
propositional clause 𝐶′ there exists an application of rule (RES’) in first-order resolution to derive a
first-order clause 𝐶 such that 𝐶′ is a ground instance of 𝐶. Since a propositional refutation proof can
only be completed by application of rule (AX), propositional resolution has derived the empty
clause 𝐶′. Thus the first-order refutation proof has derived a clause 𝐶 such that the empty clause 𝐶′

is an instance of 𝐶 which implies that also 𝐶 is the empty clause. Therefore also the first-order
derivation proof can be completed by application of rule (AX).

This notion of completeness is often called “refutation completeness”.

11/28

First-Order Resolution in OCaml
let rec mgu l env = ... ;;
let unifiable p q = ... ;;
let rename pfx cls = ... ;;

let resolvents cl1 cl2 p acc = (* General resolution rule, incorporating factoring. *)
let ps2 = filter (unifiable(negate p)) cl2 in
if ps2 = [] then acc else
let ps1 = filter (fun q -> q <> p & unifiable p q) cl1 in
let pairs = allpairs (fun s1 s2 -> s1,s2)

(map (fun pl -> p::pl) (allsubsets ps1))
(allnonemptysubsets ps2) in

itlist (fun (s1,s2) sof ->
try image (subst (mgu (s1 @ map negate s2) undefined))

(union (subtract cl1 s1) (subtract cl2 s2)) :: sof
with Failure _ -> sof) pairs acc;;

let resolve_clauses cls1 cls2 =
let cls1’ = rename "x" cls1 and cls2’ = rename "y" cls2 in
itlist (resolvents cls1’ cls2’) cls1’ [];;

12/28

First-Order Resolution in OCaml
let rec resloop0 (used,unused) = (* Basic "Argonne" loop, the "given clause algorithm" *)

match unused with
[] -> failwith "No proof found"

| cl::ros ->
print_string(string_of_int(length used) ^ " used; "^

string_of_int(length unused) ^ " unused.");
print_newline();
let used’ = insert cl used in
let news = itlist(@) (mapfilter (resolve_clauses cl) used’) [] in
if mem [] news then true else resloop0 (used’,ros@news);;

let pure_resolution0 fm = resloop0([],simpcnf(specialize(pnf fm)));;

let resolution0 fm =
let fm1 = askolemize(Not(generalize fm)) in
map (pure_resolution0 ** list_conj) (simpdnf fm1);;

Main loop picks clause cl from list unused, generates all resolvents of cl with clauses from

used, and appends the results to unused; thus every pair of clauses is tried once. 13/28

First-Order Resolution in OCaml

let davis_putnam_example = resolution0
<<exists x. exists y. forall z.

(F(x,y) ==> (F(y,z) /\ F(z,z))) /\
((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;;

0 used; 3 unused.
1 used; 2 unused.
2 used; 3 unused.
...
80 used; 468 unused.
81 used; 473 unused.
82 used; 478 unused.
83 used; 483 unused.
84 used; 488 unused.
val davis_putnam_example : bool list = [true]

The number of clauses explodes, because a lot of them are actually redundant.

14/28

Removing Redundant Clauses

Assume that resolve_clauses generates a new clause 𝐶.

• Tautologies: If 𝐶 contains 𝑝(𝑡1, . . . , 𝑡𝑛) and ¬𝑝(𝑡1, . . . , 𝑡𝑛), we can delete 𝐶.
◦ 𝐶 is a tautology, i.e., logically equivalent to ⊤.
◦ One can show that for every refutation that uses 𝐶 there exists one that does not.

• Subsumption: 𝐶 may subsume or be subsumed by an existing clause 𝐷.
◦ 𝐶 subsumes 𝐷 if 𝐶𝜎 ⊆ 𝐷 for some instantiation 𝜎 (thus 𝐷 is a logical

consequence of 𝐶).
Theorem: if 𝐶 subsumes 𝐶′, then any resolvent of 𝐶′ and some clause 𝐷 is
subsumed either by 𝐶 itself or by a resolvent of 𝐶 and 𝐷.

◦ Forward Deletion: if 𝐶 is subsumed by 𝐷 in unused, we can delete 𝐶.
Anything that would be generated from 𝐶 will be generated from 𝐷.

◦ Backward Replacement: if 𝐶 subsumes 𝐷 in unused, we can replace 𝐷 by 𝐶.
Anything that would be generated from 𝐷 will be generated from 𝐶.

Simple optimizations that may help to keep the clause set in check.
15/28

Removing Redundancies in OCaml
let subsumes_clause cls1 cls2 =

let rec subsume env cls =
match cls with

[] -> env
| l1::clt ->

tryfind (fun l2 -> subsume (match_literals env (l1,l2)) clt) cls2
in can (subsume undefined) cls1;;

let incorporate gcl cl unused =
if trivial cl or

exists (fun c -> subsumes_clause c cl) (gcl::unused)
then unused else replace cl unused;;

let rec resloop (used,unused) =
match unused with

[] -> failwith "No proof found"
| cl::ros ->

...
if mem [] news then true
else resloop(used’,itlist (incorporate cl) news ros);; 16/28

Removing Redundancies in OCaml

let davis_putnam_example = resolution
<<exists x. exists y. forall z.

(F(x,y) ==> (F(y,z) /\ F(z,z))) /\
((F(x,y) /\ G(x,y)) ==> (G(x,z) /\ G(z,z)))>>;;

0 used; 3 unused.
1 used; 2 unused.
2 used; 3 unused.
3 used; 6 unused.
4 used; 5 unused.
5 used; 4 unused.
6 used; 3 unused.
7 used; 2 unused.
val davis_putnam_example : bool list = [true]

Now a refutation is found very quickly.

17/28

The Resolution Method

The resolution method has “bottom-up” and “local” characteristics:

• Bottom-Up: Resolution does not consider the proof “goal” but extends the current
“knowledge” by new “lemmas”; these are closed formulas that are (independently of
any context) generally valid and can be later instantiated in different ways.

• Local: When combining two clauses 𝐶 and 𝐷 to a resolvent

𝐶′′𝜎 ∪ 𝐷′′𝜎

the substitution 𝜎 is only applied to the resolvent and does not affect the variables in
the rest of the formula.

Dual to the top-down and global characteristics of the tableau method; both have
their strengths and weaknesses.

18/28

Horn Clause Formulas

Generally, finding refutations by general resolution can be very costly; however, for
restricted clause forms there exist more efficient search strategies.

• Horn Clause: a clause with at most one positive literal (Alfred Horn, 1951).
◦ Definite Clause: a Horn clause with exactly one positive literal.

• Concrete Syntax: let 𝑃1, . . . , 𝑃𝑛, 𝑃 be unnegated literals (i.e., atomic formulas).
◦ Fact: ⊤ ⇒ 𝑃 (alternatively: ⇒ 𝑃)

{𝑃}

◦ Rule: 𝑃1 ∧ . . . ∧ 𝑃𝑛≥1 ⇒ 𝑃

{¬𝑃1, . . . ,¬𝑃𝑛, 𝑃}

◦ Goal (Query): 𝑃1 ∧ . . . ∧ 𝑃𝑛≥1 ⇒ ⊥ (alternatively: 𝑃1 ∧ . . . ∧ 𝑃𝑛 ⇒)

{¬𝑃1, . . . ,¬𝑃𝑛}
A Horn clause formula is a conjunction of Horn clauses (represented as a set).

19/28

Proofs of Horn Clause Formulas: SLD-Resolution
SLD ≈ “Selection-Linear Resolution with Definite Clauses” (Robert Kowalski, 1974)

𝐹, { } ⊢ (AX)

{¬𝑃1, . . . , ¬𝑃𝑛≥0, 𝑃} ∈ 𝐹 ¬𝑄 ∈ 𝐺

𝜎0 is a bijective renaming of the variables in {𝑃1, . . . , 𝑃𝑛 , 𝑃} such that
{𝑃1𝜎0, . . . , 𝑃𝑛𝜎0, 𝑃𝜎0} and 𝐺 have no common variables

𝜎 is mgu of 𝑃𝜎0 and 𝑄 𝐹, 𝐺\{¬𝑄} ∪ {¬𝑃1𝜎0𝜎, . . . , ¬𝑃𝑛𝜎0𝜎} ⊢
𝐹,G ⊢ (SLD)

• Judgement 𝐹, 𝐺 ⊢
◦ Horn clause formula 𝐹 with only definite clauses, goal clause 𝐺.
◦ Interpreted as “𝐹 ∪ {𝐺} is unsatisfiable”.

• Rule (AX): an empty goal clause is unsatisfiable.
• Rule (SLD): “matches” rule/fact {¬𝑃1, . . . ,¬𝑃𝑛≥0, 𝑃} in 𝐹 to literal 𝑄 in goal 𝐺.

◦ Application of rule replaces literal by (appropriately substituted) rule prerequisites.

A “goal-oriented” form of resolution.
20/28

Example

We infer the unsatisfiability of the following Horn clause formula:

𝑝3 ∧ 𝑝4 ∧ (𝑝3 ∧ 𝑝4 ⇒ 𝑝1) ∧ (𝑝3 ⇒ 𝑝2) ∧ (𝑝1 ∧ 𝑝2 ⇒ ⊥)

{{𝑝3}, {𝑝4}, {¬𝑝3,¬𝑝4, 𝑝1}, {¬𝑝3, 𝑝2}}, { } ⊢
{{𝑝3}, {𝑝4}, {¬𝑝3,¬𝑝4, 𝑝1}, {¬𝑝3, 𝑝2}}, {¬𝑝3} ⊢
{{𝑝3}, {𝑝4}, {¬𝑝3,¬𝑝4, 𝑝1}, {¬𝑝3, 𝑝2}}, {¬𝑝2} ⊢

{{𝑝3}, {𝑝4}, {¬𝑝3,¬𝑝4, 𝑝1}, {¬𝑝3, 𝑝2}}, {¬𝑝4,¬𝑝2} ⊢
{{𝑝3}, {𝑝4}, {¬𝑝3,¬𝑝4, 𝑝1}, {¬𝑝3, 𝑝2}}, {¬𝑝3,¬𝑝4,¬𝑝2} ⊢

{{𝑝3}, {𝑝4}, {¬𝑝3,¬𝑝4, 𝑝1}, {¬𝑝3, 𝑝2}}, {¬𝑝1,¬𝑝2} ⊢

A proof where only the goal formula changes.

21/28

Example

We infer the unsatisfiability of the following Horn clause formula:

𝑝(𝑥, 𝑐, 𝑥) ∧
(
𝑝(𝑥, 𝑦, 𝑧) ⇒ 𝑝(𝑥, 𝑓 (𝑦), 𝑓 (𝑧))

)
∧ ¬𝑝(𝑓 (𝑐), 𝑓 (𝑓 (𝑐)), 𝑧)

{𝑝 (𝑥, 𝑐, 𝑥) }, {¬𝑝 (𝑥, 𝑦, 𝑧) , 𝑝 (𝑥, 𝑓 (𝑦) , 𝑓 (𝑧)) }
{ } ⊢

{𝑝 (𝑥, 𝑐, 𝑥) }, {¬𝑝 (𝑥, 𝑦, 𝑧) , 𝑝 (𝑥, 𝑓 (𝑦) , 𝑓 (𝑧)) }
{¬𝑝 (𝑓 (𝑐) , 𝑐, 𝑧2) }

⊢

𝜎0 = []
𝜎 = [𝑥 ↦→ 𝑓 (𝑐) , 𝑧2 ↦→ 𝑓 (𝑐)]

{𝑝 (𝑥, 𝑐, 𝑥) }, {¬𝑝 (𝑥, 𝑦, 𝑧) , 𝑝 (𝑥, 𝑓 (𝑦) , 𝑓 (𝑧)) }
{¬𝑝 (𝑓 (𝑐) , 𝑓 (𝑐) , 𝑧1) }

⊢

𝜎0 = [𝑧 ↦→ 𝑧2]
𝜎 = [𝑥 ↦→ 𝑓 (𝑐) , 𝑦 ↦→ 𝑐, 𝑧1 ↦→ 𝑓 (𝑧2)]

{𝑝 (𝑥, 𝑐, 𝑥) }, {¬𝑝 (𝑥, 𝑦, 𝑧) , 𝑝 (𝑥, 𝑓 (𝑦) , 𝑓 (𝑧)) }
{¬𝑝 (𝑓 (𝑐) , 𝑓 (𝑓 (𝑐)) , 𝑧) } ⊢

𝜎0 = [𝑧 ↦→ 𝑧1]
𝜎 = [𝑥 ↦→ 𝑓 (𝑐) , 𝑦 ↦→ 𝑓 (𝑐) , 𝑧 ↦→ 𝑓 (𝑧1)]

Composed substitution [𝑥 ↦→ 𝑓 (𝑐), 𝑦 ↦→ 𝑓 (𝑐), 𝑧 ↦→ 𝑓 (𝑓 (𝑓 (𝑐)))].

The composition of substitutions (𝜎0 ◦ 𝜎) ◦ . . . performed by a sequence of applications of
rule (SLD) determines terms 𝑡1, . . . , 𝑡𝑛 for the variables 𝑥1, . . . , 𝑥𝑛 in the original goal 𝐺.

22/28

Correctness of SLD-Resolution

Let 𝐹 be a Horn clause formula with only definite clauses and 𝐺 a goal clause.

• Soundness: if 𝐹, 𝐺 ⊢ is derivable, then 𝐹 ∪ {𝐺} is unsatisfiable.
◦ Proof sketch: Rule (AX) is clearly sound. The correctness of rule (SLD) can be established

from the correctness of rule (RES’).

• Completeness: if 𝐹 ∪ {𝐺} is unsatisfiable, then 𝐹, 𝐺 ⊢ is derivable.
◦ Proof sketch: First the completeness of SLD-resolution in propositional logic is proved by

showing that every resolution proof of 𝐹 ∪ {𝐺} can be transformed into a proof by
SLD-resolution. By Herbrand’s theorem and compactness, if 𝐹 ∪ {𝐺} is unsatisfiable, there
is a finite set of ground instances of 𝐹 ∪ {𝐺} that is unsatisfiable. Therefore this set has a
propositional refutation by SLD-resolution. Finally, it can be shown that this refutation is an
instance of SLD-resolution in first-order logic.

As the tableaux method, we can implement SLD-resolution by “iterative deepening”.

23/28

Limitations of Horn Clause Logic

Horn clause logic is not as expressive as general first-order logic.

• Consider formula 𝑃1 ∧ . . . ∧ ¬𝑃𝑖 ∧ . . . ∧ 𝑃𝑛 ⇒ 𝑃

◦ There does not exist any logically equivalent Horn clause formula.
◦ Horn clause logic cannot deal with negative premises.

Horn clause logic is often less interesting for proving than for computing.

24/28

Prolog

Programming in Logic (Alain Colmerauer and Philippe Roussel, 1972).

• An implementation of SLD resolution as a programming language.
◦ A “pragmatic” implementation: efficient, but logically not complete.

Proof search is implemented in a “depth-first, left-to-right” fashion; this may run into
“infinite recursion”, even if an SLD refutation exists.
Omits costly occurs check in unification; thus cyclic terms may be created (typically
unintentionally, as results of programming errors).

• Concrete syntax for facts, rules, goals:
P :- P1, P2, P3 . %% a rule: P holds, if P1 and P2 and P3 hold.
P . %% a fact: P holds unconditionally.
?- P1, P2, P3 . %% a goal: prove P1 and P2 and P3.

◦ Builtin implementation of various data types and operations.
◦ Implementation of side effects such as input and output.

A “full-fledged” (Turing-complete) programming language.
25/28

Example

%% file fol4.pl with predicate add(X,Y,Z) interpreted as "adding X and Y gives Z".
add(X,zero,X). %% adding X and zero gives X.
add(X,succ(Y),succ(Z)) :- add(X,Y,Z). %% adding X and Y+1 gives Z+1, if adding X and Y gives Z.

debian10!1> prolog fol4.pl
Welcome to SWI-Prolog (threaded, 64 bits, version 8.0.2)
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
Please run ?- license. for legal details.

For online help and background, visit http://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).

?- add(succ(zero),succ(succ(zero)),Z).
Z = succ(succ(succ(zero))) .

?-

This is (up to renaming) our previous example of an SLD resolution. 26/28

Example

?- add(succ(zero),Y,succ(succ(succ(zero)))).
Y = succ(succ(zero)) .

?- add(X,Y,succ(succ(succ(zero)))).
X = succ(succ(succ(zero))),
Y = zero ;
X = succ(succ(zero)),
Y = succ(zero) ;
X = succ(zero),
Y = succ(succ(zero)) ;
X = zero,
Y = succ(succ(succ(zero))) ;
false.

Prolog programs can be executed “inversely” and also produce multiple solutions.

27/28

Example
append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

partition([X|Xs],Y,[X|Ls],Rs) :- X =< Y, partition(Xs,Y,Ls,Rs).
partition([X|Xs],Y,Ls,[X|Rs]) :- X > Y, partition(Xs,Y,Ls,Rs).
partition([],Y,[],[]).

quicksort([X|Xs],Ys) :-
partition(Xs,X,Left,Right),
quicksort(Left,Ls),
quicksort(Right,Rs),
append(Ls,[X|Rs],Ys).

quicksort([],[]).

?- quicksort([3,1,4,1,5,9,2,7],X).
X = [1, 1, 2, 3, 4, 5, 7, 9] .

Prolog programs are written as “recursively defined” predicates.
28/28

