
FIRST-ORDER LOGIC:
PROOFS
Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at


First-Order Logic Proofs

Our core goal is to show the validity of first-order formulas.

• Problem: how to show |= 𝐹?
◦ Does 𝑀 |= 𝐹 hold for every structure 𝑀 (i.e., is every structure 𝑀 a model of 𝐹)?
◦ But there are infinitely many structures with different domains and interpretations!

Can we reduce first-order reasoning to reasoning in some “canonical structures”?

1/26



Herbrand Structures
A Herbrand structure 𝐻 := (𝐷𝐻 , 𝐼𝐻) for a formula (language) with symbols C, F ,P
consists of the Herbrand universe 𝐷𝐻 and some Herbrand interpretation 𝐼𝐻 .

• The Herbrand universe 𝐷𝐻 is the set of all terms 𝑡 formed as follows:

𝑡 ::= 𝑐 | 𝑓 (𝑡1, . . . , 𝑡𝑛)
◦ Every constant 𝑐 ∈ C (if C = { }, we extend C by a constant 𝑐).
◦ Every 𝑛-ary function symbol 𝑓 ∈ F .
◦ 𝐷𝐻 is the set of ground terms (no variables) that includes all constants and is

closed under the application of all function symbols (thus 𝐷𝐻 is generally infinite).

• A Herbrand interpretation 𝐼𝐻 must satisfy the following:
𝐼 (𝑐) := 𝑐 (∈ 𝐷𝐻 ) 𝐼 ( 𝑓 ) (𝑡1, . . . , 𝑡𝑛) := 𝑓 (𝑡1, . . . , 𝑡𝑛) (∈ 𝐷𝐻 ) 𝐼 (𝑝) (𝑡1, . . . , 𝑡𝑛) ⊆ 𝐷𝑛

𝐻

◦ 𝐼𝐻 interprets constant 𝑐 as itself, 𝑛-ary function symbol 𝑓 as a term constructor,
and 𝑛-ary predicate 𝑝 as an arbritrary 𝑛-ary relation over 𝐷𝐻 .

A Herbrand structure is a (generalization of a) “term algebra”.
2/26



Herbrand Structures as Models of Formulas

• Theorem: Let 𝐹 be a quantifier-free formula. Then there exists a structure 𝑀

with 𝑀 |= 𝐹 if and only if there exists a Herbrand structure 𝐻 with 𝐻 |= 𝐹.
◦ Proof sketch: Since the implication from right to left clearly holds, only the implication from

left to right has to be shown. For this, we assume 𝑀 |= 𝐹 for arbitrary structure 𝑀 = (𝐷, 𝐼)
and show 𝐻 |= 𝐹 for the Herbrand structure 𝐻 = (𝐷𝐻 , 𝐼𝐻 ) over 𝐹 with

𝐼𝐻 (𝑝) (𝑡1, . . . , 𝑡𝑛) :⇔ 𝑀 |= 𝑝(𝑡1, . . . , 𝑡𝑛)

We take arbitrary valuation 𝑣𝐻 over 𝐷𝐻 and show ⟦ 𝐹 ⟧𝐻𝑣𝐻 = true. Let 𝑥1, . . . , 𝑥𝑛 be the free
variables of 𝐹 and consider the closed formula instance
𝐹′ := 𝐹 [𝑣𝐻 (𝑥1)/𝑥1, . . . , 𝑣𝐻 (𝑥𝑛)/𝑥𝑛]. From 𝑀 |= 𝐹, we can show 𝑀 |= 𝐹′. Furthermore, we
can show ⟦ 𝐹 ⟧𝐻𝑣𝐻 = ⟦ 𝐹′ ⟧𝑀

𝑣′ for arbitrary valuation 𝑣′ over 𝐷. From 𝑀 |= 𝐹′, we have
⟦ 𝐹′ ⟧𝑀

𝑣′ = true and thus also ⟦ 𝐹 ⟧𝐻𝑣𝐻 = true.

Herbrand structures are “canonical structures” for reasoning in first-order logic; all
proof calculi use these structures in some way or another.

3/26



The Sequent Calculus

An extension of the propositional sequent calculus by two additional rules.

Γ, 𝐴[𝑡/𝑥], (∀𝑥. 𝐴),Δ ⊢ Λ
Γ, (∀𝑥. 𝐴),Δ ⊢ Λ (∀-L)

Γ ⊢ Δ, 𝐴[𝑦/𝑥],Λ
Γ ⊢ Δ, (∀𝑥. 𝐴),Λ (∀-R)

Γ, 𝐴[𝑦/𝑥],Δ ⊢ Λ
Γ, (∃𝑥. 𝐴),Δ ⊢ Λ (∃-L)

Γ ⊢ Δ, 𝐴[𝑡/𝑥], (∃𝑥. 𝐴),Λ
Γ ⊢ Δ, (∃𝑥. 𝐴),Λ (∃-R)

• Substitution 𝐹 [𝑡/𝑥]:
◦ Substitution of term 𝑡 for every free occurrence of variable 𝑥 in formula 𝐹.

• Eigenvariable (Skolem constant) 𝑦
◦ 𝑦 must not occur in the conclusion of the rule.

• Witness term 𝑡

◦ Term 𝑡 may contain arbitrary variables, constants, and function symbols; however,
every variable in 𝑡 different from 𝑥 must not be not bound by any quantifier in 𝐴.

4/26



Example Proof

(AX)
𝑝(𝑥, 𝑦),∀𝑦. 𝑝(𝑥, 𝑦) ⊢ 𝑝(𝑥, 𝑦), ∃𝑥. 𝑝(𝑥, 𝑦)

(∃-R)
𝑝(𝑥, 𝑦),∀𝑦. 𝑝(𝑥, 𝑦) ⊢ ∃𝑥. 𝑝(𝑥, 𝑦)

(∀-L)
∀𝑦. 𝑝(𝑥, 𝑦) ⊢ ∃𝑥. 𝑝(𝑥, 𝑦)

(∃-L)
∃𝑥. ∀𝑦. 𝑝(𝑥, 𝑦) ⊢ ∃𝑥. 𝑝(𝑥, 𝑦)

(∀-R)
∃𝑥. ∀𝑦. 𝑝(𝑥, 𝑦) ⊢ ∀𝑦. ∃𝑥. 𝑝(𝑥, 𝑦)

(⇒-R)
⊢ (∃𝑥. ∀𝑦. 𝑝(𝑥, 𝑦)) ⇒ (∀𝑦. ∃𝑥. 𝑝(𝑥, 𝑦))

A simple proof that applies all quantifier rules.

5/26



Another Proof
• We may apply some additional “convenience” rules:

Γ,Δ ⊢ Λ
Γ, 𝐴,Δ ⊢ Λ (DROP)

Γ ⊢ Δ,Λ
Γ ⊢ Δ, 𝐴,Λ (DROP)

◦ Reduce size of sequent; soundness can be easily derived.

(AX)
𝑝(𝑥) ⊢ 𝑝(𝑥)

(AX)
𝑝(𝑥), 𝑞(𝑥, 𝑦) ⊢ 𝑞(𝑥, 𝑦)

(∃-R,DROP)
𝑝(𝑥), 𝑞(𝑥, 𝑦) ⊢ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

(∃-L)
𝑝(𝑥), ∃𝑦. 𝑞(𝑥, 𝑦) ⊢ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

(⇒-L)
𝑝(𝑥), 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦) ⊢ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

(∀-L,DROP)
𝑝(𝑥),∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦) ⊢ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

(∃-L)
∃𝑥. 𝑝(𝑥),∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦) ⊢ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

(∧-L)
(∃𝑥. 𝑝(𝑥)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦)) ⊢ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

(⇒-R)
⊢ ((∃𝑥. 𝑝(𝑥)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦))) ⇒ ∃𝑥, 𝑦. 𝑞(𝑥, 𝑦)

We may drop formulas that have served their purpose.
6/26



A Proof with More Branches

(AX)
𝑝 (𝑎) ⊢ 𝑝 (𝑎)

(AX)
𝑝 (𝑎) , 𝑟 (𝑎) ⊢ 𝑟 (𝑎)

(∃-R)
𝑝 (𝑎) , 𝑟 (𝑎) ⊢ ∃𝑥. 𝑟 (𝑥 )

(⇒-L)
𝑝 (𝑎) , 𝑝 (𝑎) ⇒ 𝑟 (𝑎) ⊢ ∃𝑥. 𝑟 (𝑥 )

(∀-L,DROP)
𝑝 (𝑎) , (∀𝑥. 𝑝 (𝑥 ) ⇒ 𝑟 (𝑥 ) ) ⊢ ∃𝑥. 𝑟 (𝑥 )

(AX)
𝑞 (𝑏) , ⊢ 𝑞 (𝑏)

(AX)
𝑞 (𝑏) , 𝑟 ( 𝑓 (𝑏) ) ⊢ 𝑟 ( 𝑓 (𝑏) )

(∃-R)
𝑞 (𝑏) , 𝑟 ( 𝑓 (𝑏) ) ⊢ ∃𝑥. 𝑟 (𝑥 )

(⇒-L)
𝑞 (𝑏) , 𝑞 (𝑏) ⇒ 𝑟 ( 𝑓 (𝑏) ) ⊢ ∃𝑥. 𝑟 (𝑥 )

(∀-L,DROP)
𝑞 (𝑏) , (∀𝑥. 𝑞 (𝑥 ) ⇒ 𝑟 ( 𝑓 (𝑥 ) ) ) ⊢ ∃𝑥. 𝑟 (𝑥 )

(∨-L,DROP)
𝑝(𝑎) ∨ 𝑞(𝑏), (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) , (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥))) ⊢ ∃𝑥. 𝑟 (𝑥)

(∧-L)
(𝑝(𝑎) ∨ 𝑞(𝑏)) , (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) ∧ (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥))) ⊢ ∃𝑥. 𝑟 (𝑥)

(∧-L)
(𝑝(𝑎) ∨ 𝑞(𝑏)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) ∧ (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥))) ⊢ ∃𝑥. 𝑟 (𝑥)

(⇒-R)
⊢
(
(𝑝(𝑎) ∨ 𝑞(𝑏)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) ∧ (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥)))

)
⇒ ∃𝑥. 𝑟 (𝑥)

A proof by “case distinction”.

7/26



Sequent Calculus Trainer

8/26



Sequent Calculus Trainer

9/26



RISC ProofNavigator
ProofNavigator &

% example2.txt
newcontext "example2";

T:TYPE;
a:T;
b:T;
f:T->T;
p:(T)->BOOLEAN;
q:(T)->BOOLEAN;
r:(T)->BOOLEAN;

F: FORMULA
(p(a) OR q(b)) AND
(FORALL(x:T): p(x) => r(x)) AND
(FORALL(x:T): q(x) => r(f(x))) =>

(EXISTS(x:T): r(x));

10/26



RISC ProofNavigator

11/26



Soundness of the Sequent Calculus

Theorem: Every derivable sequent is valid.

Proof Sketch: It suffices to show that, if the conclusion of a rule is not valid, also some premise is not valid.

Γ, 𝐴[𝑡/𝑥], (∀𝑥. 𝐴),Δ ⊢ Λ
Γ, (∀𝑥. 𝐴),Δ ⊢ Λ (∀-L)

Γ ⊢ Δ, 𝐴[𝑦/𝑥],Λ
Γ ⊢ Δ, (∀𝑥. 𝐴),Λ (∀-R)

• Rule (∀-L): Since the conclusion is not valid, we have some structure 𝑀 and valuation 𝑣 with ⟦ Γ ⟧𝑀𝑣 = true,
⟦ ∀𝑥. 𝐴⟧𝑀𝑣 = true, ⟦Δ ⟧𝑀𝑣 = true, and ⟦Λ ⟧𝑀𝑣 = false. From above, to show that the premise is not valid, it
suffices to show ⟦ 𝐴[𝑡/𝑥 ] ⟧𝑀𝑣 = true. Let 𝑑 := ⟦ 𝑡 ⟧𝑀𝑣 . From the side condition on 𝑡, we can show
⟦ 𝐴[𝑡/𝑥 ] ⟧𝑀𝑣 = ⟦ 𝐴⟧𝑀

𝑣 [𝑥 ↦→𝑑] . From ⟦ ∀𝑥. 𝐴⟧𝑀𝑣 = true, we know ⟦ 𝐴⟧𝑀
𝑣 [𝑥 ↦→𝑑] = true and are done.

• Rule (∀-R): Since the conclusion is not valid, we have some structure 𝑀 and valuation 𝑣 with ⟦ Γ ⟧𝑀𝑣 = true,
⟦Δ ⟧𝑀𝑣 = false, ⟦ ∀𝑥. 𝐴⟧𝑀𝑣 = false, and ⟦Λ ⟧𝑀𝑣 = false. From ⟦ ∀𝑥. 𝐴⟧𝑀𝑣 = false, there is some 𝑑 ∈ 𝐷 such
that ⟦ 𝐴⟧𝑀

𝑣 [𝑥 ↦→𝑑] = false. Let 𝑣′ := 𝑣 [𝑦 ↦→ 𝑑 ]. Since 𝑦 does not occur in the conclusion, we have

⟦ Γ ⟧𝑀
𝑣′ = true, ⟦Δ ⟧𝑀

𝑣′ = false, and ⟦Λ ⟧𝑀
𝑣′ = false. Thus, to show that the premise is not valid, it suffices to

show ⟦ 𝐴[𝑦/𝑥 ] ⟧𝑀
𝑣′ = false, i.e., ⟦ 𝐴[𝑦/𝑥 ] ⟧𝑀

𝑣 [𝑦 ↦→𝑑] = false. Since 𝑦 does not occur in 𝐴, we can show

⟦ 𝐴[𝑦/𝑥 ] ⟧𝑀
𝑣 [𝑦 ↦→𝑑] = ⟦ 𝐴⟧

𝑀
𝑣 [𝑥 ↦→𝑑] = false and are done.

• Rules (∃-L) and (∃-R): analogously.

12/26



Proof Tree Construction: Data

To construct a proof tree for sequent Γ ⊢ Δ, we use the following data:

• 𝑦 = [𝑦0, 𝑦1, . . .]: an infinite sequence of variables that do not occur in Γ ⊢ Δ.
◦ These variables can be used as eigenvariables in rules (∀-R) and (∃-L).

• a = [a0, a1, . . .]: an infinite sequence of term sequences:
◦ The terms in these sequences are available as witnesses in rules (∀-L) and (∃-R).

If some function symbols occur in Γ ⊢ Δ, all sequences 𝑎0, 𝑎1, . . . are infinite.
◦ [𝑡0] ◦ a0 = [𝑡0, . . .]: an enumeration of all terms constructed from the free

variables, constants, and function symbols in Γ ⊢ Δ.
If Γ ⊢ Δ does not contain any free variable or constant, we use 𝑡0 := 𝑦0.

◦ a𝑖≥1: an enumeration [𝑦𝑖 , . . .] of all terms that contain 𝑦𝑖 and are constructed from
𝑦1, . . . , 𝑦𝑖 and the free variables, constants, and function symbols in Γ ⊢ Δ.

During the proof tree construction, the value of program variable 𝑛 indicates that 𝑦1, . . . , 𝑦𝑛
have been used as eigenvariables in rules (∀-R) or (∃-L); the sequences 𝑎0, 𝑎1, . . . , 𝑎𝑛

contain all terms in which these variables may occur.
13/26



Proof Tree Construction: Algorithm
procedure SEARCH(Γ ⊢ Δ)

INITIALIZE(Γ ⊢ Δ, 𝑦, 𝑎, 𝑡0)
𝑇, ts , 𝑛← ⟨Γ ⊢ Δ⟩, [𝑡0 ], 0
while 𝑇 has some open leaf node do

for every open leaf node 𝑁 in 𝑇 do
EXPAND(𝑁, 𝑇, ts , 𝑦, 𝑛)

end for
for 𝑖 from 0 do 𝑛 do

if ¬empty(𝑎𝑖 ) then
ts , a𝑖 ← ts ◦ [head(a𝑖 ) ], tail(a𝑖 )

end if
end for

end while
if 𝑇 is complete then

WRITE(“𝑇 proves Γ ⊢ Δ”)
else

WRITE(“𝑇 refutes Γ ⊢ Δ”)
end if

end procedure

procedure EXPAND(𝑁, 𝑇, ts , 𝑦, ↕𝑛)
Let 𝑆 be the subtree of 𝑇 with root 𝑁
Apply the propositional rules until the formulas

in all leaf nodes of 𝑆 are atomic or quantified
for every leaf formula in 𝑆 to which (∀-L) or (∃-R) applies do

repeatedly apply the rule for every 𝑡 ∈ ts
end for
for every leaf formula in 𝑆 to which (∀-R) or (∃-L) applies do

𝑛← 𝑛 + 1
apply the rule for 𝑥 ← 𝑦𝑛

end for
end procedure

A leaf node is open if it does not match any axiom and there is a
non-atomic node formula whose outermost symbol is

• either a connective

• or a quantifier to which (∀-L) or (∃-R) has not yet been
applied for every term in ts.

◦ This has to be recorded in EXPAND.
14/26



Correctness Properties of the Algorithm
By the soundness of the calculus, if SEARCH terminates with a complete proof tree, Γ ⊢ Δ is valid.

• Theorem: if Γ ⊢ Δ is valid, SEARCH terminates with a complete proof tree.
◦ Proof Sketch: we assume that Γ ⊢ Δ is valid but SEARCH does not terminate with a complete proof

tree; from this, we derive a contradiction. There are two cases:

First, SEARCH may terminate with an incomplete tree 𝑇, i.e., there is a leaf node Γ𝑘 ⊢ Δ𝑘 at some
depth 𝑘 that does not match any axiom. But, from the loop condition, no leaf node of 𝑇 is open. Thus,
Γ𝑘 ⊢ Δ𝑘 only contains atoms and quantified formulas to which (∀-L) and (∃-R) have been applied for
every term in ts. Consider every node Γ𝑖 ⊢ Δ𝑖 along the path Γ ⊢ Δ→ . . .→ Γ𝑘 ⊢ Δ𝑘 from the root
Γ ⊢ Δ to the leaf Γ𝑘 ⊢ Δ𝑘 . Let 𝑆 :=

⋃{Γ𝑖 ∪ ¬Δ𝑖 | 0 ≤ 𝑖 ≤ 𝑘} where ¬Δ := {¬𝐴 | 𝐴 ∈ Δ}. Now it is
possible to prove that every formula in 𝑆 is satisfied by the Herbrand structure 𝐻𝑆 = (𝐷𝑆 , 𝐼𝑆 ) where
(considering all free variables as constants) 𝐷𝑆 :=

⋃{𝑎𝑖 | 0 ≤ 𝑖 ≤ 𝑛} ∪ ts (for the final values
of ts , 𝑎, 𝑛) and 𝐼𝑆 (𝑝) (𝑡1, . . . , 𝑡𝑛 ) :⇔ 𝑝 (𝑡1, . . . , 𝑡𝑛 ) ∈

⋃{Γ𝑖 | 0 ≤ 𝑖 ≤ 𝑘}. Since Γ0 = Γ and Δ0 = Δ,
this structure 𝐻𝑆 refutes Γ ⊢ Δ, which contradicts the assumption that Γ ⊢ Δ is valid.

Second, SEARCH may not terminate. Then its execution describes the construction of an infinite tree 𝑇

(even if only a finite part of 𝑇 is ever computed). Since 𝑇 is infinite but finitely branching, by König’s
lemma it contains some infinite path Γ ⊢ Δ→ . . . . Analogously to the first case, we can construct from
this path a satisfiable set 𝑆 and structure 𝐻𝑆 that refutes Γ ⊢ Δ (to show this, it is essential that for
every universal formula in some Γ𝑖 respectively existential formula in some Δ𝑖 , every instance of that
formula appears in the branch in some Γ 𝑗≥𝑖 respectively Δ 𝑗≥𝑖 ). 15/26



Fundamental Properties of First-Order Logic

• Completeness: every valid first-order formula is provable.
◦ Kurt Gödel, 1929 (for another proof calculus of first-order logic).
◦ A corollary of the previous theorem: given a valid formula 𝐹, procedure SEARCH

finds a complete proof tree for the sequent ⊢ 𝐹.
◦ However, if 𝐹 is invalid, SEARCH may run forever.

• Undecidability: there cannot exist any procedure that, when given an arbitrary
first-order formula 𝐹, always halts and correctly states whether 𝐹 is valid.
◦ Alonzo Church/Alan Turing, 1936/1937.

The halting problem for computing machines is undecidable.
The halting problem can be reduced to the decision problem of first-order logic.

The power and the limit of reasoning in first-order logic.

16/26



The Problem of the Sequent Calculus

Procedure SEARCH looks a bit difficult to implement.

• Complex traversal of proof tree to make sure that all quantified formulas in all
leafs to which the rules (∀-L) and (∃-R) are applicable are indeed instantiated
by all possible terms.

Is there no “easier” way to achieve the same result?

17/26



Herbrand’s Theorem

Actually, the Gödel-Herbrand-Skolem theorem (≈1930).

• Theorem: Let 𝐹 be a quantifier-free first-order formula. Then 𝐹 is first-order satisfiable
if the set of all its ground instances {𝐹1, 𝐹2, . . .} is propositionally satisfiable.
◦ 𝐹 is first-order satisfiable: there exists some structure 𝑀 such that 𝑀 |= 𝐹.
◦ 𝐹′ is a ground instance of 𝐹 if 𝐹′ is identical to 𝐹 except that every variable has

been replaced by a term in which only constants and function symbols appear.
◦ 𝐹 is propositionally satisfiable: 𝐹 is satisfied by some valuation 𝑣, considering

every atom as a propositional variable. A set {𝐹1, 𝐹2, . . .} is propositionally
satisfiable if there exists some valuation 𝑣 that satisfies every formula 𝐹𝑖 in the set.

• Example: formula 𝑝(𝑥) ∧ ¬𝑞(𝑥, 𝑦).
◦ Ground instances: {𝑝 (𝑐) ∧ ¬𝑞 (𝑐, 𝑐) , 𝑝 (𝑐) ∧ ¬𝑞 (𝑐, 𝑓 (𝑐) ) , 𝑝 ( 𝑓 (𝑐) ) ∧ ¬𝑞 ( 𝑓 (𝑐) , 𝑐) , . . .}
◦ Valuation: [𝑝 (𝑐) ↦→ true, 𝑞 (𝑐, 𝑐) ↦→ false, 𝑞 (𝑐, 𝑓 (𝑐) ) ↦→ false, 𝑝 ( 𝑓 (𝑐) ) ↦→ true, 𝑞 ( 𝑓 (𝑐) , 𝑐) ↦→ false, . . .]

The previously stated theorem abound Herbrand structures as models is actually a
consequence of Herbrand’s theorem.

18/26



Corollaries of Herbrand’s Theorem

• Theorem: Quantifier-free 𝐹 is first-order satisfiable iff every conjunction
𝐹1 ∧ . . . ∧ 𝐹𝑛 of a finite subset of its instances is propositionally satisfiable.
◦ Proof sketch: a corollary of the “compactness theorem” of propositional logic: a

set of propositional formulas is satisfiable, iff each finite subset is satisfiable.

• Theorem: Quantifier-free 𝐹 is first-order unsatisfiable iff some conjunction
𝐹1 ∧ . . . ∧ 𝐹𝑛 of a finite subset of its instances is propositionally unsatisfiable.
◦ Proof sketch: the contraposition of the previous theorem.

• Theorem: Formula ∀𝑥1, . . . , 𝑥𝑛. 𝐹 in Skolem normal form is unsatisfiable iff
some conjunction 𝐹1 ∧ . . . ∧ 𝐹𝑛 of a finite number of instances of its matrix 𝐹 is
propositionally unsatisfiable.
◦ Proof sketch: by induction on 𝑛, using the previous theorem as the induction base.

The basis of various “Herbrand procedures” for first-order proving.

19/26



The Gilmore Algorithm
Paul C. Gilmore, 1960.

procedure GILMORE(𝐺)
𝐹 ← SKOLEMNORMALFORMMATRIX(¬𝐺)
Fs ← ⊤
𝑖 ← 1

loop
Fs ← Fs ∧ 𝐹 (𝑖) ⊲ Add instance 𝑖 of 𝐹
if Fs is propositionally unsatisfiable then

WRITE(“𝐺 is first-order valid”)
return

end if
𝑖 ← 𝑖 + 1

end loop
end procedure

A systematic enumeration of all instances of the matrix. 20/26



The Gilmore Algorithm in OCaml
(* Get the constants for Herbrand base, adding nullary one if necessary. *)
let herbfuns fm =

let cns,fns = partition (fun (_,ar) -> ar = 0) (functions fm) in
if cns = [] then ["c",0],fns else cns,fns;;

(* Enumeration of ground terms and m-tuples, ordered by total fns. *)
let rec groundterms cntms funcs n =

if n = 0 then cntms else
itlist (fun (f,m) l -> map (fun args -> Fn(f,args))

(groundtuples cntms funcs (n - 1) m) @ l)
funcs []

and groundtuples cntms funcs n m =
if m = 0 then if n = 0 then [[]] else [] else
itlist (fun k l -> allpairs (fun h t -> h::t)

(groundterms cntms funcs k)
(groundtuples cntms funcs (n - k) (m - 1)) @ l)

(0 -- n) [];;

21/26



The Gilmore Algorithm in OCaml
let rec herbloop mfn tfn fl0 cntms funcs fvs n fl tried tuples =

print_string(string_of_int(length tried)^" ground instances tried; "^
string_of_int(length fl)^" items in list"); print_newline();

match tuples with
[] -> let newtups = groundtuples cntms funcs n (length fvs) in

herbloop mfn tfn fl0 cntms funcs fvs (n + 1) fl tried newtups
| tup::tups -> let fl’ = mfn fl0 (subst(fpf fvs tup)) fl in

if not(tfn fl’) then tup::tried else
herbloop mfn tfn fl0 cntms funcs fvs n fl’ (tup::tried) tups;;

let gilmore_loop fl0 cntms funcs fvs n fl tried tuples =
let mfn djs0 ifn djs = filter (non trivial) (distrib (image (image ifn) djs0) djs) in
herbloop mfn (fun djs -> djs <> []) fl0 cntms funcs fvs n fl tried tuples;;

let gilmore fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(gilmore_loop (simpdnf sfm) cntms funcs fvs 0 [[]] [] []);;

Verify propositional unsatisfiability of a formula in DNF by finding a pair of
complimentary literals in each disjunct. 22/26



The Gilmore Algorithm in OCaml
# gilmore << (P(a) \/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(f(x)))

==> (exists x. R(x)) >>;;
0 ground instances tried; 1 items in list
1 ground instances tried; 2 items in list
2 ground instances tried; 2 items in list
2 ground instances tried; 2 items in list
3 ground instances tried; 2 items in list
- : int = 4

# skolemize << ~((P(a) \/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(f(x)))
==> (exists x. R(x)) >>;;

<<((P(a) \/ Q(b)) /\ (~P(x) \/ R(x)) /\ (~Q(x) \/ R(f(x)))) /\ ~R(x)) >>
# satisfiable <<

((P(a) \/ Q(b)) /\ (~P(a) \/ R(a)) /\ (~Q(a) \/ R(f(a))) /\ ~R(a)) /\
((P(a) \/ Q(b)) /\ (~P(b) \/ R(b)) /\ (~Q(b) \/ R(f(b))) /\ ~R(b)) /\
((P(a) \/ Q(b)) /\ (~P(f(b)) \/ R(f(b))) /\ (~Q(f(b)) \/ R(f(f(b)))) /\ ~R(f(b))) >> ;;

- : bool = false

Our example formula can be proved with 3 ground instances: 𝑥 = 𝑎, 𝑥 = 𝑏, 𝑥 = 𝑓 (𝑏).
23/26



The Gilmore Algorithm in OCaml

# val p45 = gilmore <<
(forall x. P(x) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y))

==> (forall y. G(y) /\ H(x,y) ==> R(y))) /\
~(exists y. L(y) /\ R(y)) /\
(exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y)))
==> (exists x. P(x) /\ ~(exists y. G(y) /\ H(x,y))) >>;;

0 ground instances tried; 1 items in list
1 ground instances tried; 13 items in list
1 ground instances tried; 13 items in list
2 ground instances tried; 57 items in list
3 ground instances tried; 84 items in list
4 ground instances tried; 405 items in list
val p45 : int = 5

DNF representations explode, problems soon become intractable.

24/26



The Davis Putnam Algorithm
An optimization of the Gilmore algorithm where the formula is represented in CNF
and propositional satisfiability is tested by DPLL.

let dp_mfn cjs0 ifn cjs = union (image (image ifn) cjs0) cjs;;
let dp_loop = herbloop dp_mfn dpll;;
let davisputnam fm =

let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(dp_loop (simpcnf sfm) cntms funcs fvs 0 [] [] []);;

# let p20 = gilmore <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

...
18 ground instances tried; 15060 items in list
val p20 : int = 19
# let p20 = davisputnam <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))

==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;
...
18 ground instances tried; 37 items in list
val p20 : int = 19

However, the number of ground instances does not change. 25/26



The Problem with Herbrand Procedures

Optimizing satisfiability checking does not eliminate the core problem.

Davis, 1983: . . . effectively eliminating the truth-functional satisfiability obstacle only uncov-
ered the deeper problem of the combinatorial explosion inherent in unstructured search
through the Herbrand universe . . .

A more intelligent way of choosing instances is required rather than blindingly trying
out all possibilities.

26/26


