SMT SOLVING: COMBINING DECISION PROCEDURES

Course "Computational Logic"

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at

Lemmas on Demand

How to decide $T \models F$ for unquantified formula F and decidable theory T?

- So far: convert F into a disjunctive normal form $C_1 \vee \ldots \vee C_n$.
 - F is T-satisfiable if and only if some C_i is T-satisfiable.
 - Problem: the number n of clauses may be exponential in the size of F.
- Better: combine the decision procedure for *T* with a *SAT solver*.
 - The SAT solver is applied to the propositional skeleton \overline{F} .
 - Every atomic formula A in F is abstracted to a propositional variable \overline{A} .
 - If \overline{F} is unsatisfiable, F is unsatisfiable and we are done.
 - Otherwise, the SAT solver produces a satisfying assignment represented by a conjunction $\overline{L_1} \wedge \ldots \wedge \overline{L_m}$ of propositional literals.
 - The decision procedure is applied to the T-formula $L_1 \wedge \ldots \wedge L_m$.
 - Propositional variable $\overline{L_i}$ is expanded into the atomic formula L_i it represents.
 - If the formula is satisfiable, *F* is satisfiable and we are done.
 - Otherwise, the decision procedure determines a minimal unsatisfiable subformula C of $L_1 \wedge ... \wedge L_m$ and we repeat the process with $F \wedge \neg C$.

Example

E-satisfiability of $F : \Leftrightarrow x = y \land ((y = z \land x \neq z) \lor x = z)$.

- First iteration:
 - Propositional skeleton: $a \wedge ((b \wedge \neg c) \vee c)$
 - Satisfying assignment: $a \wedge b \wedge \neg c$
 - Unsatisfiable concretization: $x = y \land y = z \land x \neq z$
 - Strengthened formula: $F \land \neg(x = y \land y = z \land x \neq z)$
- Second iteration:
 - Propositional Skeleton: $a \wedge ((b \wedge \neg c) \vee c) \wedge \neg (a \wedge b \wedge \neg c)$
 - Satisfying assignment: $a \wedge b \wedge c$
 - Satisfiable concretization: $x = y \land y = z \land x = z$

Formula F is E-satisfiable.

Algorithm

```
function SAT-DECIDE(F)
                                                                                              ▶ decides T-satisfiability of F
    \overline{F} := \mathsf{ABSTRACT}(F)
    loop
         (sat, \overline{Ls}) := SAT(\overline{F})
                                                               ▶ decides satisfiability of propositional skeleton of F
         if \neg sat return false
         Ls := CONCRETIZE(\overline{Ls})
         (sat, C) := \mathsf{DECIDE}(Ls)
                                                                                             \triangleright decides T-satisfiability of Ls
         if sat return true
         \overline{F} := \overline{F} \wedge \mathsf{ABSTRACT}(\neg C)
    end loop
end function
```

This basic approach can be further optimized, e.g., by integrating the interaction with the decision procedure directly into a DPLL-based SAT solver ("lazy encoding").

Combining Decision Procedures

How to decide a conjunction of atomic formulas with operations from different decidable theories such as LRA and EUF?

$$(y \ge z) \land (x - z \ge y) \land (z \ge 0) \land (f(f(x) - f(y)) \ne f(z))$$

- Theory combination problem: decide $T_1 \cup T_2 \models F$ for formula F and theories T_1, T_2 .
 - Problem: even if T_1 and T_2 are decidable, $T_1 \cup T_2$ may be undecidable.
- Definition: a theory T is stably infinite, if for every quantifier-free formula F that is
 T-satisfiable, there exists an infinite domain that satisfies F.
 - Theories LRA and EUF are stably infinite.
 - The theory $\{x = a \lor x = b\}$ with constants a, b is not stably infinite (why?).
- Theorem: let T_1 and T_2 be theories for which the quantifier-free fragment is decidable and that have no common constants, functions, or predicates (except for "="). If T_1 and T_2 are stably infinite, then the quantifier-free fragment of $T_1 \cup T_2$ is decidable.

Under some constraints, the theory combination problem is indeed solvable.

Formula Purification

Before proceeding, let us tidy the formula a bit.

- Purification: ensure that every atom is from only one theory.
 - Repeatedly replace in the formula each "alien" subexpression E by a fresh variable v_E and add the constraint $v_E = E$.
 - The transformation preserves the satisfiability of the formula.
- Example: $(f(x, 0) \ge z) \land (f(y, 0) \le z) \land (x \ge y) \land (y \le x) \land (z f(x, 0) \ge 1)$.

$$(v_1 \ge z) \land (v_2 \le z) \land (x \ge y) \land (y \le x) \land (z - v_1 \ge 1) \land v_1 = f(x, v_3) \land v_2 = f(y, v_3) \land v_3 = 0$$

A preparatory step for theory combination.

The Nelson-Oppen Method (for Convex Theories)

Greg Nelson and Derek C. Oppen (1979).

```
\begin{array}{lll} \textbf{function} \ \mathsf{NELSONOPPEN}(F) & \flat \ \mathsf{decides} \ T_1 \cup \ldots \cup T_n\text{-satisfiability of literal conjunction } F \\ F_1, \ldots, F_n := \mathsf{PURIFY}(F) & \flat \ \mathsf{for} \ \underline{\mathsf{convex}} \ \mathsf{theories} \ T_1, \ldots, T_n \\ \textbf{loop} & \mathsf{if} \ \exists i. \ \neg \mathsf{DECIDE}_i(F_i) \ \mathsf{return} \ \mathsf{false} & \flat \ \mathsf{decide} \ T_i\text{-satisfiability of } F_i \\ & \mathsf{if} \ \neg \exists x, y, j. \ \mathsf{Inferred}_j(x, y) \ \mathsf{return} \ \mathsf{true} \\ & \mathsf{choose} \ x, y, j \ \mathsf{with} \ \mathsf{Inferred}_j(x, y) & \flat \ \mathsf{infer} \ \mathsf{variable} \ \mathsf{equality} \ x = y \ \mathsf{not} \ \mathsf{present} \ \mathsf{in} \ \mathsf{theory} \ T_j \\ & F_j := F_j \cup \{x = y\} & \flat \ \mathsf{propagate} \ \mathsf{inferred} \ \mathsf{variable} \ \mathsf{equality} \ \mathsf{to} \ T_j \\ & \mathsf{end} \ \mathsf{loop} \\ & \mathsf{end} \ \mathsf{function} \\ \end{array}
```

 $\mathsf{INFERRED}_j(x,y) : \Leftrightarrow \exists i. \; (\mathsf{SHARED}(F_i,F_j,\{x,y\})) \land \mathsf{INFER}_i(F_i,(x=y)) \land \neg \mathsf{INFER}_j(F_j,(x=y)))$

- Shared $(F_i, F_j, \{x, y\})$: variables x, y are shared by formulas F_i and F_j .
- INFER $_i(F_i, (x = y))$: variable equality (x = y) can be inferred from F_i in theory T_i .
 - $F_i \Rightarrow x = y$ is T_i -valid ($F_i \land \neg(x = y)$ is T_i -unsatisfiable).

The iterative propagation of inferred variable equalities between theories.

Example

$$(f(x,0)\geq z)\wedge(f(y,0)\leq z)\wedge(x\geq y)\wedge(y\geq x)\wedge(z-f(x,0)\geq 1)$$

Purified formula:

$$(v_1 \ge z) \land (v_2 \le z) \land (x \ge y) \land (y \ge x) \land (z - v_1 \ge 1) \land v_1 = f(x, v_3) \land v_2 = f(y, v_3) \land v_3 = 0$$

• Equality propagation:

$F_1(LRA)$		$F_2(EUF)$
$v_1 \geq z$		$v_1 = f(x, v_3)$
$v_2 \leq z$		$v_2 = f(y, v_3)$
$x \ge y$		
$y \ge x$		
$z - v_1 \ge 1$		
$v_3 = 0$		
x = y	\rightarrow	x = y
$v_1 = v_2$	\leftarrow	$\underline{v_1 = v_2}$
$\underline{v_1 = z}$		
unsat		

Example

$$(y \ge x) \land (x - z \ge y) \land (z \ge 0) \land (f(f(x) - f(y)) \ne f(z))$$

Purified formula:

$$(y \ge x) \land (x - z \ge y) \land (z \ge 0) \land (f(v_1) \ne f(z)) \land$$

$$v_1 = v_2 - v_3 \land v_2 = f(x) \land v_3 = f(y)$$

• Equality propagation:

$F_1(LRA)$		$F_2(EUF)$
$y \ge x$		$f(v_1) \neq f(z)$
$x - z \ge y$		$v_2 = f(x)$
$z \ge 0$		$v_3 = f(y)$
$v_1 = v_2 - v_3$		
z = 0		
x = y	\rightarrow	x = y
$v_2 = v_3$	\leftarrow	$v_2 = v_3$
$v_1 = 0$		
$\underline{v_1 = z}$	\rightarrow	$v_1 = z$
		unsat

Convex Theories

- Definition: Theory T is convex, if for every formula $F := L_1 \wedge ... \wedge L_m$ with literals $L_1, ..., L_m$ the following holds (for variables $x_1, ..., x_n$ and $y_1, ..., y_n$):
 - If $T \models F \Rightarrow x_1 = y_1 \lor \ldots \lor x_n = y_n$, then $T \models (F \Rightarrow x_i = y_i)$ for some $i \in \{1, \ldots, n\}$.
 - If F implies in T a disjunction of equalities, it already implies one of these equalities.
 - Thus *F* cannot express "real" disjunctions and it suffices to infer plain equalities.

Examples:

- LRA is convex: a "real" disjunction corresponds to a finite set of $n \ge 2$ geometric points; however, by a conjunction of linear inequalities (which represent intersections of half-planes), we can only define point sets that are empty, singletons, or infinite.
- *EUF* is convex: if $F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$, then $F \land x_1 \neq y_1 \land ... \land x_n \neq y_n$ is unsatisfiable. The congruence closure algorithm shows this by demonstrating for some i that $F \land x_i \neq y_i$ is unsatisfiable, i.e., that $F \Rightarrow x_i = y_i$ is valid.
- *LIA* (linear integer arithmetic) is <u>not</u> convex: take $F :\Leftrightarrow 1 \le x \land x \le 2 \land y = 1 \land z = 2$; then F implies $x = y \lor x = z$ but neither x = y nor x = z.

Non-Convex Theories

How to combine with a non-convex theory T_i ?

- We may infer in T_i from formula F_i only a disjunction $x_1 = y_1 \vee ... \vee x_n = y_n$.
 - But not any equality $x_i = y_i$ of this disjunction.
- However, this disjunction can be made minimal (strongest).
 - Start with the disjunction of all possible variable equalities.
 - If it cannot be inferred, no smaller disjunction can be inferred either.
 - Otherwise, strip every $x_i = y_i$ if this keeps the disjunction inferred.
- For each remaining $x_i = y_i$, recursively call NelsonOppen($F \wedge x_i = y_i$).
 - Return "true" if any call returns "true" and "false", otherwise.

Thus the Nelson-Oppen method is also applicable to non-convex theories (but with generally much greater complexity).