Course "Computational Logic"

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

JOHANNES KEPLER
UNIVERSITY LINZ

First-Order Logic Proofs

Our core goal is to show the validity of first-order formulas.

- Problem: how to show $\vDash F$?
- Does $M \vDash F$ hold for every structure M (i.e., is every structure M a model of F)?
- But there are infinitely many structures with different domains and interpretations!

Can we reduce first-order reasoning to reasoning in some "canonical structures"?

Herbrand Structures

A Herbrand structure $H:=\left(D_{H}, I_{H}\right)$ for a formula (language) with symbols $\mathcal{C}, \mathcal{F}, \mathcal{P}$ consists of the Herbrand universe D_{H} and some Herbrand interpretation I_{H}.

- The Herbrand universe D_{H} is the set of all terms t formed according to the following grammar:

$$
t::=c \mid f\left(t_{1}, \ldots, t_{n}\right)
$$

- Every constant $c \in C$ (if $C=\{ \}$, we extend C by a constant c).
- Every n-ary function symbol $f \in \mathcal{F}$.
- D_{H} is the set of ground terms (no variables) that includes all constants and is closed under the application of all function symbols (thus D_{H} is generally infinite).
- I_{H} is a Herbrand interpretation if the following holds:

$$
I(c):=c\left(\in D_{H}\right) \quad I(f)\left(t_{1}, \ldots, t_{n}\right):=f\left(t_{1}, \ldots, t_{n}\right)\left(\in D_{H}\right) \quad I(p)\left(t_{1}, \ldots, t_{n}\right) \subseteq D_{H}^{n}
$$

- I_{H} interprets constant c as itself, n-ary function symbol f as a term constructor, and n-ary predicate p as an arbritrary n-ary relation over D_{H}.
A Herbrand structure is a (generalization of a) "term algebra".

Herbrand Structures as Models of Formulas

- Theorem: Let F be a quantifier-free formula. Then there exists a structure M with $M \models F$ if and only if there exists a Herbrand structure H with $H \models F$.
- Proof sketch: Since the implication from right to left clearly holds, only the implication from left to right has to be shown. For this, we assume $M \models F$ for arbitrary structure $M=(D, I)$ and show $H \models F$ for the Herbrand structure $H=\left(D_{H}, I_{H}\right)$ over F with

$$
I_{H}(p)\left(t_{1}, \ldots, t_{n}\right): \Leftrightarrow M \vDash p\left(t_{1}, \ldots, t_{n}\right)
$$

We take arbitrary valuation v_{H} over D_{H} and show $\llbracket F \rrbracket_{v_{H}}^{H}=$ true. Let x_{1}, \ldots, x_{n} be the free variables of F and consider the closed formula instance $F^{\prime}:=F\left[v_{H}\left(x_{1}\right) / x_{1}, \ldots, v_{H}\left(x_{n}\right) / x_{n}\right]$. From $M \models F$, we can show $M \models F^{\prime}$. Furthermore, we can show $\llbracket F \rrbracket_{v_{H}}^{H}=\llbracket F^{\prime} \rrbracket_{v^{\prime}}^{M}$ for arbitrary valuation v^{\prime} over D. From $M \vDash F^{\prime}$, we have $\llbracket F^{\prime} \rrbracket_{v^{\prime}}^{M}=$ true and thus also $\llbracket F \rrbracket_{v_{H}}^{H}=$ true.

Herbrand structures are "canonical structures" for reasoning in first-order logic; all proof calculi use these structures in some way or another.

The Sequent Calculus

An extension of the propositional sequent calculus by two additional rules.

$$
\begin{array}{rr}
\frac{\Gamma, A[t / x],(\forall x . A), \Delta \vdash \Lambda}{\Gamma,(\forall x . A), \Delta \vdash \Lambda}(\forall-\mathrm{L}) & \frac{\Gamma \vdash \Delta, A[y / x], \Lambda}{\Gamma \vdash \Delta,(\forall x \cdot A), \Lambda}(\forall-\mathrm{R}) \\
\frac{\Gamma, A[y / x], \Delta \vdash \Lambda}{\Gamma,(\exists x . A), \Delta \vdash \Lambda}(\exists-\mathrm{L}) & \frac{\Gamma \vdash \Delta, A[t / x],(\exists x \cdot A), \Lambda}{\Gamma \vdash \Delta,(\exists x . A), \Lambda}(\exists-\mathrm{R})
\end{array}
$$

- Substitution $F[t / x]$:
- Substitution of term t for every free occurrence of variable x in formula F.
- Eigenvariable (Skolem constant) y
- y must not occur in the conclusion of the rule.
- Witness term t
- Term t may contain arbitrary variables, constants, and function symbols; however, every variable in t different from x must not be not bound by any quantifier in A.

Example Proof

A simple proof that applies all quantifier rules.

Another Proof

- We may apply some additional "convenience" rules:

$$
\frac{\Gamma, \Delta \vdash \Lambda}{\Gamma, A, \Delta \vdash \Lambda}(\mathrm{DROP}) \quad \frac{\Gamma \vdash \Delta, \Lambda}{\Gamma \vdash \Delta, A, \Lambda}(\mathrm{DROP})
$$

- Reduce size of sequent; soundness can be easily derived.

$$
\begin{aligned}
& p(\bar{x}), \forall x \cdot p(x) \Rightarrow \exists y \cdot q(x, y) \vdash \exists x, y \cdot q(x, y) \\
& \text { (}(\exists-L \\
& \frac{\frac{\exists x \cdot p(x), \forall x \cdot p(x) \Rightarrow \exists y \cdot q(x, y) \vdash \exists x, y \cdot q(x, y)}{(\exists x \cdot p(x)) \wedge(\forall x \cdot p(x) \Rightarrow \exists y \cdot q(x, y)) \vdash \exists x, y \cdot q(x, y)}(\wedge-\mathrm{L})}{\vdash((\exists x \cdot p(x)) \wedge(\forall x \cdot p(x) \Rightarrow \exists y \cdot q(x, y))) \Rightarrow \exists x, y \cdot q(x, y)}(\Rightarrow-\mathrm{R})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\int_{(p(a) \vee q(b)),(\forall x \cdot p(x) \Rightarrow r(x)) \wedge(\forall x \cdot q(x) \Rightarrow r(f(x))) \vdash \exists x \cdot r(x)}^{(\wedge-\mathrm{L})}}{(\wedge-\mathrm{L})} \\
\stackrel{\vdash((p(a) \vee q(b)) \wedge(\forall x \cdot p(x) \Rightarrow r(x)) \wedge(\forall x \cdot q(x) \Rightarrow r(f(x))) \vdash \exists x \cdot r(x)}{(}(\Rightarrow-\mathrm{R})
\end{array}
\end{aligned}
$$

A proof by "case distinction".

Sequent Calculus Trainer

Sequent Calculus Trainer

RISC ProofNavigator

ProofNavigator \&

RISC ProofNavigator		- $\quad \times$
File Options Help		
Proof Tree	```Declarations \(a \in T\) \(b \in T\) \(f \in T \rightarrow T\) \(p \in T \rightarrow \mathrm{~B}\) \(q \in T \rightarrow \mathbb{B}\) \(r \in T \rightarrow \mathbb{B}\) \(F \equiv\) \((p(a) \vee q(b)) \wedge(\forall x \in T: p(x) \Rightarrow r(x)) \wedge(\forall x \in T: q(x) \Rightarrow r(f(x)))\) \(\Rightarrow\) \((\exists x \in \operatorname{T:r}(x))\)```	
	View Declarations	
	Input/Output	
	```read "example2.txt"; Type T. value a:T. Value b:T. Value f:T->T. Value p:T->BOOLEAN. Value q:T->BOOLEAN. Value r:T->BOOLEAN. Formula F. Proof read (proof status: trusted, closed, absolute). File example2.txt read.```	

```
% example2.txt
newcontext "example2";
```


## T:TYPE;

a:T;
b:T;
f:T->T;
$\mathrm{p}:(\mathrm{T})->$ BOOLEAN ;
$\mathrm{q}:(\mathrm{T})->$ BOOLEAN ;
r: (T)->BOOLEAN;

F: FORMULA
( $\mathrm{p}(\mathrm{a})$ OR $\mathrm{q}(\mathrm{b})$ ) AND
(FORALL $(x: T): p(x) \Rightarrow r(x))$ AND
(FORALL $(x: T): q(x)=>r(f(x)))=>$
(EXISTS $(x: T): r(x))$;

## RISC ProofNavigator



## Soundness of the Sequent Calculus

## Theorem: Every derivable sequent is valid.

Proof Sketch: It suffices to show that, if the conclusion of a rule is not valid, also some premise is not valid.

$$
\frac{\Gamma, A[t / x],(\forall x . A), \Delta \vdash \Lambda}{\Gamma,(\forall x . A), \Delta \vdash \Lambda}(\forall-\mathrm{L}) \quad \frac{\Gamma \vdash \Delta, A[y / x], \Lambda}{\Gamma \vdash \Delta,(\forall x . A), \Lambda}(\forall-\mathrm{R})
$$

- Rule $(\forall-\mathrm{L})$ : Since the conclusion is not valid, we have some structure $M$ and valuation $v$ with $\llbracket \Gamma \rrbracket_{v}^{M}=$ true, $\llbracket \forall x . A \rrbracket_{v}^{M}=$ true, $\llbracket \Delta \rrbracket_{v}^{M}=$ true, and $\llbracket \Lambda \rrbracket_{v}^{M}=$ false. From above, to show that the premise is not valid, it suffices to show $\llbracket A[t / x] \rrbracket_{v}^{M}=$ true. Let $d:=\llbracket t \rrbracket_{v}^{M}$. From the side condition on $t$, we can show $\llbracket A[t / x] \rrbracket_{v}^{M}=\llbracket A \rrbracket_{v[x \mapsto d]}^{M}$. From $\llbracket \forall x . A \rrbracket_{v}^{M}=$ true, we know $\llbracket A \rrbracket_{v[x \mapsto d]}^{M}=$ true and are done.
- Rule $(\forall-\mathrm{R})$ : Since the conclusion is not valid, we have some structure $M$ and valuation $v$ with $\llbracket \Gamma \rrbracket_{v}^{M}=$ true, $\llbracket \Delta \rrbracket_{v}^{M}=$ false, $\llbracket \forall x . A \rrbracket_{v}^{M}=$ false, and $\llbracket \Lambda \rrbracket_{v}^{M}=$ false. From $\llbracket \forall x . A \rrbracket_{v}^{M}=$ false, there is some $d \in D$ such that $\llbracket A \rrbracket_{v[x \mapsto d]}^{M}=$ false. Let $v^{\prime}:=v[y \mapsto d]$. Since $y$ does not occur in the conclusion, we have $\llbracket \Gamma \rrbracket_{v^{\prime}}^{M}=$ true, $\llbracket \Delta \rrbracket_{v^{\prime}}^{M}=$ false, and $\llbracket \Lambda \rrbracket_{v^{\prime}}^{M}=$ false. Thus, to show that the premise is not valid, it suffices to show $\llbracket A[y / x] \rrbracket_{v^{\prime}}^{M}=$ false, i.e., $\llbracket A[y / x] \rrbracket_{v[y \mapsto d]}^{M}=$ false. Since $y$ does not occur in $A$, we can show $\llbracket A[y / x] \rrbracket_{v[y \mapsto d]}^{M}=\llbracket A \rrbracket_{v[x \mapsto d]}^{M}=$ false and are done.
- Rules ( $\exists-\mathrm{L}$ ) and ( $\exists-\mathrm{R}$ ): analogously.


## Proof Tree Construction: Data

To construct a proof tree for sequent $\Gamma \vdash \Delta$, we use the following data:

- $y=\left[y_{0}, y_{1}, \ldots\right]$ : an infinite sequence of variables that do not occur in $\Gamma \vdash \Delta$.
- These variables can be used as eigenvariables in rules $(\forall-R)$ and $(\exists-L)$.
- $a=\left[a_{0}, a_{1}, \ldots\right]$ : an infinite sequence of term sequences:
- The terms in these sequences are available as witnesses in rules $(\forall-L)$ and $(\exists-R)$.
- If some function symbols occur in $\Gamma \vdash \Delta$, all sequences $a_{0}, a_{1}, \ldots$ are infinite.
- $\left[t_{0}\right] \circ a_{0}=\left[t_{0}, \ldots\right]$ : an enumeration of all terms constructed from the free variables, constants, and function symbols in $\Gamma \vdash \Delta$.
- If $\Gamma \vdash \Delta$ does not contain any free variable or constant, we use $t_{0}:=y_{0}$.
- $a_{i \geq 1}$ : an enumeration $\left[y_{i}, \ldots\right]$ of all terms that contain $y_{i}$ and are constructed from $y_{1}, \ldots, y_{i}$ and the free variables, constants, and function symbols in $\Gamma \vdash \Delta$.

During the proof tree construction, the value of program variable $n$ indicates that $y_{1}, \ldots, y_{n}$ have been used as eigenvariables in rules ( $\forall-\mathrm{R}$ ) or $(\exists-\mathrm{L})$; the sequences $a_{0}, a_{1}, \ldots, a_{n}$ contain all terms in which these variables may occur.

## Proof Tree Construction: Algorithm

```
procedure SEARCH \((\Gamma \vdash \Delta)\)
 INITIALIZE \(\left(y, a, t_{0}\right)\)
 \(T, t s, n \leftarrow\langle\Gamma \vdash \Delta\rangle,\left[t_{0}\right], 0\)
 while \(T\) has some open leaf node do
 for every open leaf node \(N\) in \(T\) do
 \(\operatorname{ExPAND}(N, T, t s, y, n)\)
 end for
 for \(i\) from 0 do \(n\) do
 if \(\neg\) empty \(\left(a_{i}\right)\) then
 \(t s, a_{i} \leftarrow t s \circ\left[\operatorname{head}\left(a_{i}\right)\right], \operatorname{tail}\left(a_{i}\right)\)
 end if
 end for
 end while
 if \(T\) is complete then
 WRITE(" \(T\) proves \(\Gamma \vdash \Delta\) ")
 else
 WRITE(" \(T\) refutes \(\Gamma \vdash \Delta\) ")
 end if
end procedure
```

procedure $\operatorname{EXPAND}(N, T, t s, y, \uparrow n)$
Let $S$ be the subtree of $T$ with root $N$
Apply the propositional rules until the formulas
in all leaf nodes of $S$ are atomic or quantified
for every leaf formula in $S$ to which ( $\forall-\mathrm{L}$ ) or ( $\exists-\mathrm{R}$ ) applies do
repeatedly apply the rule for every $t \in t s$
end for
for every leaf formula in $S$ to which $(\forall-\mathrm{R})$ or ( $\exists-\mathrm{L}$ ) applies do $n \leftarrow n+1$
apply the rule for $x \leftarrow y_{n}$
end for
end procedure
A leaf node is open if it does not match any axiom and there is a non-atomic node formula whose outermost symbol is

- either a connective
- or a quantifier to which $(\forall-L)$ or $(\exists-R)$ has not yet been applied for every term in $t s$.
- This has to be recorded in Expand.


## Correctness Properties of the Algorithm

By the soundness of the calculus, if SEARCH terminates with a complete proof tree, $\Gamma \vdash \Delta$ is valid.

- Theorem: if $\Gamma \vdash \Delta$ is valid, SEARCH terminates with a complete proof tree.
- Proof Sketch: we assume that $\Gamma \vdash \Delta$ is valid but SEARCH does not terminate with a complete proof tree; from this, we derive a contradiction. There are two cases:
First, SEARCH may terminate with an incomplete tree $T$, i.e., there is a leaf node $\Gamma_{k} \vdash \Delta_{k}$ at some depth $k$ that does not match any axiom. But, from the loop condition, no leaf node of $T$ is open. Thus, $\Gamma_{k}+\Delta_{k}$ only contains atoms and quantified formulas to which $(\forall-L)$ and $(\exists-R)$ have been applied for every term in $t s$. Consider every node $\Gamma_{i} \vdash \Delta_{i}$ along the path $\Gamma \vdash \Delta \rightarrow \ldots \rightarrow \Gamma_{k} \vdash \Delta_{k}$ from the root $\Gamma \vdash \Delta$ to the leaf $\Gamma_{k} \vdash \Delta_{k}$. Let $S:=\bigcup\left\{\Gamma_{i} \cup \neg \Delta_{i} \mid 0 \leq i \leq k\right\}$ where $\neg \Delta:=\{\neg A \mid A \in \Delta\}$. Now it is possible to prove that every formula in $S$ is satisfied by the Herbrand structure $H_{S}=\left(D_{S}, I_{S}\right)$ where (considering all free variables as constants) $D_{S}:=\bigcup\left\{a_{i} \mid 0 \leq i \leq n\right\} \cup t s$ (for the final values of $t s, a, n)$ and $I_{S}(p)\left(t_{1}, \ldots, t_{n}\right): \Leftrightarrow p\left(t_{1}, \ldots, t_{n}\right) \in \bigcup\left\{\Gamma_{i} \mid 0 \leq i \leq k\right\}$. Since $\Gamma_{0}=\Gamma$ and $\Delta_{0}=\Delta$, this structure $H_{S}$ refutes $\Gamma \vdash \Delta$, which contradicts the assumption that $\Gamma \vdash \Delta$ is valid.
Second, Search may not terminate. Then its execution describes the construction of an infinite tree $T$ (even if only a finite part of $T$ is ever computed). Since $T$ is infinite but finitely branching, by König's lemma it contains some infinite path $\Gamma \vdash \Delta \rightarrow \ldots$. Analogously to the first case, we can construct from this path a satisfiable set $S$ and structure $H_{S}$ that refutes $\Gamma \vdash \Delta$ (to show this, it is essential that for every universal formula in some $\Gamma_{i}$ respectively existential formula in some $\Delta_{i}$, every instance of that formula appears in the branch in some $\Gamma_{j \geq_{i}}$ respectively $\Delta_{j \geq_{i}}$ ).


## Fundamental Properties of First-Order Logic

- Completeness: every valid first-order formula is provable.
- Kurt Gödel, 1929 (for another proof calculus of first-order logic).
- A corollary of the previous theorem: given a valid formula $F$, procedure SEARCH finds a complete proof tree for the sequent $\vdash F$.
- However, if $F$ is invalid, SEARCH may run forever.
- Undecidability: there cannot exist any procedure that, when given an arbitrary first-order formula $F$, always halts and correctly states whether $F$ is valid.
- Alonzo Church/Alan Turing, 1936/1937.
- The halting problem for computing machines is undecidable.
- The halting problem can be reduced to the decision problem of first-order logic.

The power and the limit of reasoning in first-order logic.

## The Problem of the Sequent Calculus

Procedure SEARCH looks a bit difficult to implement.

- Complex traversal of proof tree to make sure that all quantified formulas in all leafs to which the rules $(\forall-L)$ and $(\exists-R)$ are applicable are indeed instantiated by all possible terms.

Is there no "easier" way to achieve the same result?

## Herbrand's Theorem

Actually, the Gödel-Herbrand-Skolem theorem ( $\approx 1930$ ).

- Theorem: Let $F$ be a quantifier-free first-order formula. Then $F$ is first-order satisfiable if the set of all its ground instances $\left\{F_{1}, F_{2}, \ldots\right\}$ is propositionally satisfiable.
- $F$ is first-order satisfiable: there exists some structure $M$ such that $M \vDash F$.
- $F^{\prime}$ is a ground instance of $F$ if $F^{\prime}$ is identical to $F$ except that every variable has been replaced by a term in which only constants and function symbols appear.
- $F$ is propositionally satisfiable: $F$ is satisfied by some valuation $v$, considering every atom as a propositional variable. A set $\left\{F_{1}, F_{2}, \ldots\right\}$ is propositionally satisfiable if there exists some valuation $v$ that satisfies every formula $F_{i}$ in the set.
- Example: formula $p(x) \wedge \neg q(x, y)$.
- Ground instances: $\{p(c) \wedge \neg q(c, c), p(c) \wedge \neg q(c, f(c)), p(f(c)) \wedge \neg q(f(c), c), \ldots\}$
- Valuation: $[p(c) \mapsto$ true,$q(c, c) \mapsto$ false, $q(c, f(c)) \mapsto$ false, $p(f(c)) \mapsto$ true, $q(f(c), c) \mapsto$ false,$\ldots]$

The previously stated theorem abound Herbrand structures as models is actually a consequence of Herbrand's theorem.

## Corollaries of Herbrand's Theorem

- Theorem: Quantifier-free $F$ is first-order satisfiable if every conjunction $F_{1} \wedge \ldots \wedge F_{n}$ of a finite subset of its instances is propositionally satisfiable.
- Proof sketch: a corollary of the "compactness theorem" of propositional logic: a set of propositional formulas is satisfiable, if each finite subset is satisfiable.
- Theorem: Quantifier-free $F$ is first-order unsatisfiable if some conjunction $F_{1} \wedge \ldots \wedge F_{n}$ of a finite subset of its instances is propositionally unsatisfiable.
- Proof sketch: the contraposition of the previous theorem.
- Theorem: Formula $\forall x_{1}, \ldots, x_{n}$. $F$ in Skolem normal form is unsatisfiable if some conjunction $F_{1} \wedge \ldots \wedge F_{n}$ of a finite number of instances of its matrix $F$ is propositionally unsatisfiable.
- Proof sketch: by induction on $n$, using the previous theorem as the induction base.

The basis of various "Herbrand procedures" for first-order proving.

## The Gilmore Algorithm

Paul C. Gilmore, 1960.

```
procedure GILMORE(G)
 F\leftarrow SkOLEMNORMALFORMMATRIX (}\negG
 Fs}\leftarrow
 i\leftarrow1
 loop
 Fs}\leftarrowFs\wedgeF(i)\quad\triangleright\mathrm{ Add instance }i\mathrm{ of }
 if Fs is propositionally unsatisfiable then
 WRITE("G is first-order valid")
 return
 end if
 i\leftarrowi+1
 end loop
end procedure
```


## The Gilmore Algorithm in OCaml

```
(* Get the constants for Herbrand base, adding nullary one if necessary. *)
let herbfuns fm =
 let cns,fns = partition (fun (_,ar) -> ar = 0) (functions fm) in
 if cns = [] then ["c",0],fns else cns,fns;;
(* Enumeration of ground terms and m-tuples, ordered by total fns. *)
let rec groundterms cntms funcs n =
 if n = O then cntms else
 itlist (fun (f,m) l -> map (fun args -> Fn(f,args))
 (groundtuples cntms funcs (n - 1) m) @ l)
 funcs []
```

```
and groundtuples cntms funcs n m =
```

and groundtuples cntms funcs n m =
if m = 0 then if n = 0 then [[]] else [] else
if m = 0 then if n = 0 then [[]] else [] else
itlist (fun k l -> allpairs (fun h t -> h::t)
itlist (fun k l -> allpairs (fun h t -> h::t)
(groundterms cntms funcs k)
(groundterms cntms funcs k)
(groundtuples cntms funcs (n - k) (m - 1)) @ l)
(groundtuples cntms funcs (n - k) (m - 1)) @ l)
(0 -- n) [];;

```
 (0 -- n) [];;
```


## The Gilmore Algorithm in OCaml

```
 let rec herbloop mfn tfn fl0 cntms funcs fvs n fl tried tuples =
 print_string(string_of_int(length tried)~" ground instances tried; "^
 string_of_int(length fl)~" items in list"); print_newline();
 match tuples with
 [] -> let newtups = groundtuples cntms funcs n (length fvs) in
 herbloop mfn tfn fl0 cntms funcs fvs (n + 1) fl tried newtups
 | tup::tups -> let fl' = mfn fl0 (subst(fpf fvs tup)) fl in
 if not(tfn fl') then tup::tried else
 herbloop mfn tfn fl0 cntms funcs fvs n fl' (tup::tried) tups;;
let gilmore_loop flO cntms funcs fvs n fl tried tuples =
 let mfn djs0 ifn djs = filter (non trivial) (distrib (image (image ifn) djs0) djs) in
 herbloop mfn (fun djs -> djs <> []) flO cntms funcs fvs n fl tried tuples;;
let gilmore fm =
 let sfm = skolemize(Not(generalize fm)) in
 let fvs = fv sfm and consts,funcs = herbfuns sfm in
 let cntms = image (fun (c,_) -> Fn(c,[])) consts in
 length(gilmore_loop (simpdnf sfm) cntms funcs fvs 0 [[]] [] []);;
Verify propositional unsatisfiability of a formula in DNF by finding a pair of

\section*{The Gilmore Algorithm in OCaml}
\# gilmore << (\(P(a) \backslash / Q(b)) / \backslash\) (forall \(x . P(x)=\Rightarrow R(x)\)) / (forall \(x . Q(x)==>R(f(x)))\) ==> (exists \(\mathrm{x} . \mathrm{R}(\mathrm{x})\)) >>; ;
0 ground instances tried; 1 items in list
1 ground instances tried; 2 items in list
2 ground instances tried; 2 items in list
2 ground instances tried; 2 items in list
3 ground instances tried; 2 items in list
- : int \(=4\)
\# skolemize << ~ (\((P(a) \backslash / Q(b)) / \backslash(f o r a l l x . P(x)==>R(x)) / \backslash(f o r a l l x . Q(x)==>R(f(x)))\) ==> (exists x. \(\mathrm{R}(\mathrm{x})\)) >>;
\(\ll((P(a) \backslash / Q(b)) / \backslash(\sim P(x) \backslash / R(x)) / \backslash(\sim Q(x) \backslash / R(f(x)))) / \backslash \sim R(x)) \gg\)
\# satisfiable <<
\(((P(a) \backslash / Q(b)) / \backslash(\sim P(a) \backslash / R(a)) / \backslash(\sim Q(a) \backslash R(f(a))) / \backslash \sim R(a)) / \backslash\)
\(((P(a) \backslash / Q(b)) / \backslash(\sim P(b) \backslash / R(b)) / \backslash(\sim Q(b) \backslash R(f(b))) / \backslash \sim R(b)) / \backslash\)
\(((P(a) \backslash Q(b)) / \backslash(\sim P(f(b)) \backslash / R(f(b))) / \backslash(\sim Q(f(b)) \backslash R(f(f(b)))) / \backslash \sim R(f(b))) \gg ;\);
- : bool = false

Our example formula can be proved with 3 ground instances: \(x=a, x=b, x=f(b)\).

\section*{The Gilmore Algorithm in OCaml}
```


# val p45 = gilmore <<

    (forall x. P(x) /\ (forall y.G(y) /\ H(x,y) ==> J(x,y))
            ==> (forall y.G(y) /\ H(x,y) ==> R(y))) /\
    ~(exists y. L(y) /\ R(y)) /\
    (exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\ (forall y.G(y) /\ H(x,y) ==> J(x,y)))
    ==> (exists x. P(x) /\ ~(exists y. G(y) /\ H(x,y))) >>;;
    O ground instances tried; 1 items in list
1 ground instances tried; 13 items in list
1 ground instances tried; 13 items in list
2 ground instances tried; 57 items in list
3 ground instances tried; 84 items in list
4 ground instances tried; 405 items in list
val p45 : int = 5

```

DNF representations explode, problems soon become intractable.

\section*{The Davis Putnam Algorithm in OCaml}
```

let dp_mfn cjs0 ifn cjs = union (image (image ifn) cjsO) cjs;;
let dp_loop = herbloop dp_mfn dpll;;
let davisputnam fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(dp_loop (simpcnf sfm) cntms funcs fvs O [] [] []);;

# let p20 = gilmore <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))

    ==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;
    18 ground instances tried; 15060 items in list
val p20 : int = 19

# let p20 = davisputnam <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))

    ==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;
    18 ground instances tried; 37 items in list
val p20 : int = 19

```

\section*{The Problem with Herbrand Procedures}

However, optimizing satisfiability checking does not eliminate the core problem.

Davis, 1983: . . . effectively eliminating the truth-functional satisfiability obstacle only uncovered the deeper problem of the combinatorial explosion inherent in unstructured search through the Herbrand universe . . .

A more intelligent way of choosing instances is required rather than blindingly trying out all possibilities.```

