The RISC ProgramExplorer
A First Status Report

Wolfgang Schreiner

Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

A,
N

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 1/26

1. Background

2. Programming and Specification Language

3. The Software

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/26

Goals 'g?’

An integrated program reasoning environment that provides insight into
the semantic essence of a program.

Is based on the concept of programs as state relations.
A program implements a relation on states.
A specification describes a relation on states.
The program relation must imply the specification relation.
Addresses various semantic questions.
Is a specification trivial or not implementable?
What is the state relation described by a command/method?
What state condition is known at a particular program point?
Are methods only called in states that satisfy the methods’ preconditions?
Assuming that loop invariants hold and termination terms for loops and recursive
methods are appropriate, does the method meet its specification?
Do the invariants indeed hold?
Are the termination terms indeed appropriate?
Provides a state-of-the-art graphical user interface.
Tight links between syntactic source code and semantic essence.

Helps to gain insight as much as possible.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/26

History W

2005-2006: The RISC ProofNavigator.
Computer-aided proving assistant based on an SMT solver (CVCL)
resulting from previous experience with PVS, Isabelle, Coq,
Proving conditions that are manually derived from the verification of
sequential programs and concurrent systems.
Wolfgang Schreiner. The RISC ProofNavigator: A Proving Assistant
for Program Verification in the Classroom. Formal Aspects of
Computing, Springer, April 2008.
2006-2008: Programs as State Relations.
Program semantics, specification semantics, reasoning calculus,
soundness proof of calculus with respect to semantics.
Consideration of control flow interruptions and undefined expressions.
Wolfgang Schreiner. A Program Calculus. Technical Report, Research

Institute for Symbolic Computation (RISC), Johannes Kepler
University, Linz, Austria, September 2008.

2008—: The RISC ProgramExplorer.

Software framework prepared to accommodate the calculus.
Technical report to be prepared.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/26

The RISC ProofNavigator

Wolfgang Schreiner

Fla_Options Help

Praof’

Proaf.

¥ ldeal: axpand Invariart, Output
7 [l seattr
v ldeul: auts
[eac]; proved (veL)
< Lecul: splt kg
Teal: praved (eveL)
< lll]: scatter

el
Tgcul: proved (eveL)

Formula [C] proof state [ivn]

Constants (with types): anyelem, 7, get, length, put, Invariant, content, j,, anyaray, new, Output, Input
oldx, i, a, n, olda,any, x.

v 7= lengthia)
564| VEN: x=getla,)= j= 7

View Declarations

iy it
KEAY NAT OF ELEH) ARRAY AT OF ELEW, 1.0 NAT, aryarray. [NAT, ARRAY AT OF Srl oo s

SINAT, ARRAY NAT OF ELEM], Output: BODLEAN, Input: BOOLEAN, oldx: ELEW, i: WAT, =: [NAT,
ARRAT AT OF ELEN), i NAT, olde: [NAT, ARRAY NAT OF ELEVI, ony: ARRAY IAT OF ELEM, 5. ELen,

bl n = lengthia)
5641 FORALL(3:MAT): x = get(a, i) =>3 >= i

2 mrunwescgestag e

Ghal 5.0 < n

[5h5] 0 =
proves

<%

2@ (2F R0V E0G-a

http://www.risc.uni-linz.ac.at

5/26

Programs as State Relations S

Hoare calculus: two formulas.
{x =a} x=x+1 {x =a+1}

Dynamic logic: one formula with modalities.
Va:x=a= [x=x+tl]x=a+1

Relational approach: one formula with primed variables.

x=x+1: x¥' = x+1

Core idea: translate programs to state relations described by formulas in
(essentially) classical predicate logic with classical rules of reasoning.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/26

Example X *
p N
Program
x=x+1; if (x == 0) return 1; else y = x*x
Formula
x’ = ADD32(x,1) AND
IF x> =0

THEN next.returns AND next.value = 1 AND y’ =y
ELSE next.executes AND y’ = MULT32(x,x)

Effect of command fully described in a classical logical framework.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/26

Semantics of Commands W

Take command C, context c, states s and s’
Transition relation [_ [:
[Cl(s,s") & ...
[C]° defines a relation on states.
Which state transitions are possible by execution of C in c?
Termination condition (_):

(CY(s) & ...

(C)° defines a condition on states.
For which prestates must the execution of C yield a poststate?

Constraint:
Vs : (C)°(s) = Is" : [C](s,).

A command is translated to a state relation and a state condition.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

8/26

Semantics of Formulas W

Take logical formula F, context c, environment e, states s and s’

Binary formula semantics [_ |:
[Fli(s,s") & ...

[F] defines a relation on states.
Unary formula semantics [_ |:
[FI(s) = [FIC(s,s)

[F]; defines a condition on states.

State relations and state conditions can be specified in classical logic.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/26

Reasoning Calculus e

Various kinds of judgements that describe properties of commands.
.F C:F &
Ve, e,s,8 ... =
[CI°(s,s") = [FIa(s,s)

. FClUF &
Ve,s,e:...=>

[FI°(s) = (Che(s)
.F CVF &

the execution of C in a state that satisfies F
does not encounter undefined expressions

We have a calculus for deriving only true judgements.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/26

Theoretical Framework W

Formal syntax and semantics of various languages.

An abstract imperative programming language.
Commands operating on states.
=, var, if, while, continue, break, return, throw, try.
Methods with results, (direct and indirect) recursion.
An abstract logic formula language.
Predicate logic formulas with functions and predicates on states.
A program specification language based on the formula language.

Assertions, loop invariants, termination terms.
Method specifications with preconditions, postconditions, frame
conditions, exception conditions, recursion measures.

The formal reasoning calculus was elaborated and its soundness was
proved within this framework.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/26

1. Background

2. Programming and Specification Language

3. The Software

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 12/26

7\
The Concrete Programming Language .E {'

A subset of Java (“MiniJava”) that can be mapped to the abstract
programming language in a rather straight-forward way.

Classes as modules with class variables and class methods.
Treatment as global variables and methods of the basic calculus.
Classes as types with object variables, constructors, object methods.
Object functions receive the this object as an additional argument
and return it as an additional result.
Value semantics for arrays and objects.
Type checker prevents aliasing (i.e. that different variables refer to
same object) and thus hides difference to reference semantics.
Assignment to variable only from a constructor call.
Return as function result only from locally owned object.
Passing as an argument only from a constructor call or from a local
variable that does not appear as another argument.
No (directly or indirectly) recursive class references.

Classes as modules and types, no inheritance, no reference semantics.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/26

Example W

class Record {
String key; int value;
Record(String k, int v) { key = k; value = v; }
boolean equals(String k) { boolean e = key.equals(k); return e; }

public static int search(Record[] a, String key) {

int n = a.length;

for (int i=0; i<n; i++) {
Record r = new Record(al[il].key, alil].value); // copy of a[il
boolean e = r.equals(key); // alil.equals(key) illegal
if (e) return i;

}

return -1;

}

public static void main() {
Record[] a = new Record[10];
for (int i=0; i<10; i++) al[i] = new Record("abc", i);
int i = search(a, "abc");
System.out.println(i);
}
}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/26

7\

N

The Concrete Specification Language

Typed higher-order predicate logic.
ProofNavigator syntax (inherited from CVS/PVS).
FORALL(i:INT): O <= i AND i < n => aO[i].key /= kO
Program variables.
x ~» old x, X’ ~ var x.
State types, constants functions, predicates.
STATE(T), now, next, executes@s, value@s, ...
Method specifications
assignable ...signals ...requires ...ensures ...decreases
Code annotations

Loops: invariant ...decreases...
Statements: assert ...

Tradition of JML et al, extended by an explicit notion of states.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/26

Example W

public static int search(Record[] a, String key) /*@
requires var a /= Record.nullArray;
ensures executes@next AND
(LET result=value@next, aO=var a, n=Record.length(a0), kO=var key IN
IF result = -1 THEN
FORALL(i:INT): O <= i AND i < n => aO[i].key /= kO

ELSE
0 <= result AND result < n AND aO[result].key = kO
ENDIF);
Qx/
{

int n = a.length;

for (int i=0; i<n; i++)

{
Record r = new Record(al[i].key, al[il].value);
boolean e = r.equals(key);
if (e) return i;

¥

}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/26

Theories

Automatically generated theories.

class (~» theory (.
Classes as types.

Named theories

File Theory.theory.
Abstract datatypes etc.

Local theories.

/*@ theory { ...} @x/ class C
Local definitions inside a class.

Building blocks for specifications.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

17/26

Example

2\,
Ny

theory Record uses java.lang.String, Base { // generated from class Record

Record: TYPE = [#key: java.lang.String.String, value: Base.int#];
null: Record; nullArray: ARRAY Base.int OF Record;
length: (ARRAY Base.int OF Record) -> Base.nat;

}

theory Stack { // file Stack.theory
Elem: TYPE = INT; Stack: TYPE;
empty: Stack; cons: (Elem, Stack) -> Stack;
isempty: PREDICATE(Stack);
IE: AXIOM FORALL(s: Stack): isempty(s) <=> s=empty;
}

/*@
theory uses Record, java.lang.String { // file Record.java
Record: TYPE = Record.Record;
String: TYPE = java.lang.String.String;
notFound: PREDICATE(ARRAY INT OF Record, INT, STRING) =
PRED (a:ARRAY INT OF Record, i:INT, key: String):

(FORALL(i:INT): O <= i AND i < Record.length(a) => a[i].key /= key);

} ex/
class Record {...}

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

18/26

1. Background

2. Programming and Specification Language

3. The Software

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/26

N
The Software ¢

Integrated environment built on top of the Eclipse SWT.
Provides graphical user interface and editing framework.

Analyze view.

Source code editor.
Syntax highlighting.
Specification text folding.
Error annotations.
Active identifiers.

Console.

Files.

Symbols.

Tasks.

Symbols and tasks linked to source code.
Verify view.
Embedding of the RISC ProofNavigator.

More views to be added on demand.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/26

The Software

RISC ProgramExplorer.
File Edit_Help

IC

EE 8P

[Files [Symbols

b Biava

~ O Record

& ProgramExplorer
= ProoNavigator
BRCs

2 0bung
D Basic

O BasicO

D Demonstrator
0 Main

» B (local)
ey
value

» @ Record(java.lang St
@ main()

Recordjava %

[EAll Tasks . Open Tasks|

1o/%
10 class Racord

String key; int value;
Record(String k, int v) { key = k; valu
boolean equals(String k) (boolean e

public static int search(Record(] a, String key) /*@
requires var a /= Record.nullArray;
ensures executes@next AND
(=D SR RSt
IF re HEN
:nmu
ELSE

NY]. 0 <=1 ANDi<n =>a0[i].key /= kO

© <= result AND result <n AND a8[result].key = ko
ENDIF) ;

int n = a.length;
for (int 1=0; in; i++)

)
2 ev-otuats(ir; rotum s

a0=var a, n=Record.length(a6), ko=ve

Record r = new Record(ali] .key, ali].value);
» & search(Record(], jar boolean e = r.equals(key) ;
> © equals(ava.lang Str if (e) retum i;
3}
0 Test | |
> Base =
B Console)
> Basic]
class Record was processed with no errors [F]
> BasicO ‘theory Record was processed with no errors
> Demonstrator class Record was processed with no errors
m theory Record was processed with no errors
class Record was processed with no errors
&> Main theory Record was processed with no errors
. theory List (file /usr2/schreine/projects/FH-RISC2/test/List.theory)
class Record (file /usr2/schreine/projects/FM-RISC2/test/Record.java)
B Record class Basic was processed with no errors
B Stack theory Basic was processed with no errors
T class Record was processed with no errors

theory Record was processed with no errors

» Eclass Array

» [class Demonstrator
» B class Main
~ B3 class Record

» B method Record

» B method equals

b B method main

~ B method search

type checking conditions
@ [ivg) value is In interval
» B theory (local)
[type checking conditions
b B class Test
B3 package Programexplorer
B package Proofavigator
package RCS
b Bpackage java
B package Ubung

theory Base
~ B type checking condtions
‘@ [2f4] Interval [MIN_INT..MAX |
& [xia] Interval (0. MAX_NT} s
» Bitheory Basic
» Btheory Basico
» B theory Demonstrator

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

21/26

o o/
Core Functionality .ﬁ {.

Constructing/maintaining the internal model of the program/specification.

Annotated abstract syntax trees.

Nodes linked to source code positions.
Identifiers linked to symbols.
Terms linked to types.

Symbol tables.

Collections of symbols introduced in same scope.
Symbols linked to abstract syntax tree nodes.

Proving tasks.

Organized in nested folders, linked to abstract syntax tree nodes.
Currently: type-checking tasks.
Later: various reasoning tasks.

Parsing, type checking, semantic processing; linking source code to model
and vice versa; propagating information from model to source code.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/26

Internal Model

Source Code

/ A
/ \
1 \
I 1
1 /
‘\ Abstract Syntax Tree
I
/ / N
/ 7/ \
, / \
! ’
1 , /’
1 /7
v *—
Symbol Table |- 57 o Tasks
”~—
- |- - - - -

Tight integration of the various elements.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

23/26

Task Management S

Framework for generation and maintenance of tasks.

Tasks organized in nested folders.

Corresponding to source code structure.
Linked to source code positions.

Strategies may be associated to tasks.
Currently: automatic decision by CVCL and manual verification.
Tasks may be translated to proving problems.
Type-checking task — state logic problem — classical logic problem
— RISC ProofNavigator problem.
Proofs are persistent.

Stored in RISC ProofNavigator format.
Reused in new RISC ProgramExplorer invocations.
RISC ProofNavigator dependence control maintains trust status.

Subsequent reasoning/verification tasks will be built upon this framework.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/26

Generated Proving Problem ¢

File_Options _Help

Verify @] Analyze 3|

Proof (Proof
Tkxyl: proved (CVCL) Formula goal] proof state [kay] (autosim: proved (CVCL)
I i MNinr, nullCh

Jength engi th AMY, o MAXINT.

engthCharAm lengihg, 5 mull i

Adoms: 120,

o] a0 A vaelaen) =0 h s 20 A el =

ot >0

M 20V g 0 20

Chikdron:

View Declarations

Input/Output
Type STATE.
Value _next :STATE.
Value _now:STATE.
Value _value:STATE->[HIN_INT. .MAX_INT] .
Value nessage :STATE->STRING.
Value _breaks:STATE->B00LEAN.
Value _continues:STATE->BO0LEAN.
Z &5 :STATE->BO0LEAN.
Value _returns:STATE->B00LEAN .
Value _throws :STATE->BOOLEAN.
Value _throwsException: (STATE, INT)->BOOLEAN.
d NTI.

Proof Tead (proof status: Trusted, closed, absolute) .

e s p 29 R0v808G B

Wolfgang Schreiner http://www. 25/26

Current State and Further Work N

Software in alpha status.

Reasonably stable (tested with toy examples only).
Classes: ca. 80 ProgramExplorer, 100 ProofNavigator, 300 syntax.
Lines of code: about 116K with comments (perhaps 40-50K without).

User manual.
Documenting the languages and the software.
Reasoning calculus.
Integration of the various kinds of formal judgements.
Generation of the various kinds of verification conditions.

Next prototype with some elements of the calculus by the end of 2010.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/26

	Background
	Programming and Specification Language
	The Software

