Verification of non-deterministic systems using model checking in RISCAL Master Thesis

Sütő Ágoston

Research Institute for Symbolic Computation

Thesis supervisor: Prof. Wolfgang Schreiner

November 8, 2022

Introduction

- Model checking is a method used for verifying whether a system meets a given specification
- Actually: only verifies a finite model of the system
- The systems are usually non-deterministic, mostly due to concurrency
- LTL is a logic that allows us to talk about the future of paths and is used for the specification
- RISCAL is a software for describing and analyzing mathematical theories and algorithms over discrete structure
- This thesis describes the extension of RISCAL with model checking capabilities for concurrent systems

RISCAL

Figure: The RISCAL GUI

- Developed at the JKU by prof. Wolfgang Schreiner, freely available at https://risc.jku.at/research/formal/software/RISCAL/
- Intended primarily for didactic purposes
- Can automatically check verification conditions before attempting proof-based verification
- Extended to support concurrent systems and to check their invariants
- More about RISCAL in the manual: [1]

Sütő Ágoston (RISC)

Model Checking in RISCAL

3/25

Mutual exclusion modelled in RISCAL

```
val N: ℕ:
axiom minN \Leftrightarrow N > 1;
type Proc = \mathbb{N}[N-1];
shared system S
     var critical: Array [N, Bool] = Array [N, Bool] (\perp);
     var next: \mathbb{Z}[-1, N] = 0;
     invariant 0 \leq next \wedge next < N:
     invariant \forall i1: Proc, i2: Proc. critical[i1] \land critical[i2] \Rightarrow i1 = i2;
     It \forall i1: Proc, i2: Proc. \square [critical[i1] \land critical[i2] \Rightarrow i1 = i2 ];
     |\mathsf{t}|[\mathsf{fairness}] \forall i: \mathsf{Proc.} \Box \Diamond [\![ \mathsf{next} = i ]\!];
     ltl[fairness] ∀i: Proc. □◊[ critical[i] ];
     action arbiter() with \forall j: Proc. \neg critical[j];
          fairness strong;
     { next := if next = N - 1 then 0 else next + 1; }
     action enter(i: Proc) with i = next \land \forall j: Proc. \neg critical[j];
          fairness strong all;
     { critical[i] := \top; }
     action exit(i: Proc) with critical[i];
     \{ critical[i] := \bot; \}
}
```

Outcomes of the thesis

- Implementation of a full-fledged LTL model checking extension of RISCAL. The model checker consists of the following components:
 - the translation of LTL formulas to generalized Büchi automata,
 - the on-the-fly expansion of the state space to find SCCs (potential violations) in the product automaton of the system and the formula,
 - the validation of SCCs against the fairness constraints to check whether they are indeed violations
- Experimental evaluation and benchmarking of the implementation

The remainder of the presentation will be structured around these four main topics.

Basic concepts

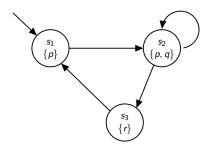


Figure: *Kripke structure K* modelling a non-deterministic system

LTL formulas which hold for the system:

- *K* ⊨ *p*
- $K \models \mathbf{X} q$
- $K \models \mathbf{G} \neg (r \land p)$
- $K \models (p \mathbf{U} r) \lor (\mathbf{G} p)$

and some, which do not:

- $K \not\models \mathbf{F}(r \land p)$
- *K* ⊭ *p* **U** *r*

Definition

Model checking problem Given a Kripke-structure $K = (S, I, T, \mathcal{L})$ and an LTL formula f determine whether $K \models f$, and if not, provide a trace π of K such that $\pi \not\models f$.

Model Checking in RISCAL

Labelled Büchi automata

Definition

A labelled generalized Büchi automaton (LGBA) is defined as the tuple $(S, I, \Sigma, \mathcal{L}, T, \mathcal{F})$ consisting of the following components:

- a finite set of states S
- a set of initial states $I \subseteq S$, $I \neq \emptyset$
- an input alphabet Σ
- a labelling of the states $\mathcal{L}\colon \mathcal{S}
 ightarrow 2^{\Sigma}$
- a transition relation $\rightarrow \subseteq S \times S$
- set of accepting sets $\mathcal{F} \subseteq 2^{S}$, $\mathcal{F} = \{F_1, F_2, ..., F_n\}$.

Definition

A Büchi automaton \mathcal{A} accepts a word $w = a_0 a_1 a_2 \dots \in \Sigma^{\omega}$ if there exists $\sigma = s_0 s_1 s_2 \dots \in S^{\omega}$ such that for each $i \ge 0$, $a_i \in \mathcal{L}(s_i)$, $s_0 \in I$, $s_i \to s_{i+1}$, and for each acceptance set $F_j \in \mathcal{F}$ there exists at least one state $s_j \in F_j$ which appears infinitely often in σ .

7/25

The LTL to Büchi automaton algorithm

- Preprocessing:
 - ► Introduce new temporal operator **V**, defined as the dual of **U**: $f \mathbf{V} g \equiv \neg(\neg f \mathbf{U} \neg g).$
 - ▶ Replace the temporal operators **F** and **G** using $\mathbf{F}p \equiv \top \mathbf{U} p$ and $\mathbf{G}p \equiv \bot \mathbf{V} p$.
 - Convert $\neg f$ into negation normal form
- Two step construction: first a directed graph (tableau), which is then converted into an automaton.
- Uses the expansion formulas of temporal operators:
 - **X***p* holds if *p* holds in the next state
 - $p \land q$ holds if p and q hold in the current state
 - $p \lor q$ holds if either p or q holds in the current state
 - *p* **U** *q* holds if either *q* holds in the current state or *p* holds in the current state and *p* **U** *q* holds in the next state
 - p V q holds if either both p and q hold in the current state or if q holds in the current state and p V q holds in the next state
- This construction was first described by Gerth et al. [2]

The LTL to Büchi automaton algorithm I

```
procedure CREATE GRAPH(f)
                                                                                 \triangleright | T| formula f
   return EXPAND({incoming: init, new: {f}, old: {}, next: {}}, {})
end procedure
procedure EXPAND(node, nodesSet)
   if node.new is empty then
      if there is a graph node n \in nodesSet
            with n.old = node.old and n.next = node.next then
          n.incoming \leftarrow n.incoming \cup node.incoming
          return nodesSet
      else
          return EXPAND({incoming: {node}, new: node.next, old: {}, next: {}},
            nodesSet \cup {node})
      end if
   else
       let f \in node.new
       node.new.remove(f)
      if f = p_i or f = \neg p_i or f = \top or f = \bot then
          if f = \bot or \neg f \in node.old then
              return nodesSet
          else
              node.old \leftarrow node.old \cup {f}
              return EXPAND(node, nodesSet)
```

The LTL to Büchi automaton algorithm II

end if else if f = Xg then return EXPAND({incoming: node.incoming, new: node.new, old: node.old \cup {f}, next: node.next \cup {g}}, nodesSet \cup {node}) else if $f = g \land h$ then return EXPAND({incoming: node.incoming, new: node.new \cup ({g, h} \ node.old), old: node.old \cup {f}, next: node.next}, nodesSet \cup {node}) else if $f = g \lor h$ or f = g U h or f = g V h then node1 \leftarrow { incoming: node.incoming, new: node.new \cup (new1(f) \ node.old), old: node.old \cup {f}, next: node.next \cup next1(f) } node2 \leftarrow { incoming: node.incoming, new: node.new \cup (new2(f) \ node.old), old: node.old \cup {f}, next: node.next } return EXPAND(node2, EXPAND(node1, nodesSet)) end if

end if

end procedure

f	new1(<i>f</i>)	next1(f)	new2(<i>f</i>)
$g \lor h$	{ g }	Ø	{ <i>h</i> }
g U h	{g}	{g U h}	{ <i>h</i> }
g V h	{ <i>h</i> }	{g V h}	$\{g,h\}$

Generated automaton

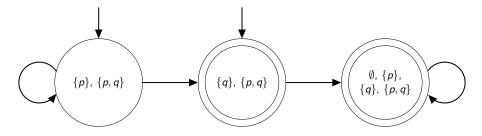


Figure: LGBA corresponding to the formula $p \mathbf{U} q$

Strongly connected components

Proposition

The language described by a generalized Büchi automaton \mathcal{A} is non-empty if and only if there exists a cycle \mathcal{C} reachable from I such that $\mathcal{C} \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.

Definition

A strongly connected component (SCC) of a directed graph $\mathcal{G} = (V, E)$ is a subset $S \subseteq V$ such that for any pair $s, t \in S$ we have that $s \rightarrow_S^* t$. An SCC is called *trivial* if $S = \{s\}$ and $s \not\rightarrow s$.

Proposition

The language described by a generalized Büchi automaton \mathcal{A} is non-empty if and only if there exists an SCC \mathcal{C} reachable from I such that $\mathcal{C} \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.

Emptiness check comparisons

- For both of these equivalent definitions there exist algorithms for checking emptiness based on them
- Some of these require the automaton to be transformed into a simple Büchi automaton (with only a single acceptance set)
- This can result in a polynomial blowup in the number of states
- According to the comparisons by Gaiser & Schwoon 2009 [3] and our own experiments, the ASCC algorithm has the best run-time performance at the cost of a small increase in memory use

The ASCC algorithm

- The ASCC algorithm works by finding the strongly connected components of the automaton and checking if they contain at least one state in each final set.
- Avoids a potential polynomial increase in the number of states if there are multiple acceptance sets.
- In reality most properties have a corresponding automaton with one or zero final sets (90-95% according to [4], 92% in the test-set of [3]), so it doesn't help that much.
- But it has one big advantage: makes fast fairness checking possible
- It is the adaptation of Tarjan's SCC algorithm to automata

The ASCC algorithm

```
procedure FIND_CYCLES(s, d)
    s.dfsnum \leftarrow d
    s current \leftarrow true
    roots.push(s, A(s))
    active.push(s)
   for all successors t of s do
       if t.dfsnum = 0 then FIND_CYCLES(t, d + 1)
       else if t.current then
            B \leftarrow \emptyset
           repeat
               (u, C) \leftarrow roots.pop()
                B \leftarrow B \cup C
               if B = K then report cycle
           until u.dfsnum < t.dfsnum
       end if
   end for
   if roots.top() = (s, \_) then
        roots.pop()
       repeat
            u \leftarrow active.pop()
            \mu.current \leftarrow false
       until \mu = s
   end if
end procedure
```

Sütő Ágoston (RISC)

 \triangleright state *s*, search depth *d*

How it works

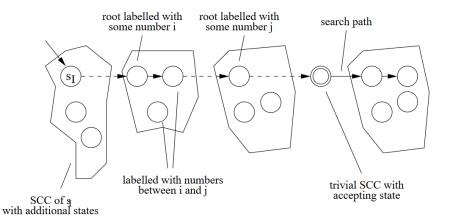


Figure: Shape of the active graph taken from [3]

Sütő Ágoston (RISC)

Model Checking in RISCAL

Fairness

- Most interesting liveness conditions for concurrent systems don't hold in all possible executions
- We need certain assumptions on the behaviour of the scheduler
- These conditions are called *fairness constraints* Weak fairness is when all actions which are (from some point on) always enabled eventually executed
 Strong fairness is when all actions which are infinitely often enabled eventually executed
- They can be modelled in LTL: WeakFairness a ≡ (FG Enabled a) ⇒ (GF Executed a).

Fairness checking

- We could naively add the fairness constraints to the formula.
- This works, but the size of the automaton (thus also the run-time) is exponential in the length of the formula.
- Adding a few of these constraints already results in automata which are too large to construct.
- This can be avoided by instead examining the SCC for fairness.
- An algorithm for this is described in [5], and is only linear in the number of fairness constraints.
- We have to modify ASCC so that before reporting a counter-example, it first checks if the SCC is fair.

Fairness checking algorithm

```
A: strongly connected subgraph of the product automaton
veakFairness: set of actions with weak fairness constraints
strongFairness: set of actions with strong fairness constraints
procedure IS SCC FAIR(A, weakFairness, strongFairness)
   for all action a \in weakFairness do
       if for all states s \in A a is enabled in s and a is not executed in s then
           return false
       end if
   end for
   A' \leftarrow A
   for all action a \in strongFairness do
       if for all states s \in A a is not executed in s then
           A' \leftarrow \{s \in A' : a \text{ is not enabled in } s\}
       end if
   end for
   if A' = A then return true
   end if
   for all A_i \in \text{DECOMPOSE} INTO \text{SCCS}(A') do
       if IS SCC FAIR(A<sub>i</sub>, weakFairness, strongFairness) then
           return true
       end if
   end for
   return false
end procedure
```

Example output of the model checker

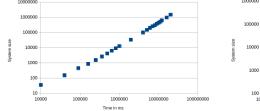
• Verification of the first LTL formula for N = 3 in the example on the 4th slide yields:

Checking LTL formula $\forall i1:Proc, i2:Proc. ([][[.(critical[i1] \land ... Formula automaton with 37 states generated.$ 6 system states and 90 product automaton states investigated.LTL formula is satisfied (model checking time: 10 ms).Execution completed (21 ms).

• Verification of the second LTL formula, but without fairness yields the error trace:

```
Checking LTL formula \di:Proc. ([](<>[[. next = i. ]]))...
Formula automaton with 15 states generated.
4 system states and 19 product automaton states investigated.
LTL formula is NOT satisfied (model checking time: 11 ms).
Counterexample execution:
Action: init() values: [critical:[false,false,false],next:0]
...
> Loop start
    Action: enter(2) values: [critical:[false,false,false,true],next:2]
    Action: exit(2) values: [critical:[false,false,false],next:2]
> Loop end
ERROR encountered in execution (30 ms).
```

Measured performance of the RISCAL model checker



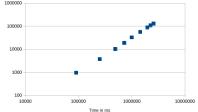


Figure: Timings for a simple property $T(n) = O(n^{1.448})$

Figure: Timings for a simple property with fairness $T(n) = O(n^{1.536})$

Comparison of RISCAL to TLA⁺

Model	Property	RISCAL	TLA^+
Alternating Bit	Liveness	2.7	11
Peterson $N = 2$	Safety Inv.	< 0.1	1
	Safety LTL	< 0.1	1
	Liveness	< 0.1	14
Peterson $N = 3$	Safety Inv.	1.4	7
	Safety LTL	2.1	7
	Liveness	4.6	-
Resource Allocator	Safety Inv.	1.1	3
	Safety LTL	3.0	3
	Liveness 1	3.0	11
	Liveness 2	7.1	20
	Liveness 3	5.0	7

Figure: RISCAL versus TLA⁺ (times in seconds)

Sütő Ágoston (RISC)

Model Checking in RISCAL

Conclusions and further work

- Conclusions:
 - With the inclusion of the LTL model checker into RISCAL version 4.2.0, it is now a full-fledged systems checker.
 - Much slower than SPIN for checking safety properties, but has a higher level specification language and can handle more fairness constraints.
 - Comparable in speed and abstraction level to TLA⁺, but again better fairness handling.
- Potential improvements
 - Implementation of partial order reduction, which could decrease the number of states to be checked by an order of magnitude
 - Decreasing the memory use (currently up to 1000 bytes per system state)
 - Implementation of a concurrent model checker

Bibliography I

- [1] Wolfgang Schreiner. The RISC Algorithm Language (RISCAL). https://www3.risc.jku.at/research/formal/software/ RISCAL/manual/main.pdf. 2021.
- [2] R. Gerth et al. "Simple On-the-fly Automatic Verification of Linear Temporal Logic". In: Protocol Specification, Testing and Verification XV: Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification, Warsaw, Poland, June 1995. Ed. by Piotr Dembiński and Marek Średniawa. Boston, MA: Springer US, 1996, pp. 3–18. ISBN: 978-0-387-34892-6.
- [3] Andreas Gaiser and Stefan Schwoon. Comparison of Algorithms for Checking Emptiness on Buechi Automata. 2009. DOI: 10.48550/ARXIV.0910.3766. URL: https://arxiv.org/abs/0910.3766.

- Ivana Cerna and Radek Pelánek. "Relating Hierarchy of Temporal Properties to Model Checking". In: vol. 2747. Aug. 2003, pp. 318–327. ISBN: 978-3-540-40671-6. DOI: 10.1007/978-3-540-45138-9_26.
- [5] Orna Lichtenstein and Amir Pnueli. "Checking That Finite State Concurrent Programs Satisfy Their Linear Specification". In: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL '85. New Orleans, Louisiana, USA: Association for Computing Machinery, 1985, pp. 97–107. ISBN: 0897911474. DOI: 10.1145/318593.318622.