
Verification of non-deterministic systems using
model checking in RISCAL

Master Thesis

Sütő Ágoston

Research Institute for Symbolic Computation

Thesis supervisor: Prof. Wolfgang Schreiner

November 8, 2022

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 1 / 25

Introduction

Model checking is a method used for verifying whether a system
meets a given specification

Actually: only verifies a finite model of the system

The systems are usually non-deterministic, mostly due to concurrency

LTL is a logic that allows us to talk about the future of paths and is
used for the specification

RISCAL is a software for describing and analyzing mathematical
theories and algorithms over discrete structure

This thesis describes the extension of RISCAL with model checking
capabilities for concurrent systems

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 2 / 25

RISCAL

Figure: The RISCAL GUI

Developed at the JKU by prof. Wolfgang Schreiner, freely available at
https://risc.jku.at/research/formal/software/RISCAL/
Intended primarily for didactic purposes
Can automatically check verification conditions before attempting
proof-based verification
Extended to support concurrent systems and to check their invariants
More about RISCAL in the manual: [1]
Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 3 / 25

https://risc.jku.at/research/formal/software/RISCAL/

Mutual exclusion modelled in RISCAL

va l N: N ;
axiom minN ⇔ N ≥ 1 ;
type Proc = N [N−1];

shared system S
{

var c r i t i c a l : Array [N, Bool] = Array [N, Bool] (⊥) ;
var next : Z[−1, N] = 0;

i n v a r i a n t 0 ≤ next ∧ next < N;
i n v a r i a n t ∀ i 1 : Proc , i 2 : Proc . c r i t i c a l [i 1] ∧ c r i t i c a l [i 2] ⇒ i 1 = i2 ;

l t l ∀ i 1 : Proc , i 2 : Proc . □J c r i t i c a l [i 1] ∧ c r i t i c a l [i 2] ⇒ i 1 = i2 K ;
l t l [f a i r n e s s] ∀ i : Proc . □♢J next = i K ;
l t l [f a i r n e s s] ∀ i : Proc . □♢J c r i t i c a l [i] K ;

ac t ion a r b i t e r () with ∀ j : Proc . ¬ c r i t i c a l [j] ;
f a i r n e s s st rong ;

{ next := i f next = N − 1 then 0 e l s e next + 1; }

act ion ente r (i : Proc) with i = next ∧ ∀ j : Proc . ¬ c r i t i c a l [j] ;
f a i r n e s s s t r ong_a l l ;

{ c r i t i c a l [i] := ⊤ ; }

ac t ion e x i t (i : Proc) with c r i t i c a l [i] ;
{ c r i t i c a l [i] := ⊥ ; }

}

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 4 / 25

Outcomes of the thesis

1 Implementation of a full-fledged LTL model checking extension of
RISCAL. The model checker consists of the following components:

1 the translation of LTL formulas to generalized Büchi automata,
2 the on-the-fly expansion of the state space to find SCCs (potential

violations) in the product automaton of the system and the formula,
3 the validation of SCCs against the fairness constraints to check

whether they are indeed violations
2 Experimental evaluation and benchmarking of the implementation

The remainder of the presentation will be structured around these four
main topics.

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 5 / 25

Basic concepts

s1
{p}

s2
{p, q}

s3
{r}

Figure: Kripke structure K modelling a
non-deterministic system

LTL formulas which hold for
the system:

K |= p
K |= X q
K |= G¬(r ∧ p)
K |= (p U r) ∨ (Gp)

and some, which do not:
K ̸|= F(r ∧ p)
K ̸|= p U r

Definition
Model checking problem
Given a Kripke-structure K = (S, I,T,L) and an LTL formula f determine
whether K |= f, and if not, provide a trace π of K such that π ̸|= f.

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 6 / 25

Labelled Büchi automata
Definition
A labelled generalized Büchi automaton (LGBA) is defined as the tuple
(S, I,Σ,L,T,F) consisting of the following components:

a finite set of states S
a set of initial states I ⊆ S, I ̸= ∅
an input alphabet Σ
a labelling of the states L : S → 2Σ

a transition relation →⊆ S × S
set of accepting sets F ⊆ 2S, F = {F1,F2, ..., Fn}.

Definition
A Büchi automaton A accepts a word w = a0a1a2... ∈ Σω if there exists
σ = s0s1s2... ∈ Sω such that for each i ≥ 0, ai ∈ L(si), s0 ∈ I, si → si+1,
and for each acceptance set Fj ∈ F there exists at least one state sj ∈ Fj
which appears infinitely often in σ.

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 7 / 25

The LTL to Büchi automaton algorithm
Preprocessing:

▶ Introduce new temporal operator V, defined as the dual of U:
f V g ≡ ¬(¬f U ¬g).

▶ Replace the temporal operators F and G using Fp ≡ ⊤ U p and
Gp ≡ ⊥ V p.

▶ Convert ¬f into negation normal form
Two step construction: first a directed graph (tableau), which is then
converted into an automaton.
Uses the expansion formulas of temporal operators:

▶ Xp holds if p holds in the next state
▶ p ∧ q holds if p and q hold in the current state
▶ p ∨ q holds if either p or q holds in the current state
▶ p U q holds if either q holds in the current state or p holds in the

current state and p U q holds in the next state
▶ p V q holds if either both p and q hold in the current state or if q holds

in the current state and p V q holds in the next state
This construction was first described by Gerth et al. [2]
Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 8 / 25

The LTL to Büchi automaton algorithm I

procedure create_graph(f) ▷ LTL formula f
return expand({incoming: init, new: {f}, old: {}, next: {}}, {})

end procedure
procedure expand(node, nodesSet)

if node.new is empty then
if there is a graph node n ∈ nodesSet

with n.old = node.old and n.next = node.next then
n.incoming ← n.incoming ∪ node.incoming
return nodesSet

else
return expand({incoming: {node}, new: node.next, old: {}, next: {}},

nodesSet ∪ {node})
end if

else
let f ∈ node.new
node.new.remove(f)
if f = pi or f = ¬pi or f = ⊤ or f = ⊥ then

if f = ⊥ or ¬ f ∈ node.old then
return nodesSet

else
node.old ← node.old ∪ {f}
return expand(node, nodesSet)

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 9 / 25

The LTL to Büchi automaton algorithm II

end if
else if f = X g then

return expand({incoming: node.incoming, new: node.new,
old: node.old ∪ {f}, next: node.next ∪ {g}}, nodesSet ∪ {node})

else if f = g ∧ h then
return expand({incoming: node.incoming, new: node.new ∪ ({g, h} \ node.old),

old: node.old ∪ {f}, next: node.next}, nodesSet ∪ {node})
else if f = g ∨ h or f = g U h or f = g V h then

node1 ← { incoming: node.incoming, new: node.new ∪ (new1(f) \ node.old),
old: node.old ∪ {f}, next: node.next ∪ next1(f) }

node2 ← { incoming: node.incoming, new: node.new ∪ (new2(f) \ node.old),
old: node.old ∪ {f}, next: node.next }

return expand(node2, expand(node1, nodesSet))
end if

end if
end procedure

f new1(f) next1(f) new2(f)
g ∨ h {g} ∅ {h}
g U h {g} {g U h} {h}
g V h {h} {g V h} {g, h}

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 10 / 25

Generated automaton

{p}, {p, q} {q}, {p, q} ∅, {p},
{q}, {p, q}

Figure: LGBA corresponding to the formula p U q

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 11 / 25

Strongly connected components

Proposition
The language described by a generalized Büchi automaton A is non-empty
if and only if there exists a cycle C reachable from I such that C ∩ F ̸= ∅
for all F ∈ F .

Definition
A strongly connected component (SCC) of a directed graph G = (V,E) is
a subset S ⊆ V such that for any pair s, t ∈ S we have that s →∗S t.
An SCC is called trivial if S = {s} and s ̸→ s.

Proposition
The language described by a generalized Büchi automaton A is non-empty
if and only if there exists an SCC C reachable from I such that C ∩ F ̸= ∅
for all F ∈ F .

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 12 / 25

Emptiness check comparisons

For both of these equivalent definitions there exist algorithms for
checking emptiness based on them

Some of these require the automaton to be transformed into a simple
Büchi automaton (with only a single acceptance set)

This can result in a polynomial blowup in the number of states

According to the comparisons by Gaiser & Schwoon 2009 [3] and our
own experiments, the ASCC algorithm has the best run-time
performance at the cost of a small increase in memory use

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 13 / 25

The ASCC algorithm

The ASCC algorithm works by finding the strongly connected
components of the automaton and checking if they contain at least
one state in each final set.

Avoids a potential polynomial increase in the number of states if
there are multiple acceptance sets.

In reality most properties have a corresponding automaton with one
or zero final sets (90-95% according to [4], 92% in the test-set of [3]),
so it doesn’t help that much.

But it has one big advantage: makes fast fairness checking possible

It is the adaptation of Tarjan’s SCC algorithm to automata

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 14 / 25

The ASCC algorithm
procedure find_cycles(s, d) ▷ state s, search depth d

s.dfsnum← d
s.current← true
roots.push(s, A(s))
active.push(s)
for all successors t of s do

if t.dfsnum = 0 then find_cycles(t, d + 1)
else if t.current then

B← ∅
repeat

(u,C)← roots.pop()
B← B ∪ C
if B = K then report cycle

until u.dfsnum ≤ t.dfsnum
end if

end for
if roots.top() = (s,_) then

roots.pop()
repeat

u← active.pop()
u.current← false

until u = s
end if

end procedure
Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 15 / 25

How it works

Figure: Shape of the active graph taken from [3]

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 16 / 25

Fairness

Most interesting liveness conditions for concurrent systems don’t hold
in all possible executions

We need certain assumptions on the behaviour of the scheduler

These conditions are called fairness constraints
Weak fairness is when all actions which are (from some point on)

always enabled eventually executed
Strong fairness is when all actions which are infinitely often enabled

eventually executed

They can be modelled in LTL:
WeakFairness a ≡ (FG Enabled a) =⇒ (GF Executed a).

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 17 / 25

Fairness checking

We could naively add the fairness constraints to the formula.

This works, but the size of the automaton (thus also the run-time) is
exponential in the length of the formula.

Adding a few of these constraints already results in automata which
are too large to construct.

This can be avoided by instead examining the SCC for fairness.

An algorithm for this is described in [5], and is only linear in the
number of fairness constraints.

We have to modify ASCC so that before reporting a counter-example,
it first checks if the SCC is fair.

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 18 / 25

Fairness checking algorithm
▷ A: strongly connected subgraph of the product automaton
▷ weakFairness: set of actions with weak fairness constraints
▷ strongFairness: set of actions with strong fairness constraints
procedure is_scc_fair(A, weakFairness, strongFairness)

for all action a ∈ weakFairness do
if for all states s ∈ A a is enabled in s and a is not executed in s then

return false
end if

end for
A’ ← A
for all action a ∈ strongFairness do

if for all states s ∈ A a is not executed in s then
A’ ← {s ∈ A’ : a is not enabled in s}

end if
end for
if A’ = A then return true
end if
for all Ai ∈ decompose_into_sccs(A’) do

if is_scc_fair(Ai, weakFairness, strongFairness) then
return true

end if
end for
return false

end procedure
Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 19 / 25

Example output of the model checker
Verification of the first LTL formula for N = 3 in the example on the
4th slide yields:

Checking LTL formula ∀i1:Proc, i2:Proc. ([][[.(critical[i1] ∧ ...
Formula automaton with 37 states generated.
6 system states and 90 product automaton states investigated.
LTL formula is satisfied (model checking time: 10 ms).
Execution completed (21 ms).

Verification of the second LTL formula, but without fairness yields the
error trace:

Checking LTL formula ∀i:Proc. ([](<>[[. next = i.]]))...
Formula automaton with 15 states generated.
4 system states and 19 product automaton states investigated.
LTL formula is NOT satisfied (model checking time: 11 ms).
Counterexample execution:
Action: init() values: [critical:[false,false,false],next:0]
...
> Loop start

Action: enter(2) values: [critical:[false,false,true],next:2]
Action: exit(2) values: [critical:[false,false,false],next:2]

> Loop end
ERROR encountered in execution (30 ms).

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 20 / 25

Measured performance of the RISCAL model checker

Figure: Timings for a simple property
T(n) = O(n1.448)

Figure: Timings for a simple property
with fairness T(n) = O(n1.536)

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 21 / 25

Comparison of RISCAL to TLA+

Model Property RISCAL TLA+

Alternating Bit Liveness 2.7 11
Peterson N = 2 Safety Inv. < 0.1 1

Safety LTL < 0.1 1
Liveness < 0.1 14

Peterson N = 3 Safety Inv. 1.4 7
Safety LTL 2.1 7
Liveness 4.6 -

Resource Allocator Safety Inv. 1.1 3
Safety LTL 3.0 3
Liveness 1 3.0 11
Liveness 2 7.1 20
Liveness 3 5.0 7

Figure: RISCAL versus TLA+ (times in seconds)

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 22 / 25

Conclusions and further work

Conclusions:
▶ With the inclusion of the LTL model checker into RISCAL version

4.2.0, it is now a full-fledged systems checker.
▶ Much slower than SPIN for checking safety properties, but has a higher

level specification language and can handle more fairness constraints.
▶ Comparable in speed and abstraction level to TLA+, but again better

fairness handling.

Potential improvements
▶ Implementation of partial order reduction, which could decrease the

number of states to be checked by an order of magnitude
▶ Decreasing the memory use (currently up to 1000 bytes per system

state)
▶ Implementation of a concurrent model checker

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 23 / 25

Bibliography I

[1] Wolfgang Schreiner. The RISC Algorithm Language (RISCAL).
https://www3.risc.jku.at/research/formal/software/
RISCAL/manual/main.pdf. 2021.

[2] R. Gerth et al. “Simple On-the-fly Automatic Verification of Linear
Temporal Logic”. In: Protocol Specification, Testing and Verification
XV: Proceedings of the Fifteenth IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification,
Warsaw, Poland, June 1995. Ed. by Piotr Dembiński and
Marek Średniawa. Boston, MA: Springer US, 1996, pp. 3–18. isbn:
978-0-387-34892-6.

[3] Andreas Gaiser and Stefan Schwoon. Comparison of Algorithms for
Checking Emptiness on Buechi Automata. 2009. doi:
10.48550/ARXIV.0910.3766. url:
https://arxiv.org/abs/0910.3766.

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 24 / 25

https://www3.risc.jku.at/research/formal/software/RISCAL/manual/main.pdf
https://www3.risc.jku.at/research/formal/software/RISCAL/manual/main.pdf
https://doi.org/10.48550/ARXIV.0910.3766
https://arxiv.org/abs/0910.3766

Bibliography II

[4] Ivana Cerna and Radek Pelánek. “Relating Hierarchy of Temporal
Properties to Model Checking”. In: vol. 2747. Aug. 2003, pp. 318–327.
isbn: 978-3-540-40671-6. doi: 10.1007/978-3-540-45138-9_26.

[5] Orna Lichtenstein and Amir Pnueli. “Checking That Finite State
Concurrent Programs Satisfy Their Linear Specification”. In:
Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. POPL ’85. New Orleans,
Louisiana, USA: Association for Computing Machinery, 1985,
pp. 97–107. isbn: 0897911474. doi: 10.1145/318593.318622.

Sütő Ágoston (RISC) Model Checking in RISCAL November 8, 2022 25 / 25

https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1145/318593.318622

	Introduction
	Basic concepts
	Translation of LTL formulas
	Emptiness checking
	Fairness checking
	Experimental evaluation
	Conclusions
	References

