Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at

So far, the binary predicate symbol “=" has played no special role; however, due to
its central role in mathematics, it deserves particular attention.

Standard: First-Order Logic with Equality
Most important logic in general practice.
First-order logic where “=" has the fixed interpretation “equality”.
Normal model: a structure where = is interpreted as “equality”.
Simple approach: add explicit equality axioms to every proving problem.
More comprehensive: extend first-order proof calculus by rules for equality.
Alternative: Equational Logic
A restricted subset of predicate logic.
The only predicate is “=” (other predicates simulated as functions into Bool).
Implement special (semi-)decision procedure for this logic.

We will now sketch these alternatives in turn.

1/30

Equality is the equivalence relation that is a congruence for every predicate/function.

Vx.x=x (1)
Vx,y.x=y=y=x (2)
VX, y,2.X=yAy=z7=x=2 (3)
VXTy ey Xns Voo s Y- X1 =V1IA . AXp =Y = f(x1, .., Xn) = fF(V1s- -5 Vn) (4)
VX1s oo s Xy Voo s Y- X1 =Y1 A oo AXn =V = p(X1, ..., x0) © p(Y1s-- > Vn) (5)

Axioms (1-3): = is reflexive, symmetric, transitive, i.e., = an equivalence relation.

Axiom schemes (4-5): = is a function/predicate congruence.
One instance of the schemes for every function symbol f and every predicate symbol p.

Theorem: Let A be a set of formulas and eq(A) be the equivalence relation axioms together with
the instances of the congruence schemes for every function/predicate in A. Then A is satisfiable
by a normal model (valid in all normal models) if and only if A U eq(A) is satisfiable (valid).

Proof sketch: Any model of A U eq(A) can be lifted to a normal model of A by partitioning the domain
into equivalence classes according to the interpretation of =. 2/30

let function_congruence (f,n) = ... ;;
let predicate_congruence (p,n) = ... ;;

let equivalence_axioms =

[<<forall x. x = x>>; <<forall x y z. x =y /\ x = z ==>y = 2>>];;

let equalitize fm =
let allpreds = predicates fm in
if not (mem ("=",2) allpreds) then fm else
let preds = subtract allpreds ["=",2] and funcs = functions fm in
let axioms = itlist (union *x function_congruence) funcs
(itlist (union ** predicate_congruence) preds
equivalence_axioms) in
Imp(end_itlist mk_and axioms,fm);;

3/30

let ewd = equalitize

<<(forall x. f(x) ==> g(x)) /\ (exists x. £(x)) /\ (forall x y. g(x) /\ g(y) ==> x = y)

==> forall y. g(y) ==> £(y)>>;;
val ewd : fol formula =

<<(forall x.
(forall x1
(forall x1
(forall
(exists
(forall

splittab ewd

Searching with

Searching with
- : int list =

Simple approach but not very effective in more complex examples.

x=x%x) /\ (forall x yz. x =y /\ x =z ==>y =z) /\
yl. x1 = y1 ==> £f(x1) ==> £(y1)) /\
yl. x1 = y1 ==> g(x1) ==> g(y1)) ==>

x. £(x) ==> g(x)) /\
x. £(x)) /\ (forall x y. g(x) /\ g(y) ==> x = y) ==>
y- gly) ==> £(y))>>

depth limit O

depth limit 9
[o]

4/30

We may extend the sequent calculus by the “core” of the equality axioms.

Nx=y=Flx] © F[y]+ A It=t+rA
'rA (SUBST) I'rA

(REFL)

Rule (SUBST) represents Leibnitz’s law (the principle of substitutivity):
Formula F[y] is identical to F[x] except that any (not necessarily all) free occurrences of x

may be replaced by y (which must remain free in F).
Rule (SUBST) is equivalent to the more special congruence rules:

Tthh=u1 Ao . Aty =up = f(t1,..., ty) = f (u1,..., un) kA (CONGF)
A

T,oi=ui A... Aty =un -,) ©pln,..., n) P4

LMLt 2 POt 2 plet) 8 (oo

From rules (SUBST) and (REFL), also symmetry and transitivity can be derived.

The extended calculus is sound and complete (with respect to normal models) but

very inefficient to implement automatically.
5/30

The method of firder-order tableaux extended by the following rules:

Replacement: If a branch contains the equality = u and the formula F[¢] with an occurrence of
term ¢ that is not in the scope of any quantifier, the branch can be extended by F[u] which is a
duplicate of F[z] except that the occurrence of 7 in F[¢] has been replaced by term u in F[u].

Reflexivity: We may add to any branch the equality ¢ = ¢ for an arbitrary term ¢.

The extended calculus is sound and complete: if a closed tableau can be derived,
its root formula is not satisfiable by any normal model, and vice versa.
6/30

Proof of Vx. Vy.Vz.x =yAy=z=x =2z Proof of Vx. Vy.x =y = y = x:

1. —Vx.Vy.Vz.x=yAy=z=>x=2 1 “Vx.Vy.x=y=>y=x
2. —Vy.Vz.c=yAc=z=>c=2 (1) 2. —Vy.c=y=>y=c (1)
3. —Vz.c=dAd=z=c=z (2) 3. —(c=d=d=c) 2)
4, —(c=dArd=e=>c=e) (3) 4. c=d (3)
5. ¢c=dAd=e (4) 5. =(d=c) (3)
6. -(c=e) 4) 6. -=(d=d) (4,5)
7. c=d (5) 7. d=d
8. d=e (5) (6,7)
9. c=e (7,8)

(6,9)

7/30

The method of free-variable tableaux extended by the following rules:

t=u
F[t']
Flu] xX=x fx1,.0xn) = f(x1,...,x)

MGU Replacement: if = u and F[¢’] occur in the same branch of tableau T and ¢ is a most
general unifier of r and ¢/, then we may replace tableau T by 7’0 where T’ is identical to T
except that F[u] has been added to the branch.

Reflexivity: We may add to every branch the equality x = x where x is a fresh variable.
Function Reflexivity: We may add to every branch the equality f(x1,...,xn) = f(x1,...,xn)
where f is an n-ary function symbol and x1, ..., x, are fresh variables.

The extended calculus is sound and complete: if a closed tableau can be derived,
its root formula is not satisfiable by any normal model, and vice versa.
8/30

Proof of Vx. Ay. (y = f(x) AVz. (z= f(x) = y=2)):

1. =Vx. 3y. = f(x) AVz. (z=f(x) = y=2))
2. -3y (y=f()AVz. (z= f(c) = y=12) (1)
3. ~(y1=fle)AVz. (2= fle) = y1=2) (2

4. Vo (z=f(0)=flo)=2) (
5. =(d=f(c) = f(c)=d) (
6. d=f(c) (
7. =(f0)=d) (
4. =(1=f()) 8. =(f(0)=f(0) (
5 ya=y 9. y3=y3

(4,5) (8,9)

Tableau closed with o = [y1 — f(c),y2 — f(c),y3 — f(c)].

9/30

An extension of first-order resolution by a treatment of equality (George Robinson
and Lawrence Wos, 1969).

CU{L[t]} e F DU{s=u}€eF oismguoftands
CU{L[t]} and D U {s = u} have no common variables FU{CouUDoU{L[u]lo}}+
Fan (PARA)

The paramodulation rule (PARA):
Literal L[] with an occurrence of term ¢ that is replaced by term u in L[u].
Clause Co U Do U {L[u]o} is the paramodulant of CU {L[¢]} and D U {s = u}.
The paramodulation calculus consists of rules (AX), (RES), (REN), (FACT), (PARA).
Soundness: if F U feq(F) + can be derived, F is not satisfiable by a normal model.
Completeness: if F is not satisf. by a normal model, F U feq(F) + can be derived.
feq(F) consists of the reflexivity axiom x = x and one function reflexivity axiom
f(x1,...,x0) = f(x1,...,x,) for every n-ary function symbol f in F.
In most proofs, function reflexivity axioms are not needed; thus many
implementations only use the reflexity axiom.

A much more restricted form of the application of equalities. 10/30

We show the unsatisfiability of
{{a(c)}. {=q(c), f(x) =x}. {p(x), p(f ()}, {=p(x), ~p(f (X)) }}

by the following refutation (here reflexivity is not needed):
{a(e)} {=q(c), f(x) =x} {P(x), p(f(e))} {=p(x),~p(f(x))}

\ / {p(fl(c))} /
\

0 =x} PN}
\

{=p(f ()}

{}

3 resolution steps, 1 paramodulation step, 1 factorization step.

11/30

let rec overlapl (1l,r) fm rfn = (* Find paramodulations with 1 = r inside a literal fm.

match fm with
Atom(R(f,args)) -> listcases (overlaps (1,r))
(fun 1 a -> rfn i (Atom(R(f,a)))) args []
| Not(p) -> overlapl (1l,r) p (fun i p -> rfn i (Not(p)))
| _ -> failwith "overlapl: not a literal";;

(* Now find paramodulations within a clause. *)
let overlapc (1,r) cl rfn acc = listcases (overlapl (1,r)) rfn cl acc;;

(* Overall paramodulation of ocl by equations in pcl. *)
let paramodulate pcl ocl =
itlist (fun eq -> let pcl’ = subtract pcl [eq] in
let (1,r) = dest_eq eq
and rfn i ocl’ = image (subst i) (pcl’ @ ocl’) in
overlapc (1,r) ocl rfn ** overlapc (r,l) ocl rfn)
(filter is_eq pcl) [I;;

*)

12/30

let para_clauses clsl cls2 =

let clsl’ = rename "x" clsl and cls2’ = rename "y" cls2 in

paramodulate clsl’ cls2’ @ paramodulate cls2’ clsl’;;

let rec paraloop (used,unused) = (* Incorporation into resolution loop.

match unused with
[1 -> failwith "No proof found"

| cls::ros ->

print_string(string_of_int(length used) ~ " used; "~
string_of_int(length unused) ~ " unused.");
print_newline();
let used’ = insert cls used in
let news =
itlist (@) (mapfilter (resolve_clauses cls) used’)
(itlist (@) (mapfilter (para_clauses cls) used’) []) in

if mem [] news then true else

paraloop(used’,itlist (incorporate cls) news ros);;

*)

13/30

let pure_paramodulation fm =
paraloop([], [mk_eq (Var "x") (Var "x")]::simpcnf(specialize(pnf fm)));;

let paramodulation fm =
let fml = askolemize(Not(generalize fm)) in

map (pure_paramodulation ** list_conj) (simpdnf fml);;

paramodulation
<<(forall x. f(£f(x))
==> forall x. f(x)

0 used; 4 unused.

£(x)) /\ (forall x. exists y. f(y) = x)
x>>;;

10 used; 108 unused.
11 used; 125 unused.
- : bool list = [true]

The naive application of paramodulation leads to huge proof search spaces; in

practice, strong restrictions and sophisticated strategies are implemented. 0

A spezialization of resolution/paramodulation that leads to smaller search spaces
(Leo Bachmair and Harald Ganzinger, 1991).

CU{l=r}eF oismguoflandr FU{Co}+

Fr (ER)
CU{ll :rl,IQZVQ}EF (rismguofll andlg FU{CO’U{(llzrl)O',—'(rl:rg)o‘}}l— (EF)
Fr

CU{ly=r} eF DU {l[li]=r} €F I} is not a variable o ismguof /; and]
CuU{ly =ri}and DU {I2[l]] = r2} have no common variables FU{CoUDoU{(lz[ri1]=r)o}}+

i (SUP)
CUu{li=r}eF DU {~(I2[l}1=r)} € F I} is not a variable o is mgu of I3 and]
Cu{ly =ri}and DU {I2[l]] = r2} have no common variables FU{CoUDo U {=(la[ri]=ra)o}}+ (SUP)

Fr

Actually constrained forms of above (SUP) rules.
Term orderings ensure that equations are only applied in one direction.
Still sound and complete with respect to normal models.

Only predicate is =; other predicates are modeled as functions into Bool. 15/30

Let A be a set of equations of form ¢ = u which are implicitly universally quantified.

(s=1) €A Ars=t
~—— —— (AXIOM ———————— (INST
Ars=t () A!—(s:z)[u/x]()
Aru=t Art=s Ars=u
— (REFL YM TRANS
Al—t=t() Art:u(s) Art=u ()
Arti=ur ... Avrty=1uy

CONG
A+ f(t1,..., th) = f(ug,..., Un) ()

Judgement A+t =u
Interpreted as “every normal model of A satisfies r = u”.
Equivalent to: A £t = u holds in first-order logic with equality.
Birkhoff’s Theorem (Garrett Birkhoff, 1935):
If A+ s =ris derivable by above inference rules (the “Birkhoff rules”), then every
normal model of A satisfies r = u, and vice versa.

Birkhoff’s rules denote a sound and complete inference calculus for equational logic;
like first-order logic, however, equational logic is undecidable. 16/30

Let set A consist of the following equations:

g(x,c)=x (1)
glx, f () = f(g(x,¥) (@)
h(x,c)=c 3)
h(x, f () =g(x, h(x,y)) 4)

How to prove A | h(f(f(c)), f(f(c)) = g(h(f(c), f(e), F(f(f(c))))?
@) (@) 2 g(f (£ f (F () f @) 2 g(f (F()g(f (F(eDoh(F ((e)c))
D e(r (Fe)gF (F@n.e) Y e(r (£ @) f (£ D Fe(F(f @) f @)
D @ron Y FrE)
g(h(f (©), £ (). f (£ (£ () 2 g(g(f (@0 h(F (0N £ (£ (£ () L gle(f (@) (f (£ (D))
Dgr @ F @M 2 £ @@ 2 rrs©.fe

2D ririrer@.onY s e

By a sequence of equality substitutions in the left term and a sequence of equality substitutions in the
right term the same term can be derived; thus the left term and the right term are equal.

17/30

We have just performed a strategy of “simplifying calculations”.

Set A described some arithmetic axioms:
x+0=x

x+(y)=(x+y)
x-0=0
x-(Y)=x+(x-y)
We have proved A = (0”) - (0”) = ((0”) - (0”)) + (0"") (i.e.,2-2=1+3):
(07 () @ (0 + () - (@) O+ (0" +((©") - 0))
D 0+ 0 +0) 2 () +)y
2wy ro
((0) - (0)) + (") 2 () +((0) - 0) + (0"
& 2 () +)y
@ (0)+0 Yo
When can this strategy be performed? 18/30

(0//) + (O//)

0/;//

(g) ((O/) +0) + (O///)

() + (0”) @

r (1)

((0") +(0))”

Consider the elements of A not as equations but as (left-to-right) rewrite rules.

Abstract reduction system (S, —): a set S and a binary relation — on S.
Xy x—>yory —x.
x =" yand x <" y: the reflexive transitive closure of — and <.

Term rewriting system: an abstract reduction system induced by A.
S is the set of terms and — is the “term rewriting relation” generated by A when
considering every equation ¢ = u as a (left-to-right) rewrite rule.

Theorem: Let — be the term rewriting relation induced by A. Then we have

AEt=uifandonly if t &F u.
Proof sketch: If A [t = u, by Birkhoff’s theorem A + ¢ = u is derivable. One can show by
induction on the Birkhoff rules that this implies t <* u. Conversely, by the semantics of
substitution + — u implies A = ¢ = u; from this one can show by induction that also ¢t &* u
implies A =t = u.

To show A E ¢ = u it suffices to show 1 «* u. 10150

Some fundamental notions and properties of an abstract reduction system (S, —).

Element x € S is a normal form: there is no y € S such that x — y.

— is terminating (Noetherian): there are no infinite reduction sequences

X0 — x1 — ---, i.€., every reduction sequence ends with a normal form x,, € S.

— has the Church-Rosser property: if x <* y, then x —* zand y —* z for some z € S.
Lemma: If — has the Church-Rosser property, then for every x € S there exists at most
one normal form x’ € S such that x —* x’.

— is canonical: — is terminating and also has the Church rosser property.
Lemma: If — is canonical, then for every x € S there exists exactly one normal form x” € §
such that x —* x’.

Theorem (Trevor Evans, 1951): If — is canonical and x —* x” and y —* y” with normal

forms x’ € Sand y’ € S, then x «* y holds if and only if x” = y’ does.

If A induces a canonical term rewriting system, we can decide A ¢t = u by rewriting
terms t and « to normal forms #* and u’” and comparing ¢* with u’. 20/30

let rec rewritel egs t = (* Rewriting at the top level with first of list of equations.

match eqs with
Atom(R("=",[1;r]))::0eqs ->
(try tsubst (term_match undefined [1,t]) r
with Failure -> rewritel oeqs t)

| _ -> failwith "rewritel";;

let rec rewrite eqs tm = (* Rewriting repeatedly and at depth (top-down). *)
try rewrite eqs (rewritel eqs tm) with Failure _ ->
match tm with
Var x -> tm
| Fn(f,args) -> let tm’ = Fn(f,map (rewrite eqs) args) in
if tm’> = tm then tm else rewrite egs tm’;;

rewrite [<<0 + x = x>>; <<8(x) + y = S(x + y)>>;
<0 * x = 0>>; <<S(x) * y =y + x * y>>]
<<18(8(5(0))) * S(S(0)) + S(8(5(5(0))))I>>;;
- ¢ term = <<|S(S(S(S(S(S(S(S(S(5(0)))))NN 1>

*)

21/30

Not Terminating:
X+y=y+x (1)

c+d—>d+c—c+d—---

No Church-Rosser Property:
x-(y+z)=x-y+x-z (1)
(x+y)-z=x-z+y-z (2)
(@+b)-(c+d) Ba-(c+d)+b-(c+d)

(—>1)(a~c+a~d)+b~(c+d)<—12(a~c+a~d)+(b~c+b~d)
(@+b)-(c+d) S (a+b)-c+(a+h)-d
(32(a-c+b-c)+(a+b)-d(3>)(a-c+b-c)+(a-d+b-d)

If a term rewriting system is not canonical, rewriting fails as a decision strategy.
22/30

It is generally undecidable whether a term rewriting system is terminating.
Term rewriting systems can perform arbitrary computations.
The problem whether computing machines halt is undecidable (Alan Turing, 1937).
But we can prove that a particular term rewriting system is terminating.
Determine a suitable termination ordering, i.e., a well-founded relation on terms that is
decreased by the application of every rewrite rule.

One such termination ordering is the lexicographic path order r > u defined as follows:
t > u, if u is a proper subterm of z.

f(t1,...,ty) > t,if t; >t for some i.

f(t, ... tn) > f(ur,...,uy,) ift; > u; forsomeiand¢; =u; forall j <i.

f(t1,..otn) > g(ur, ..., um), if f > g for some ordering of function/constant symbols.
In the last two rules we additionally require f(t1,...,t,) > u; for every i.

Example: consider the lexicographic path order for *-’ >+ >/’ > ‘0.
x +0 > x because x is a proper subterm of x + 0.
x+(y') > (x+y) because ‘+'>‘""and x + (y') > x +y (why?).
x -0 > 0 because 0 is a proper subterm of x - 0.
x-(y')>x+(x-y)because -’ >'+and x - (y') > xand x - (y') > x -y (why?).

Thus the previously stated arithmetic term rewriting system is terminating. 23/30

Does the following term rewriting system have the Church-Rosser Property?

(x-y)-z=x-(y-2) (1)
l-x=x (2)
i(x) - x=1 (3)

We can rewrite term (1 - x) - y in two different ways:
12y B1-(x-y)
(1-x)-y (i) Xy
This does not violate the property, because both results have the same normal form:
1-(x-y) (i) Xy
But we can also rewrite term (i(x) - x) - y in two different ways:
() -x) -y i) - (x-)
() x -y 31y 3y

Thus we have derived two different normal forms which violates the Church-Rosser property.

This may spark the idea of how to decide the Church-Rosser property. 24/30

/™y
Reduction relation — is locally confluent if the following property holds: '& {'
if x - y; and x — yo, then y; —* zand y, —* z for some z € S. .
Newman’s Lemma: If a reduction relation — is both terminating and locally confluent, it is
confluent (and thus has the Church-Rosser property).
Thus, given a set A of rewrite rules whose reduction relation — is terminating, the
following algorithm decides whether — has the Church-Rosser property:
Consider every pair I = r1 and Iy = ry of rewrite rules (both rules may be the same).
Rename the variables in these rules such that variables in /; and I, are disjoint.
Determine every critical pair of these rules, i.e., terms ryo- and /1 [r2]o such that:
I}, is a non-variable term such that o is the most general unifier of /> and I/, and
/1 contains an occurrence of lé and /1 [re] is 1 with that occurrence replaced by ro.
The reduction reduction system has the Church-Rosser property if and only if every critical
pair y1 and y2 can be rewritten by — to a common normal form z.

The decision of the Church-Rosser property is reduced to critical pair computation.

25/30

Example: equations x; + 0 = x; and xs + 0 = x5 (the first equation renamed).
x1 +0 and xz + 0 have mgu [x; +— x2] which yields the trivial critical pair xo and xs.
The arithmetic system has only trivial critical pairs and thus is Church-Rosser.
We only need to consider the overlap of a rule with itself at a proper subterm of the left side.

Example: A == {f(g(f(x))) = g(x)}
Rule instances f(g(f(x1))) = g(x1). f(8(f(x2))) = g(x2)
Unify f(x1) and f(g(f(x2))) with mgu o = [x1 — g(f(x2))].
Reduction f(g(f(g(f(x2))))) = g(g(f(x2))) with normal form g(g(/(x2))).
Reduction £(g(f(g(f(x2))))) = f(g(g(x2))) with normal form f(g(g(x2))).
Critical pair g(g(f(x2))) and f(g(g(x2))) with different normal forms.
A does not have the Church-Rosser property.

26/30

let renamepair (fml,fm2) = ... ;;
let rec listcases fn rfn lis acc = (* Rewrite with 1 = r inside tm to give a critical pair. *)
match lis with
[1 -> acc
| h::t -> fn h (fun i h’ -> rfn i (h’::t)) @ listcases fn (fun i t> -> rfn i (h::t’)) t acc;;
let rec overlaps (1l,r) tm rfn =
match tm with
Fn(f,args) -> listcases (overlaps (1,r)) (fun i a -> rfn i (Fn(f,a))) args
(try [rfn (fullunify [1,tm]) r] with Failure _ -> [])
| Var x -> [1;;

let critl (Atom(R("=",[11;r1]1))) (Atom(R("=",[12;r2]))) =
overlaps (11,r1) 12 (fun i t -> subst i (mk_eq t r2));;
let critical_pairs fma fmb = (* Generate all critical pairs between two equations. *)
let fml,fm2 = renamepair (fma,fmb) in
if fma = fmb then critl fml fm2
else union (critl fml fm2) (critl fm2 fmil);;

let eq = <<£f(£f(x))
- : fol formula list

g(x)>> in critical_pairs eq eq;;
[<<f(g(x0)) = g(£(x0))>>; <<g(x1) = g(x1)>>] 27/30

A semi-algorithm to derive a canonical term rewriting system (Donald Knuth and
Peter Bendix, 1970).

procedure COMPLETE(A) > if the procedure terminates, it returns a canonical system equivalent to A

Al — A
repeat > may not terminate
Ao — Aq
for every critical pair (z, u) in Ag do
reduce ¢ and u to normal forms ¢ and u” according to Ag > may not terminate
if ' # u’ then
choosel!=re{t=u,u=t}
A AN U{l=r}
end if
end for
until A; = Ag
return A,

end procedure

There are numerous improvements to increase the practical applicability. 28/30

.
Example: A= {f(g(f(x))) — §(x)} .
Rule instances f(g(f(x1))) — g(x1), f(g(f(x2))) = g(x2)
Unify f (x1) and f (g(f (x2))) With mgu o = [x1 = g(f (x2))]-
Reduction £ (g(f (g(f (x2))))) = g(g(f (x2))) with normal form g (g (f (x2))).

Reduction f (g(f (g(f (x2))))) 2 f (g(g(x2))) with normal form f (g(g(x2))).
Critical pair g(g(f (XQ))) and f (g(g(XQ))) with different normal forms.

N = {f (g(f (%)) > g(x), g(g(f () > £ (g(g(x)))}

Rule instances g(g(f(x1))) = f(g(g(x1))) and g(g(f(x2))) = f(g(g(x2)))
Only trivial mgu [x; — x2] and trivial critical pair.]

Rule instances f(g(f(x1))) = g(x1) and g(g(f(x2))) = f(g(g(x2)))
Unify f (x2) and f (g(f (x1))) with mgu [x2 = g(f (x1))].
g(g(f (g(f (x1))))) —> g(g(g(x1))) with normal form g(g(g(x1))).
g(g(f (g(f (x1)))) > £ (g(g(g(f (x1))))) > £ (8(f (g(g(x1))))) = g(g(g(x1))).
Critical pair g(g(g(x1))) and f (g(f (g(g(x1))))) has common normal form.

No more non-trivial rule overlaps.

A’ has the Church-Rosser property.
29/30

Our goal is to derive A + (t = u).

Consider the special case of only variable-free equations in A + (¢ = u).

Any occurrence of a symbol x in t = u does not denote any more a “variable” (that
is universally quantified in the equation) but a “constant” (whose value is the same
in all equations in which x occurs).

Then proofs need not apply the Birkhoff rule (INST).
This makes the theory decidable.

We will next consider decision procedures for variable-free equational logic and
other decidable theories.

30/30

