
PERFORMANCE ANALYSIS
Course “Parallel Computing”

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at


Evaluating Parallel Programs
We achieved a speedup of 10.8 on p = 12 processors
with problem size n = 100.

• Multiple programs may
satisfy this observation:
◦ Program 1:

T = n + n2/p.
◦ Program 2:

T = (n + n2)/p + 100

◦ Program 3:
T = (n + n2)/p + 0.6p2

Figure 3.1, Ian Foster: DBPP

We have to evaluate programs on varying parameters.
1/14



Speedup and Efficiency

• (Absolute) speedup Sp and efficiency Ep:

Sp =
T

Tp
Ep =

Sp

p
=

T

p · Tp

◦ T : execution time of sequential program.
◦ Tp: execution time of parallel program with p processors.

• Relative speedup Sp and efficiency Ep:

Sp =
T1

Tp
Ep =

Sp

p
=

T1

p · Tp

◦ Use for comparison the parallel program with 1 processor.
◦ Measures “scalability” rather than “performance”.

• Typical ranges: Sp ≤ Sp ≤ p and Ep ≤ Ep ≤ 1.
◦ If Sp > p, we have a “superlinear speedup”.
◦ If Sp > Sp, then T > T1.

Speedup denotes the “performance” of parallelism, efficiency
relates this performance to the invested “costs”. 2/14



Diagrams

Logarithmic scales may yield additional insights.

3/14



Superlinear Speedups

Can the speedup be larger than the number of processors?

• Simple theoretical argument: “no”.
◦ We can simulate the execution of a parallel program with p

processors on a single processor in time p · Tp. Thus
T ≤ p · Tp and Sp = T/Tp ≤ p.

• However, practical observation: “yes”.
◦ Cache effects: a system with p processors has typically

also p times as much cache which yields more cache hits.
◦ Search anomalies: if the computation involves a “search”,

one processor may be lucky to find the result early.

• These advantages can be “practically” not achieved on a
single processor system.

However, often super-linear speedups indicate program errors.

4/14



Amdahl’s Law

Assume that a workload contains a sequential fraction f .

• Amdahl’s law: Sp ≤ 1

f+ 1−f
p

≤ 1
f

◦ Speedup has an upper limit determined by f .

sequential

fraction

fraction

parallelizable1− f

f

Amdahl’s law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.

5/14



Gustafson’s Law
Assume workload can be scaled as much as time permits.

• Amdahl: Sp ≤ 1

f+ 1−f
p

◦ Fixed work load T = f · T + (1− f) · T
◦ Sp ≤ T

f ·T+
(1−f)·T

p

= 1
f+ 1−f

p

• Gustafson: Sp ≤ f + p · (1− f)

◦ Scalable work load Tp = f · T + p · (1− f) · T
◦ Sp ≤ f ·T+p·(1−f)·T

f ·T+
p·(1−f)·T

p

= f ·T+p·(1−f)·T
T = f + p · (1− f)

If the parallelizable
workload grows linearly
with the numer of
processors, the speedup
grows correspondingly
such that the efficiency
remains constant.

Gustafson’s law, en.wikipedia.org 6/14



Scalability Analysis

We have to scale the workload to keep the efficiency constant.

• Assume Tp,n =
Tn+Pp,n

p .
◦ Tp,n: the parallel time with p processors for problem size n.
◦ Tn: the basic work performed by the sequential program.
◦ Pp,n: the extra work performed by the parallel program.

• Then Ep,n = Tn
p·Tp,n

= Tn
Tn+Pp,n

.
◦ Ep,n: the efficiency with p processors for problem size n.
◦ Thus Tn =

Ep,n

1−Ep,n
·Pp,n; for achieving constant efficiency E,

we have to ensure Tn = E
1−E · Pp,n = KE · Pp,n.

• Isoefficiency function: IEp = KE · Pp,n

◦ IEp describes how much the basic work load has to grow for
growing processor number p to keep efficiency E.

◦ n: problem size such that Tn = KE · Pp,n.

The less IEp grows, the more scalable the program is.

7/14



Example: Matrix Multiplication
A B C

Multiplication of two square
matrices A,B of dimension n.

• Row-oriented parallelization.
◦ A is scattered, B is broadcast, C is gathered.

• Tn = n3 and Tp,n = n3

p + 3n2

◦ Tp,n =
Tn+Pp,n

p

◦ Pp,n = Tp,n · p− Tn = (n3

p + 3n2) · p− n3 = 3pn2

• Tn = KE · Pp,n

◦ n3 = KE · 3pn2

◦ n = KE · 3p
• IEp = KE · Pp,n

◦ IEp = KE · 3pn2 = KE · 3p · (KE · 3p)2 = (KE)3 · 27p3

The matrix dimension n must grow with Ω(p), the basic work
load thus grows with Ω(p3).

8/14



Example: Matrix Multiplication

Often only asymptotic estimations are possible/needed.

• Tn = Θ(n3) and Pp,n = Θ(p log p + n2√p)

◦ Fox-Otto-Hey algorithm on
√
p×√p torus.

• Tn = Ω(Pp,n)

◦ n3 = Ω(p log p + n2√p)

◦ n3 = Ω(n2√p)⇒ n = Ω(
√
p)

◦ n = Ω(
√
p)⇒ n3 = Ω(

√
p3) = Ω(p

√
p) = Ω(p log p)

◦ n3 = Ω(n2√p)∧n3 = Ω(p log p)⇒ n3 = Ω(p log p+n2√p) X

◦ n = Ω(
√
p)

• IEp = Ω(Pp,n)

◦ IEp = Ω(p log p + n2√p) = Ω(p log p + p
√
p) = Ω(p

√
p)

The matrix dimension n must grow with Ω(
√
p), the basic work

load thus grows with Ω(p
√
p).

9/14



Modeling Program Performance

T =
1

p
(Tcomp + Tcomm + Tidle)

• Tcomp: computation time.

• Tcomm: communication time.

• Tidle: idle time.

Figure 3.2, Ian Foster: DBPP

The parallel program overhead mainly stems from
communicating and idling.

10/14



Communication Time

TL = ts + tw · L

• TL: the time for sending a
message of size L.

• ts: the fixed message
startup time.

• tw: the transfer time per
word of the message.

Figures 3.3 and 3.4, Ian Foster: DBPP

Typically ts � tw, thus it is better to send a single big message
rather than many small messages. 11/14



Idle Time

• Apply load-balancing
techniques.
• Overlap computation and

communication.
◦ Have multiple threads

per processor.
◦ Let process interleave

computation and
communication.

Figure 3.5, Ian Foster: DBPP

Structure the program to minimize idling.

12/14



Execution Profiles

Poor performance may have multiple reasons.

• Replicated computation.

• Idle times due to load imbalances.

• Number of messages transmitted.

• Size of messages transmitted.

Figure 3.8, Ian Foster: DBPP

Modeling/measuring execution profiles may help to improve the
design of a program.

13/14



Experimental Studies

• Design experiment.

◦ Identify data to be obtained.
◦ Determine parameter ranges.
◦ Ensure adequacy of measurements.

• Perform experiment.

◦ Repeat runs to verify reproducability.
◦ Drop outliers, average the others.

• Fit observed data o(i) to model m(i):
◦ Least square fitting: minimize∑

i

(o(i)−m(i))2

◦ Scaled least square fitting: minimize

∑
i

(
o(i)−m(i)

o(i)
)2

(giving more weight to smaller values).

Figure 3.9, Ian Foster: DBPP

14/14


