
SMT SOLVING:
COMBINING DECISION PROCEDURES
Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at

Lemmas on Demand
How to decide 𝑇 |= 𝐹 for unquantified formula 𝐹 and decidable theory 𝑇?

• So far: convert 𝐹 into a disjunctive normal form 𝐶1 ∨ . . . ∨ 𝐶𝑛.
◦ 𝐹 is 𝑇-satisfiable if and only if some 𝐶𝑖 is 𝑇-satisfiable.
◦ Problem: the number 𝑛 of clauses may be exponential in the size of 𝐹.

• Better: combine the decision procedure for 𝑇 with a SAT solver.
◦ The SAT solver is applied to the propositional skeleton 𝐹.

Every atomic formula 𝐴 in 𝐹 is abstracted to a propositional variable 𝐴.
If 𝐹 is unsatisfiable, 𝐹 is unsatisfiable and we are done.
Otherwise, the SAT solver produces a satisfying assignment represented by a
conjunction 𝐿1 ∧ . . . ∧ 𝐿𝑚 of propositional literals.

◦ The decision procedure is applied to the 𝑇-formula 𝐿1 ∧ . . . ∧ 𝐿𝑚.
Propositional variable 𝐿𝑖 is expanded into the atomic formula 𝐿𝑖 it represents.
If the formula is satisfiable, 𝐹 is satisfiable and we are done.
Otherwise, the decision procedure determines a minimal unsatisfiable subformula 𝐶

of 𝐿1 ∧ . . . ∧ 𝐿𝑚 and we repeat the process with 𝐹 ∧ ¬𝐶.

Each formula ¬𝐶 produced represents a “lemma” deduced from 𝐹. 1/10

Example

𝐸-satisfiability of 𝐹 :⇔ 𝑥 = 𝑦 ∧ ((𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑧) ∨ 𝑥 = 𝑧).

• First iteration:
◦ Propositional skeleton: 𝑎 ∧ ((𝑏 ∧ ¬𝑐) ∨ 𝑐)
◦ Satisfying assignment: 𝑎 ∧ 𝑏 ∧ ¬𝑐
◦ Unsatisfiable concretization: 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑧

◦ Strengthened formula: 𝐹 ∧ ¬(𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑧)
• Second iteration:

◦ Propositional Skeleton: 𝑎 ∧ ((𝑏 ∧ ¬𝑐) ∨ 𝑐) ∧ ¬(𝑎 ∧ 𝑏 ∧ ¬𝑐)
◦ Satisfying assignment: 𝑎 ∧ 𝑏 ∧ 𝑐

◦ Satisfiable concretization: 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ 𝑥 = 𝑧

Formula 𝐹 is 𝐸-satisfiable.

2/10

Algorithm

function SAT-DECIDE(𝐹) ⊲ decides 𝑇-satisfiability of 𝐹
𝐹 := ABSTRACT(𝐹)
loop
(sat ,Ls) := SAT(𝐹) ⊲ decides satisfiability of propositional skeleton of 𝐹
if ¬sat return false
Ls := CONCRETIZE(Ls)
(sat , 𝐶) := DECIDE(Ls) ⊲ decides 𝑇-satisfiability of Ls
if sat return true
𝐹 := 𝐹 ∧ ABSTRACT(¬𝐶)

end loop
end function

This basic approach can be further optimized, e.g., by integrating the interaction
with the decision procedure directly into a DPLL-based SAT solver (“lazy encoding”).

3/10

Combining Decision Procedures

How to decide a conjunction of atomic formulas with operations from different
decidable theories such as LRA and EUF?

(𝑦 ≥ 𝑧) ∧ (𝑥 − 𝑧 ≥ 𝑦) ∧ (𝑧 ≥ 0) ∧ (𝑓 (𝑓 (𝑥) − 𝑓 (𝑦)) ≠ 𝑓 (𝑧))

• Theory combination problem: decide 𝑇1 ∪ 𝑇2 |= 𝐹 for formula 𝐹 and theories 𝑇1, 𝑇2.
◦ Problem: even if 𝑇1 and 𝑇2 are decidable, 𝑇1 ∪ 𝑇2 may be undecidable.

• Definition: a theory 𝑇 is stably infinite, if for every quantifier-free formula 𝐹 that is
𝑇-satisfiable, there exists an infinite domain that satisfies 𝑇 .
◦ Theories LRA and EUF are stably infinite.
◦ The theory {𝑥 = 𝑎 ∨ 𝑥 = 𝑏} with constants 𝑎, 𝑏 is not stably infinite (why?).

• Theorem: let 𝑇1 and 𝑇2 be theories for which the quantifier-free fragment is decidable
and that have no common constants, functions, or predicates (except for “=”). If 𝑇1
and 𝑇2 are stably infinite, then the quantifier-free fragment of 𝑇1 ∪ 𝑇2 is decidable.

Under some constraints, the theory combination problem is indeed solvable.
4/10

Formula Purification

Before proceeding, let us tidy the formula a bit.

• Purification: ensure that every atom is from only one theory.
◦ Repeatedly replace in the formula each “alien” subexpression 𝐸 by a fresh

variable 𝑣𝐸 and add the constraint 𝑣𝐸 = 𝐸 .
◦ The transformation preserves the satisfiability of the formula.

• Example: (𝑓 (𝑥, 0) ≥ 𝑧) ∧ (𝑓 (𝑦, 0) ≤ 𝑧) ∧ (𝑥 ≥ 𝑦) ∧ (𝑦 ≤ 𝑥) ∧ (𝑧 − 𝑓 (𝑥, 0) ≥ 1).

(𝑣1 ≥ 𝑧) ∧ (𝑣2 ≤ 𝑧) ∧ (𝑥 ≥ 𝑦) ∧ (𝑦 ≤ 𝑥) ∧ (𝑧 − 𝑣1 ≥ 1) ∧
𝑣1 = 𝑓 (𝑥, 𝑣3) ∧ 𝑣2 = 𝑓 (𝑦, 𝑣3) ∧ 𝑣3 = 0

A preparatory step for theory combination.

5/10

The Nelson-Oppen Method (for Convex Theories)
Greg Nelson and Derek C. Oppen (1979).

function NELSONOPPEN(𝐹) ⊲ decides 𝑇1 ∪ . . . ∪ 𝑇𝑛-satisfiability of literal conjunction 𝐹

𝐹1, . . . , 𝐹𝑛 := PURIFY(𝐹) ⊲ for convex theories 𝑇1, . . . , 𝑇𝑛

loop
if ∃𝑖. ¬DECIDE𝑖 (𝐹𝑖) return false ⊲ decide 𝑇𝑖-satisfiability of 𝐹𝑖
if ¬∃𝑥, 𝑦, 𝑗 . INFERRED 𝑗 (𝑥, 𝑦) return true
choose 𝑥, 𝑦, 𝑗 with INFERRED 𝑗 (𝑥, 𝑦) ⊲ infer variable equality 𝑥 = 𝑦 not present in theory 𝑇 𝑗

𝐹 𝑗 := 𝐹 𝑗 ∪ {𝑥 = 𝑦} ⊲ propagate inferred variable equality to 𝑇 𝑗

end loop
end function

INFERRED 𝑗 (𝑥, 𝑦) :⇔ ∃𝑖. (SHARED(𝐹𝑖 , 𝐹 𝑗 , {𝑥, 𝑦})) ∧ INFER𝑖 (𝐹𝑖 , (𝑥 = 𝑦)) ∧ ¬INFER 𝑗 (𝐹 𝑗 , (𝑥 = 𝑦)))

• SHARED(𝐹𝑖 , 𝐹 𝑗 , {𝑥, 𝑦}): variables 𝑥, 𝑦 are shared by formulas 𝐹𝑖 and 𝐹 𝑗 .

• INFER𝑖(𝐹𝑖 , (𝑥 = 𝑦)): variable equality (𝑥 = 𝑦) can be inferred from 𝐹𝑖 in theory 𝑇𝑖 .
◦ 𝐹𝑖 ⇒ 𝑥 = 𝑦 is 𝑇𝑖-valid (𝐹𝑖 ∧ ¬(𝑥 = 𝑦) is 𝑇𝑖-unsatisfiable).

The iterative propagation of inferred variable equalities between theories. 6/10

Example
(𝑓 (𝑥, 0) ≥ 𝑧) ∧ (𝑓 (𝑦, 0) ≤ 𝑧) ∧ (𝑥 ≥ 𝑦) ∧ (𝑦 ≥ 𝑥) ∧ (𝑧 − 𝑓 (𝑥, 0) ≥ 1)

• Purified formula:
(𝑣1 ≥ 𝑧) ∧ (𝑣2 ≤ 𝑧) ∧ (𝑥 ≥ 𝑦) ∧ (𝑦 ≥ 𝑥) ∧ (𝑧 − 𝑣1 ≥ 1) ∧
𝑣1 = 𝑓 (𝑥, 𝑣3) ∧ 𝑣2 = 𝑓 (𝑦, 𝑣3) ∧ 𝑣3 = 0

• Equality propagation:
𝐹1 (𝐿𝑅𝐴) 𝐹2 (𝐸𝑈𝐹)
𝑣1 ≥ 𝑧 𝑣1 = 𝑓 (𝑥, 𝑣3)
𝑣2 ≤ 𝑧 𝑣2 = 𝑓 (𝑦, 𝑣3)
𝑥 ≥ 𝑦

𝑦 ≥ 𝑥

𝑧 − 𝑣1 ≥ 1

𝑣3 = 0

𝑥 = 𝑦 → 𝑥 = 𝑦

𝑣1 = 𝑣2 ← 𝑣1 = 𝑣2

𝑣1 = 𝑧

unsat
7/10

Example
(𝑦 ≥ 𝑥) ∧ (𝑥 − 𝑧 ≥ 𝑦) ∧ (𝑧 ≥ 0) ∧ (𝑓 (𝑓 (𝑥) − 𝑓 (𝑦)) ≠ 𝑓 (𝑧))

• Purified formula:
(𝑦 ≥ 𝑥) ∧ (𝑥 − 𝑧 ≥ 𝑦) ∧ (𝑧 ≥ 0) ∧ (𝑓 (𝑣1) ≠ 𝑓 (𝑧)) ∧
𝑣1 = 𝑣2 − 𝑣3 ∧ 𝑣2 = 𝑓 (𝑥) ∧ 𝑣3 = 𝑓 (𝑦)

• Equality propagation:
𝐹1 (𝐿𝑅𝐴) 𝐹2 (𝐸𝑈𝐹)
𝑦 ≥ 𝑥 𝑓 (𝑣1) ≠ 𝑓 (𝑧)
𝑥 − 𝑧 ≥ 𝑦 𝑣2 = 𝑓 (𝑥)
𝑧 ≥ 0 𝑣3 = 𝑓 (𝑦)
𝑣1 = 𝑣2 − 𝑣3

𝑧 = 0

𝑥 = 𝑦 → 𝑥 = 𝑦

𝑣2 = 𝑣3 ← 𝑣2 = 𝑣3

𝑣1 = 0

𝑣1 = 𝑧 → 𝑣1 = 𝑧

unsat
8/10

Convex Theories
• Definition: Theory 𝑇 is convex, if for every formula 𝐹 := 𝐿1 ∧ . . . ∧ 𝐿𝑚 with literals

𝐿1, . . . , 𝐿𝑚 the following holds (for variables 𝑥1, . . . , 𝑥𝑛 and 𝑦1, . . . , 𝑦𝑛):
◦ If 𝑇 |= 𝐹 ⇒ 𝑥1 = 𝑦1 ∨ . . . ∨ 𝑥𝑛 = 𝑦𝑛, then 𝑇 |= (𝐹 ⇒ 𝑥𝑖 = 𝑦𝑖) for some 𝑖 ∈ {1, . . . , 𝑛}.

If 𝐹 implies in 𝑇 a disjunction of equalities, it already implies one of these equalities.
Thus 𝐹 cannot express “real” disjunctions and it suffices to infer plain equalities.

• Examples:
◦ LRA is convex: a “real” disjunction corresponds to a finite set of 𝑛 ≥ 2 geometric points;

however, by a conjunction of linear equalities (which represent intersections of half-planes),
we can only define point sets that are empty, singletons, or infinite.

◦ EUF is convex: we reduce EUF to 𝐸 and interpret 𝐹 as a set 𝑆 of partitions of variables
into equality classes. If all equalities 𝑥𝑖 = 𝑦𝑖 do not hold, then for every 𝑖 there is a partition
in 𝑆 where 𝑥𝑖 and 𝑦𝑖 are in different classes. Then, since 𝑆 is an intersection of partition
sets arising from the literals in 𝐹, one can show that 𝑆 has a partition where all variable
pairs are in different classes; thus the disjunction does not hold.

◦ LIA (linear integer arithmetic) is not convex: take 𝐹 :⇔ 1 ≤ 𝑥 ∧ 𝑥 ≤ 2∧ 𝑦 = 1∧ 𝑧 = 2; then 𝐹

implies 𝑥 = 𝑦 ∨ 𝑥 = 𝑧 but neither 𝑥 = 𝑦 nor 𝑥 = 𝑧.
9/10

Non-Convex Theories

How to combine with a non-convex theory 𝑇𝑖?

• We may infer in 𝑇𝑖 from formula 𝐹𝑖 only a disjunction 𝑥1 = 𝑦1 ∨ . . . ∨ 𝑥𝑛 = 𝑦𝑛.
◦ But not any equality 𝑥𝑖 = 𝑦𝑖 of this disjunction.

• However, this disjunction can be made minimal (strongest).
◦ Start with the disjunction of all possible variable equalities.
◦ If it cannot be inferred, no smaller disjunction can be inferred either.
◦ Otherwise, strip every 𝑥𝑖 = 𝑦𝑖 if this keeps the disjunction inferred.

• For each remaining 𝑥𝑖 = 𝑦𝑖, recursively call NELSONOPPEN(𝐹 ∧ 𝑥𝑖 = 𝑦𝑖).
◦ Return “true” if any call returns “true” and “false”, otherwise.

Thus the Nelson-Oppen method is also applicable to non-convex theories (but with
generally much greater complexity).

10/10

