SMT SOLVING: DECIDABLE THEORIES

Course "Computational Logic"

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

JOHANNES KEPLER
UNIVERSITY LINZ

- A theory T is a set of first-order sentences (closed formulas) that is closed under logical consequence:
$T \models F$ if and only if $F \in T$, for every first-order formula F.
- T may be defined as the set $T h(\mathcal{M}):=\{F|\forall M \in \mathcal{M} . M|=F\}$ of all sentences that hold in (every element of) some class \mathcal{M} of structures.
- Notation $\operatorname{Th}(\mathbb{N}, 0,1,+, \cdot, \leq)$: the theory where $0,1,+, \cdot, \leq$ are interpreted as the usual natural number constants, functions, predicates.
- T may be also defined as the set $C n(A):=\{F|A|=F\}$ of consequences of some recursively enumerable set A of first-order formulas called axioms.
- A set is recursively enumerable if a machine can produce a list of its elements.
- If $T=C n(A)$ for some (finite) set A, then T is (finitely) axiomatiziable.
- Gödel's incompleteness theorem: $\operatorname{Th}(\mathbb{N}, 0,1,+, \cdot, \leq)$ is not axiomatizable.

A theory describes a "domain of interest".

Decision Problems

Theories give rise to two related decision problems.

- The problem of Validity Modulo Theories:
- Given: a first-order formula F and a first-order theory T.
- Decide: does $T \vDash F$ hold, i.e., is F is a logical consequence of T ?
- The problem of Satisfiability Modulo Theories (SMT):
- Given: a first-order formula F and a first-order theory T.
- Decide: is $T \cup\{F\}$ satisfiable?
- Duality: $T \vDash F$ if and only if $T \cup\{\neg F\}$ is not satisfiable.

An SMT solver is a decision procedure for the SMT problem (with respect to some theory or combination of theories); thus it also decides the dual validity problem.

Decidable Problems

For certain classes of formulas/theories, the satisfiability problem is decidable.

- Prenex normal form $\forall^{n} \exists^{m}$ (validity) or $\exists^{n} \forall^{m}$ (satisfiability) ("AE/EA fragment").
- Formulas without functions and with only unary predicates ("monadic fragment").
- Every theory over finite domains (e.g., the domain of fixed-size bit vectors).
- Quantifier-free theory of equality with uninterpreted functions ("equational logic").
- Theory of arrays, theory of recursive data structures.
- Linear arithmetic over integers ("Presburger arithmetic"), natural numbers, reals.
- Theory of reals ("elementary algebra"), complex numbers, algebraically closed fields.
- Logical consequences of equalities over groups, rings, fields ("word problems").
- ...

As we will see later, also any combination of decidable theories is decidable.

SMT-LIB: The Satisfiability Modulo Theories Library

http://smt-lib.org

- A library of theories/logics of practical relevance.
- A common input language for SMT solvers.
- A repository of benchmarks.
- The basis of the yearly SMT-COMP competition.
- https://smt-comp.github.io

Many automated/interactive reasoners and program verifiers are equipped with SMT-LIB interfaces to external SMT solvers.

The SMT-LIB Library

- QF_UF: Unquantified formulas built over a signature of uninterpreted (i.e., free) sort and function symbols.
- QF_LIA: Unquantified linear integer arithmetic. In essence, Boolean combinations of inequations between linear polynomials over integer variables.

Z3: An SMT solver with SMT-LIB Support

Software: https://github.com/Z3Prover/z3
Tutorial: Z3 - A Tutorial (Leonardo de Moura and Nikolaj Bjørner)

- An SMT solver developed since 2007 at Microsoft Research.
- Nikolaj Bjørner and Leonardo de Moura.
- Open source since 2015 under the MIT License.
- Highly efficient and versatile.
- Frequent winner of various divisions of the SMT-COMP series.
- Backend of various software verification systems (e.g., Microsoft Boogie).
- Uses the SMT-LIB language and supports various SMT-LIB logics.
- Uninterpreted functions, linear arithmetic, fixed-size bit-vectors, algebraic datatypes, arrays, polynomial arithmetic, ...
- Also supports quantification.
- However, when using quantifiers, the solver is generally incomplete.

The SMT-LIB Language

; file example1.smt2: Integer arithmetic
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
(exit)
debian10!1> z3 example1.smt unsat

```
; file example2.smt2: Getting values or models
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (+ x (* 2 y)) 20))
(assert (= (- x y) 2))
(check-sat)
(get-value (x y))
(get-model)
(exit)
```

debian10!1> z3 example2.smt2
sat
($(\mathrm{x} 8)(\mathrm{y} 6))$
(model
(define-fun y () Int 6)
(define-fun x () Int 8)
)

The SMT-LIB Language

```
; file example3.smt2: sat
; Modeling sequential code in SSA form (((x 0) 2)
; Buggy swap: int x, y; int t = x; x = y; y = x; ((y 0) 3)
(set-logic QF_UFLIA)
(declare-fun x (Int) Int)
(declare-fun y (Int) Int)
(declare-fun t (Int) Int)
(assert (= (t 0) (x 0)))
(assert (= (x 1) (y 0)))
(assert (= (y 1) (x 1)))
(assert (not
    (and (= (x 1) (y 0))
            (= (y 1) (x 0)))))
(check-sat)
(get-value ((x 0) (y 0) (x 1) (y 1)))
(get-model)
(exit)
```


Example Application: Program Verification

We can reduce the verification of programs to deciding the satisfiability of formulas.

- Verification of program with respect to pre- and post-condition:

```
{a[0] = x\wedgea[1] = y^a[2]=z}
        i = 0; m = a[i];
        i = i+1; if (a[i] < m) m = a[i];
        i = i+1; if (a[i] < m) m = a[i];
{m\leqx\wedgem\leqy^m\leqz\wedge(m=x\veem=y\veem=z)}
```

- Satisfiability of formula:

$$
\begin{aligned}
& a[0]=x \wedge a[1]=y \wedge a[2]=z \wedge \\
& i_{0}=0 \wedge m_{0}=a\left[i_{0}\right] \wedge \\
& i_{1}=i_{0}+1 \wedge\left(\text { if } a\left[i_{1}\right]<m_{0} \text { then } m_{1}=a\left[i_{1}\right] \text { else } m_{1}=m_{0}\right) \wedge \\
& i_{2}=i_{1}+1 \wedge\left(\text { if } a\left[i_{2}\right]<m_{1} \text { then } m_{2}=a\left[i_{2}\right] \text { else } m_{2}=m_{1}\right) \wedge \\
& \neg\left(m_{2} \leq x \wedge m_{2} \leq y \wedge m_{2} \leq z \wedge\left(m_{2}=x \vee m_{2}=y \vee m_{2}=z\right)\right)
\end{aligned}
$$

The unsatisfiability of the formula establishes the correctness of the program with respect to its specification; a satisfying valuation determines a violating program run.

Program Verification: SMT-LIB Script

```
; file minimum.smt2:
(set-logic QF_UFLIA)
(declare-fun a (Int) Int)
(declare-const x Int) (declare-const y Int) (declare-const z Int)
(declare-const iO Int) (declare-const i1 Int) (declare-const i2 Int)
(declare-const m0 Int) (declare-const m1 Int) (declare-const m2 Int)
(assert (= (a 0) x)) (assert (= (a 1) y)) (assert (= (a 2) z))
(assert (= i0 0)) (assert (= m0 (a iO)))
(assert (= i1 (+ i0 1))) (assert (ite (< (a i1) m0) (= m1 (a i1)) (= m1 m0)))
(assert (= i2 (+ i1 1))) (assert (ite (< (a i2) m1) (= m2 (a i2)) (= m2 m1)))
(assert (not
    (and (and (and (<= m2 x) (<= m2 y)) (<= m2 z))
        (or (or (= m2 x) (= m2 y)) (= m2 z)))))
(check-sat) (exit)
debian10!1> z3 minimum.smt2
unsat
```


Program Verification: SMT-LIB Script

; file minimum2.smt2:
...
; BUG: ">" rather than "<"

```
(assert (ite (> (a i2) m1) (= m2 (a i2)) (= m2 m1)))
```

.
(check-sat) (get-value (x y z i0 m0 i1 m1 i2 m2)) (get-model) (exit)
alan!89> z3 minimum2.smt2
sat
(x 1) (y 0) (z 2) (i0 0) (m0 1) (i1 1) (m1 0) (i2 2) (m2 2))
(model
(define-fun m0 () Int 1) (define-fun i1 () Int 1) (define-fun m2 () Int 2)
(define-fun y () Int 0) (define-fun m1 () Int 0) (define-fun i2 () Int 2)
(define-fun iO () Int 0) (define-fun z () Int 2) (define-fun x () Int 1)
(define-fun $a((x!1$ Int)) Int (ite (= x!1 0) 1 (ite (= $x!1$ 1) 0 (ite ($=x!12$ 2 1)))))

The assignments of a buggy program with an inverted test operation.

The Theory LRA: Linear Real Arithmetic

Essentially the SMT-LIB logic QF_LRA.

- $L R A$ is a quantifier-free first-order theory.
- Interpretation over the domain \mathbb{R} of real numbers.
- Only atomic formulas are inequalties $a \leq b$ with polynomials a, b.
- Integer and rational constants, functions + and \cdot, predicate \leq.
- Also,$-<,>, \geq$, = are allowed: $a-b$ can be reduced to $a+(-1) \cdot b ;\{<,>\}$ can be reduced to $\{=, \leq, \geq\} ;=$ can be reduced to $\{\leq, \geq\} ; \geq$ can be reduced to \leq.
- Linear: in every multiplication $a \cdot b, a$ must be a constant.
- LRA-Satisfiability of formula F :
- Convert F into its disjunctive normal form $C_{1} \vee \ldots \vee C_{n}$.
- F is $L R A$-satisfiable if and only if some C_{i} is $L R A$-satisfiable.

To decide the $L R A$-Satisfiability of F, it suffices to decide the satisfiability of a conjunction of (possibly negated) inequalities $a \leq b$ with linear polynomials a, b (in the following, we only consider conjunctions of unnegated inequalities).

Deciding $L R A$-Satisfiability by Fourier-Motzkin Elimination

Joseph Fourier (1826), Theodore Motzkin (1936).

function FourierMotzkin (F) while F contains a variable do

Choose some variable x in F
Arithmetically transform every inequality in which x occurs into the form $a \leq x$ or $x \leq b$
Let A be the set of all a where $a \leq x$ is an inequality in F.
Let B be the set of all b where $x \leq b$ is an inequality in F.
Remove from F all inequalities of form $a \leq x$ and $x \leq b$.
Add to F a (possibly simplified version of the) inequality $a \leq b$ for every pair $(a, b) \in A \times B$
end while
if F contains a constraint $c_{1} \leq c_{2}$ with constant c_{1} greater than constant c_{2} then
return false
\triangleright unsatisfiabile
else
return true \quad satisfiable
end if
end function
$\triangleright F$ is a conjunction of inequalities $a \leq b$ with linear polynomials a, b

Example

$L R A$-Satisfiability of formula $F: \Leftrightarrow(z \leq x-y) \wedge(x+2 \cdot y \leq 5) \wedge(y \leq 4 \cdot z-2 \cdot x)$

- Eliminate x :
- Transform: $(z+y \leq x) \wedge(x \leq 5-2 \cdot y) \wedge\left(x \leq 2 \cdot z-\frac{1}{2} \cdot y\right)$
- Eliminate: $(z+y \leq 5-2 \cdot y) \wedge\left(z+y \leq 2 \cdot z-\frac{1}{2} \cdot y\right)$
- Simplify: $(z \leq 5-3 \cdot y) \wedge\left(\frac{3}{2} \cdot y \leq z\right)$
- Eliminate z :
- Transform: $\left(\frac{3}{2} \cdot y \leq z\right) \wedge(z \leq 5-3 \cdot y)$
- Eliminate: $\left(\frac{3}{2} \cdot y \leq 5-3 \cdot y\right)$
- Simplify: $\left(\frac{9}{2} \cdot y \leq 5\right)$
- Eliminate y:
- Transform: $\left(y \leq \frac{10}{9}\right)$
- Eliminate: \rceil
F is $L R A$-satisfiable (by, e.g., $y:=0 \in\left[-\infty, \frac{10}{9}\right], z:=0 \in[0,5], x:=0 \in[0,0]$).

Example

$L R A$-Satisfiability of formula $F: \Leftrightarrow(x \leq y) \wedge(x \leq z) \wedge(y+2 \cdot z \leq x) \wedge(1 \leq x)$

- Eliminate x :
- Transform: $(y+2 \cdot z \leq x) \wedge(1 \leq x) \wedge(x \leq y) \wedge(x \leq z)$
- Eliminate: $(y+2 \cdot z \leq y) \wedge(y+2 \cdot z \leq z) \wedge(1 \leq y) \wedge(1 \leq z)$
- Simplify: $(z \leq 0) \wedge(y+z \leq 0) \wedge(1 \leq y) \wedge(1 \leq z)$
- Eliminate z :
- Transform: $(1 \leq z) \wedge(z \leq 0) \wedge(z \leq-y) \wedge(1 \leq y)$
- Eliminate: $(1 \leq 0) \wedge(1 \leq-y) \wedge(1 \leq y)$
- Simplify: $(1 \leq 0) \wedge(y \leq-1) \wedge(1 \leq y)$
- Eliminate y:
- Transform: $(1 \leq y) \wedge(y \leq-1) \wedge(1 \leq 0)$
- Eliminate: $(1 \leq-1) \wedge(1 \leq 0)$
F is $L R A$-unsatisfiable.

The Theory EUF: Equality with Uninterpreted Functions

Essentially the SMT-LIB logic QF_UF.

- $E U F$ is a quantifier-free first-order theory with only predicate " $=$ ".
- Syntax: an arbitrary propositional combination of equalities.
- Semantics: the fixed interpretation of " $=$ " as "equality".
- $E U F$ is sufficient to also deal with arbitrary other predicates in a formula F :
- Introduce a fresh constant T and a fresh function f_{p} for every other predicate p.
- Transform every atomic formula $p(\ldots)$ into an equality $f_{p}(\ldots)=T$.
- Formula F is satisfiable if and only if its transformed version is $E U F$-satisfiable.
- EUF-satisfiability of formula F :
- Convert F into its disjunctive normal form $C_{1} \vee \ldots \vee C_{n}$.
- F is $E U F$-satisfiable if and only if some C_{i} is $E U F$-satisfiable.

It suffices to decide the satisfiability of a conjunction of (negated) equalities.

Deciding EUF-Satisfiability by Congruence Closure

Greg Nelson and Derek C. Oppen (1980).

- $R \subseteq S \times S$ is a congruence relation if it is an equivalence relation
$\circ R$ is reflexive, symmetric, and transitive
that satisfies for every n-ary function f the congruence condition of f :
- $\forall t, u \in S^{n} .\left(\forall 1 \leq i \leq n . R\left(t_{i}, u_{i}\right)\right) \Rightarrow R(f(t), f(u))$
- The congruence closure R^{c} is the smallest congruence relation covering R :
- R^{c} is a congruence relation with $R \subseteq R^{c}$
- $\forall R^{\prime} .\left(R^{\prime}\right.$ is a congruence relation with $\left.R \subseteq R^{\prime}\right) \Rightarrow\left(R^{c} \subseteq R^{\prime}\right)$
- EUF-satisfiablity of formula $F: \Leftrightarrow\left(\bigwedge_{i=1}^{n} t_{i}=u_{i}\right) \wedge\left(\bigwedge_{j=n+1}^{n+m} t_{j} \neq u_{j}\right)$:
- Let R be the relation $\left\{\left(t_{i}, u_{i}\right) \mid 1 \leq i \leq n\right\}$ on the set S of subterms of F.
$\circ F$ is $E U F$-satisfiable if and only if $\forall n+1 \leq j \leq n+m$. $\neg R^{c}\left(t_{j}, u_{j}\right)$.
To decide the $E U F$-satisfiability of F, it suffices to compute the congruence closure of the term equalities in F and check that it is compatible with the term inequalities.

Congruence Closure: Basic Idea

We compute the congruence closure by partitioning S into classes of congruent terms.

- Partition $S / R^{c}:=\left\{[t]_{R^{c}} \mid t \in S\right\}$.
- Congruence class $[t]_{R^{c}}: R^{c}(t, u)$ if and only if $[t]_{R^{c}}=[u]_{R^{c}}$.
- Given F with equations $t_{1}=u_{1}, \ldots, t_{n}=u_{n}$, compute partitions $P_{0}, P_{1}, \ldots, P_{n}=S / R^{c}$.
- P_{0} : every element of S represents a separate congruence class.
- P_{i+1} : determined from P_{i} by merging [t_{i+1}] and [u_{i+1}], i.e., by forming their union and propagating new congruences that arise within this union.
- Example: satisfiability of $F: \Leftrightarrow f(a, b)=a \wedge f(f(a, b), b) \neq a$
- Set $S:=\{a, b, f(a, b), f(f(a, b), b)\}$, single equation $f(a, b)=a$.
- $P_{0}:=\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}$
- $P_{1}:=\{\{b\},\{a, f(a, b), f(f(a, b), b)\}\}$
- Union of $[f(a, b)]$ and $[a]:\{\{b\},\{a, f(a, b)\},\{f(f(a, b), b)\}\}$
- Propagation: $[f(a, b)]=[a]$ implies $[f(f(a, b), b)]=[f(a, b)]$
- F is $E U F$-unsatisfiable: $[f(f(a, b), b)]=[a]$.

Congrence Closure: Algorithm

```
function CoNGRUENCECLOSURE(S,R)
    P:={{t}|t\inS} \triangleright compute partition P := S/( (R
    for (t,u)\inR do
        P:= Merge(S, P,t,u)
    end for }\quad\triangleright\mathrm{ return relation determined by }
    return {(t,u) \inS \S|FIND (P,t)= FIND (P,u)}
end function
function CONGRUENT(P,t,u)
```



```
        return }\forall1\leqi\leqn.\operatorname{FIND}(P,\mp@subsup{t}{i}{})=\operatorname{Find}(P,\mp@subsup{u}{i}{}
    else
        return false
    end if
end function
```

P can be represented by a "disjoint-set" data structure with efficient merge/find algorithms.

```
function \(\operatorname{Merge}(S, P, t, u) \quad \triangleright \operatorname{merge}[t]\) and \([u]\)
    \(p_{t}, p_{u}:=\operatorname{Find}(P, t), \operatorname{Find}(P, u)\)
    if \(p_{t}=p_{u}\) return \(P\)
    \(P:=\left(P \backslash\left\{p_{t}, p_{u}\right\}\right) \cup\left\{p_{t} \cup p_{u}\right\}\)
    for \(\left(t_{1}, t_{2}\right) \in S \times S\) do
        \(p_{1}, p_{2}:=\operatorname{Find}\left(P, t_{1}\right), \operatorname{Find}\left(P, t_{2}\right)\)
        if \(p_{1} \neq p_{2} \wedge \operatorname{Congruent}\left(P, t_{1}, t_{2}\right)\) then
            \(P:=\operatorname{Merge}\left(P, p_{1}, p_{2}\right)\)
        end if
        end for
        return \(P\)
end function
function \(\operatorname{Find}(P, t) \triangleright\) find congruence class \([t] \in P\)
    choose \(p \in P\) with \(t \in p\)
    return \(p\)
end function
```


Congruence Closure: More Examples

- Example: satisfiability of $F: \Leftrightarrow f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a$.
- $P_{0}:=\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}$
- $\left.P_{1}:=\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{f^{2}(a), f^{5}(a)\right\}\right\}\right\}$
- Union of $\left[f^{3}(a)\right]$ and $[a]:\left\{\left\{a, f^{3}(a)\right\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}$
- Propagation: $\left[f^{3}(a)\right]=[a]$ implies $\left[f^{4}(a)\right]=[f(a)]$ and $\left[f^{5}(a)\right]=\left[f^{2}(a)\right]$.
- $P_{2}:=\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}$
- Union of $\left[f^{5}(a)\right]$ and $[a]:\left\{\left\{a, f^{2}(a), f^{3}(a), f^{5}(a)\right\},\left\{f(a), f^{4}(a)\right\}\right\}$
- Propagation: $\left[f^{2}(a)\right]=[a]$ implies $\left[f^{3}(a)\right]=[f(a)]$.
- F is $E U F$-unsatisfiable: $[f(a)]=[a]$.
- Example: satisfiability of $F: \Leftrightarrow f(x)=y \wedge x \neq y$.
- $P_{0}:=\{\{x\},\{y\},\{f(x)\},\{f(y)\}\}$
- $P_{1}:=\{\{x\},\{y, f(x)\},\{f(y)\}\}$
- Union of $[f(x)]$ and $[y]:\{\{x\},\{y, f(x)\},\{f(y)\}\}$
- No more propagation.
- F is $E U F$-satisfiable: $[x] \neq[y]$.

The Theory E: Equality Logic

$E U F$ without uninterpreted functions (i.e., only with constants).

- Decision of E-satisfiability:
- Computation of congruence closure without the need to propagate congruences:
function $\operatorname{Merge}(S, P, t, u)$
$p_{t}, p_{u}:=\operatorname{Find}(P, t), \operatorname{Find}(P, u)$
return $\left(P \backslash\left\{p_{t}, p_{u}\right\}\right) \cup\left\{p_{t} \cup p_{u}\right\} \quad \triangleright$ equals P, if $p_{t}=p_{u}$
end function
- Ackermann's Reduction: transformation of an $E U F$-formula into an E-formula.
- Replace every function application $f\left(t_{1}, \ldots, t_{n}\right)$ by a fresh constant $f_{t_{1}, \ldots, t_{n}}$.
- For every pair of applications $f\left(t_{1}, \ldots, t_{n}\right)$ and $f\left(u_{1}, \ldots, u_{n}\right)$, add the constraint

$$
\left(t_{1}=u_{1} \wedge \ldots \wedge t_{n}=u_{n}\right) \Rightarrow f_{t_{1}, \ldots, t_{n}}=f_{u_{1}, \ldots, u_{n}}
$$

- The result is E-satisfiable if and only if the original formula is $E U F$-satisfiable.

The theory E needs larger formulas but has a simpler decision algorithm than $E U F$.

E-Satisfiability: Example

EUF-satisfiability of formula $F: \Leftrightarrow x_{2}=x_{3} \wedge f\left(x_{1}\right)=f\left(x_{3}\right) \wedge f\left(x_{1}\right) \neq f\left(x_{2}\right)$

- Ackermann's reduction to E-formula F^{\prime} :

$$
\begin{aligned}
& x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge \\
& \left(x_{1}=x_{2} \Rightarrow f_{1}=f_{2}\right) \wedge\left(x_{1}=x_{3} \Rightarrow f_{1}=f_{3}\right) \wedge\left(x_{2}=x_{3} \Rightarrow f_{2}=f_{3}\right)
\end{aligned}
$$

- Disjunctive normal form of F^{\prime} :

$$
\begin{aligned}
& \left(\underline{x_{2}=x_{3}} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge \underline{x_{2} \neq x_{3}}\right) \vee \\
& \left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge f_{2}=f_{3}\right) \vee \\
& \left(\underline{x_{2}=x_{3}} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge x_{1} \neq x_{2} \wedge f_{1}=f_{3} \wedge \underline{x_{2} \neq x_{3}}\right) \vee \\
& \left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge x_{1} \neq x_{2} \wedge f_{1}=f_{3} \wedge \overline{\left.f_{2}=f_{3}\right)} \vee\right. \\
& \left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge \underline{f_{1} \neq f_{2}} \wedge \underline{f_{1}=f_{2}} \wedge x_{1} \neq x_{3} \wedge x_{2} \neq x_{3}\right) \vee \\
& \left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge \underline{f_{1} \neq f_{2}} \wedge \underline{f_{1}=f_{2}} \wedge x_{1} \neq x_{3} \wedge f_{2}=f_{3}\right) \vee \\
& \left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge \underline{f_{1} \neq f_{2}} \wedge \underline{f_{1}=f_{2}} \wedge f_{1}=f_{3} \wedge x_{2} \neq x_{3}\right) \vee \\
& \left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge \underline{f_{1} \neq f_{2}} \wedge \underline{f_{1}=f_{2}} \wedge f_{1}=f_{3} \wedge f_{2}=f_{3}\right)
\end{aligned}
$$

E-Satisfiability: Example

E-satisfiability of DNF of F^{\prime} : only two clauses do not have conflicting literals.

- Satisfiability of $\left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge f_{2}=f_{3}\right)$:
- $P_{0}:=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{f_{1}\right\},\left\{f_{2}\right\},\left\{f_{3}\right\}\right\}$
- $P_{1}:=\left\{\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{f_{1}\right\},\left\{f_{2}\right\},\left\{f_{3}\right\}\right\}$
- $P_{2}:=\left\{\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{f_{1}, f_{3}\right\},\left\{f_{2}\right\}\right\}$
- $P_{3}:=\left\{\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{f_{1}, f_{2}, f_{3}\right\}\right\}$
- $\left[f_{1}\right]=\left[f_{2}\right]$: clause is E-unsatisfiable.
- Satisfiability of $\left(x_{2}=x_{3} \wedge f_{1}=f_{3} \wedge f_{1} \neq f_{2} \wedge x_{1} \neq x_{2} \wedge f_{1}=f_{3} \wedge f_{2}=f_{3}\right)$:
- $P_{0}:=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{f_{1}\right\},\left\{f_{2}\right\},\left\{f_{3}\right\}\right\}$
- $P_{1}:=\left\{\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{f_{1}\right\},\left\{f_{2}\right\},\left\{f_{3}\right\}\right\}$
- $P_{2}:=\left\{\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{f_{1}, f_{3}\right\},\left\{f_{2}\right\}\right\}$
- $P_{3}:=\left\{\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{f_{1}, f_{2}, f_{3}\right\}\right\}$
- $\left[f_{1}\right]=\left[f_{2}\right]$: clause is E-unsatisfiable.

DNF of F^{\prime} is E-unsatisfiable, thus F is $E U F$-unsatisfiable.

Congruence Closure in OCaml

```
let rec subterms tm =
    match tm with
        Fn(f,args) -> itlist (union ** subterms) args [tm]
    | _ -> [tm];;
let congruent eqv (s,t) = (* Test whether subterms are congruent under an equivalence. *)
    match (s,t) with
        Fn(f,a1),Fn(g,a2) -> f = g & forall2 (equivalent eqv) a1 a2
    | _ -> false;;
let rec emerge (s,t) (eqv,pfn) = (* Merging of terms, with congruence closure. *)
    let s' = canonize eqv s and t' = canonize eqv t in
    if s' = t' then (eqv,pfn) else
    let sp = tryapplyl pfn s' and tp = tryapplyl pfn t' in
    let eqv' = equate (s,t) eqv in
    let st' = canonize eqv' s' in
    let pfn' = (st' |-> union sp tp) pfn in
    itlist (fun (u,v) (eqv,pfn) ->
                            if congruent eqv (u,v) then emerge (u,v) (eqv,pfn)
                    else eqv,pfn)
(allpairs (fun u v -> (u,v)) sp tp) (eqv',pfn');;

\section*{EUF-Satisfiability/Validity in OCaml}
```

let predecessors t pfn =
match t with
Fn(f,a) -> itlist (fun s f -> (s |-> insert t (tryapplyl f s)) f) (setify a) pfn
| _ -> pfn;;
let ccsatisfiable fms = (* Satisfiability of conjunction of ground equations and inequations. *)
let pos,neg = partition positive fms in
let eqps = map dest_eq pos and eqns = map (dest_eq ** negate) neg in
let lrs = map fst eqps @ map snd eqps @ map fst eqns @ map snd eqns in
let pfn = itlist predecessors (unions(map subterms lrs)) undefined in
let eqv,_ = itlist emerge eqps (unequal,pfn) in
forall (fun (l,r) -> not(equivalent eqv l r)) eqns;;
let ccvalid fm = (* Validity checking a universal formula. *)
let fms = simpdnf(askolemize(Not(generalize fm))) in
not (exists ccsatisfiable fms);;

ccvalid <<f(f(f(f(f(c))))) = c /\ f(f(f(c))) = c ==> f(c) = c \/ f(g(c)) = g(f(c))>>; ;

- : bool = true

ccvalid <<f(f(f(f(c)))) = c /\ f(f(c)) = c ==> f(c) = c>>;;

- : bool = true

```
```

