
FIRST-ORDER LOGIC:
REASONING ABOUT EQUALITY
Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at

Equality

So far, the binary predicate symbol “=” has played no special role; however, due to
its central role in mathematics, it deserves particular attention.

• Standard: First-Order Logic with Equality
◦ Most important logic in general practice.
◦ First-order logic where “=” has the fixed interpretation “equality”.

Normal model: a structure where = is interpreted as “equality”.
Simple approach: add explicit equality axioms to every proving problem.
More comprehensive: extend first-order proof calculus by rules for equality.

• Alternative: Equational Logic
◦ A restricted subset of predicate logic.
◦ The only predicate is “=” (other predicates simulated as functions into Bool).

Implement special (semi-)decision procedure for this logic.

We will now sketch these alternatives in turn.

1/28

Equality Axioms
Equality is the equivalence relation that is a congruence for every predicate/function.

∀𝑥. 𝑥 = 𝑥 (1)

∀𝑥, 𝑦. 𝑥 = 𝑦 ⇒ 𝑦 = 𝑥 (2)

∀𝑥, 𝑦, 𝑧. 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧 (3)

∀𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 . 𝑥1 = 𝑦1 ∧ . . . ∧ 𝑥𝑛 = 𝑦𝑛 ⇒ 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑦1, . . . , 𝑦𝑛) (4)

∀𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 . 𝑥1 = 𝑦1 ∧ . . . ∧ 𝑥𝑛 = 𝑦𝑛 ⇒ 𝑝(𝑥1, . . . , 𝑥𝑛) ⇔ 𝑝(𝑦1, . . . , 𝑦𝑛) (5)

• Axioms (1-3): = is reflexive, symmetric, transitive, i.e., = an equivalence relation.
• Axiom schemes (4-5): = is a function/predicate congruence.

◦ One instance of the schemes for every function symbol 𝑓 and every predicate symbol 𝑝.

• Theorem: Let Δ be a set of formulas and eq (Δ) be the equivalence relation axioms together with
the instances of the congruence schemes for every function/predicate in Δ. Then Δ is satisfiable
by a normal model (valid in all normal models) if and only if Δ ∪ eq (Δ) is satisfiable (valid).
◦ Proof sketch: Any model of Δ ∪ eq (Δ) can be lifted to a normal model of Δ by partitioning the domain

into equivalence classes according to the interpretation of =. 2/28

Implementation in OCaml

let function_congruence (f,n) = ... ;;

let predicate_congruence (p,n) = ... ;;

let equivalence_axioms =

[<<forall x. x = x>>; <<forall x y z. x = y /\ x = z ==> y = z>>];;

let equalitize fm =

let allpreds = predicates fm in

if not (mem ("=",2) allpreds) then fm else

let preds = subtract allpreds ["=",2] and funcs = functions fm in

let axioms = itlist (union ** function_congruence) funcs

(itlist (union ** predicate_congruence) preds

equivalence_axioms) in

Imp(end_itlist mk_and axioms,fm);;

3/28

Implementation in OCaml

let ewd = equalitize

<<(forall x. f(x) ==> g(x)) /\ (exists x. f(x)) /\ (forall x y. g(x) /\ g(y) ==> x = y)

==> forall y. g(y) ==> f(y)>>;;

val ewd : fol formula =

<<(forall x. x = x) /\ (forall x y z. x = y /\ x = z ==> y = z) /\

(forall x1 y1. x1 = y1 ==> f(x1) ==> f(y1)) /\

(forall x1 y1. x1 = y1 ==> g(x1) ==> g(y1)) ==>

(forall x. f(x) ==> g(x)) /\

(exists x. f(x)) /\ (forall x y. g(x) /\ g(y) ==> x = y) ==>

(forall y. g(y) ==> f(y))>>

splittab ewd ;;

Searching with depth limit 0

...

Searching with depth limit 9

- : int list = [9]

Simple approach but not very effective in more complex examples. 4/28

Sequent Calculus and Equality

We may extend the sequent calculus by the “core” of the equality axioms.

Γ, 𝑥 = 𝑦 ⇒ 𝐹 [𝑥] ⇔ 𝐹 [𝑦] ` Δ
Γ ` Δ (SUBST)

Γ, 𝑡 = 𝑡 ` Δ
Γ ` Δ (REFL)

• Rule (SUBST) represents Leibnitz’s law (the principle of substitutivity):
◦ Formula 𝐹 [𝑦] is identical to 𝐹 [𝑥] except that any (not necessarily all) free occurrences of 𝑥

may be replaced by 𝑦 (which must remain free in 𝐹).
• Rule (SUBST) is equivalent to the more special congruence rules:

Γ, 𝑡1 = 𝑢1 ∧ . . . ∧ 𝑡𝑛 = 𝑢𝑛 ⇒ 𝑓 (𝑡1, . . . , 𝑡𝑛) = 𝑓 (𝑢1, . . . , 𝑢𝑛) ` Δ
Γ ` Δ (CONGF)

Γ, 𝑡1 = 𝑢1 ∧ . . . ∧ 𝑡𝑛 = 𝑢𝑛 ⇒ 𝑝 (𝑡1, . . . , 𝑡𝑛) ⇔ 𝑝 (𝑢1, . . . , 𝑢𝑛) ` Δ
Γ ` Δ (CONGP)

• From rules (SUBST) and (REFL), also symmetry and transitivity can be derived.

The extended calculus is sound and complete (with respect to normal models) but
very inefficient to implement automatically.

5/28

First-Order Tableaux and Equality

The method of firder-order tableaux extended by the following rules:

𝑡 = 𝑢

𝐹 [𝑡]
𝐹 [𝑢] 𝑡 = 𝑡

• Replacement: If a branch contains the equality 𝑡 = 𝑢 and the formula 𝐹 [𝑡] with an occurrence of
term 𝑡 that is not in the scope of any quantifier, the branch can be extended by 𝐹 [𝑢] which is a
duplicate of 𝐹 [𝑡] except that the occurrence of 𝑡 in 𝐹 [𝑡] has been replaced by term 𝑢 in 𝐹 [𝑢].

• Reflexivity: We may add to any branch the equality 𝑡 = 𝑡 for an arbitrary term 𝑡.

The extended calculus is sound and complete: if a closed tableau can be derived,
its root formula is not satisfiable by any normal model, and vice versa.

6/28

Example

Proof of ∀𝑥. ∀𝑦. ∀𝑧. 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧:

1. ¬∀𝑥. ∀𝑦. ∀𝑧. 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

2. ¬∀𝑦. ∀𝑧. 𝑐 = 𝑦 ∧ 𝑐 = 𝑧 ⇒ 𝑐 = 𝑧 (1)
3. ¬∀𝑧. 𝑐 = 𝑑 ∧ 𝑑 = 𝑧 ⇒ 𝑐 = 𝑧 (2)
4. ¬(𝑐 = 𝑑 ∧ 𝑑 = 𝑒⇒ 𝑐 = 𝑒) (3)
5. 𝑐 = 𝑑 ∧ 𝑑 = 𝑒 (4)
6. ¬(𝑐 = 𝑒) (4)
7. 𝑐 = 𝑑 (5)
8. 𝑑 = 𝑒 (5)
9. 𝑐 = 𝑒 (7,8)

(6,9)

Proof of ∀𝑥. ∀𝑦. 𝑥 = 𝑦 ⇒ 𝑦 = 𝑥:

1. ¬∀𝑥. ∀𝑦. 𝑥 = 𝑦 ⇒ 𝑦 = 𝑥

2. ¬∀𝑦. 𝑐 = 𝑦 ⇒ 𝑦 = 𝑐 (1)
3. ¬(𝑐 = 𝑑 ⇒ 𝑑 = 𝑐) (2)
4. 𝑐 = 𝑑 (3)
5. ¬(𝑑 = 𝑐) (3)
6. ¬(𝑑 = 𝑑) (4,5)
7. 𝑑 = 𝑑

(6,7)

7/28

Free-Variable Tableaux and Equality

The method of free-variable tableaux extended by the following rules:

𝑡 = 𝑢

𝐹 [𝑡 ′]
𝐹 [𝑢] 𝑥 = 𝑥 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥𝑛)

• MGU Replacement: if 𝑡 = 𝑢 and 𝐹 [𝑡 ′] occur in the same branch of tableau 𝑇 and 𝜎 is a most
general unifier of 𝑡 and 𝑡 ′, then we may replace tableau 𝑇 by 𝑇 ′𝜎 where 𝑇 ′ is identical to 𝑇

except that 𝐹 [𝑢] has been added to the branch.
• Reflexivity: We may add to every branch the equality 𝑥 = 𝑥 where 𝑥 is a fresh variable.
• Function Reflexivity: We may add to every branch the equality 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥𝑛)

where 𝑓 is an 𝑛-ary function symbol and 𝑥1, . . . , 𝑥𝑛 are fresh variables.

The extended calculus is sound and complete: if a closed tableau can be derived,
its root formula is not satisfiable by any normal model, and vice versa.

8/28

Example

Proof of ∀𝑥. ∃𝑦. (𝑦 = 𝑓 (𝑥) ∧ ∀𝑧. (𝑧 = 𝑓 (𝑥) ⇒ 𝑦 = 𝑧)):

1. ¬∀𝑥. ∃𝑦. (𝑦 = 𝑓 (𝑥) ∧ ∀𝑧. (𝑧 = 𝑓 (𝑥) ⇒ 𝑦 = 𝑧))
2. ¬∃𝑦. (𝑦 = 𝑓 (𝑐) ∧ ∀𝑧. (𝑧 = 𝑓 (𝑐) ⇒ 𝑦 = 𝑧)) (1)
3. ¬(𝑦1 = 𝑓 (𝑐) ∧ ∀𝑧. (𝑧 = 𝑓 (𝑐) ⇒ 𝑦1 = 𝑧)) (2)

4. ¬∀𝑧. (𝑧 = 𝑓 (𝑐) ⇒ 𝑓 (𝑐) = 𝑧) (3)
5. ¬(𝑑 = 𝑓 (𝑐) ⇒ 𝑓 (𝑐) = 𝑑) (4)
6. 𝑑 = 𝑓 (𝑐) (5)
7. ¬(𝑓 (𝑐) = 𝑑) (5)
8. ¬(𝑓 (𝑐) = 𝑓 (𝑐)) (6,7)
9. 𝑦3 = 𝑦3

(8,9)

4. ¬(𝑦1 = 𝑓 (𝑐)) (3)
5. 𝑦2 = 𝑦2

(4,5)

Tableau closed with 𝜎 = [𝑦1 ↦→ 𝑓 (𝑐), 𝑦2 ↦→ 𝑓 (𝑐), 𝑦3 ↦→ 𝑓 (𝑐)].

9/28

Paramodulation
An extension of first-order resolution by a treatment of equality (George Robinson
and Lawrence Wos, 1969).

𝐶 ∪ {𝐿 [𝑡]} ∈ 𝐹 𝐷 ∪ {𝑠 = 𝑢} ∈ 𝐹 𝜎 is mgu of t and s
𝐶 ∪ {𝑃[𝑡]} and 𝐷 ∪ {𝑠 = 𝑢} have no common variables 𝐹 ∪ {𝐶𝜎 ∪ 𝐷𝜎 ∪ {𝐿 [𝑢]𝜎}} `

𝐹 ` (PARA)

• The paramodulation rule (PARA):
◦ Literal 𝐿 [𝑡] with an occurrence of term 𝑡 that is replaced by term 𝑢 in 𝐿 [𝑢].
◦ Clause 𝐶𝜎 ∪ 𝐷𝜎 ∪ {𝐿 [𝑢]𝜎} is the paramodulant of 𝐶 ∪ {𝐿 [𝑡]} and 𝐷 ∪ {𝑠 = 𝑢}.

• The paramodulation calculus consists of rules (AX), (RES), (REN), (FACT), (PARA).
◦ Soundness: if 𝐹 ∪ feq (𝐹) ` can be derived, 𝐹 is not satisfiable by a normal model.
◦ Completeness: if 𝐹 is not satisf. by a normal model, 𝐹 ∪ feq (𝐹) ` can be derived.

feq (𝐹) consists of the reflexivity axiom 𝑥 = 𝑥 and one function reflexivity axiom
𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥𝑛) for every 𝑛-ary function symbol 𝑓 in 𝐹.
In most proofs, function reflexivity axioms are not needed; thus many
implementations only use the reflexity axiom.

A much more restricted form of the application of equalities. 10/28

Example

We show the unsatisfiability of

{{𝑞(𝑐)}, {¬𝑞(𝑐), 𝑓 (𝑥) = 𝑥}, {𝑝(𝑥), 𝑝(𝑓 (𝑐))}, {¬𝑝(𝑥),¬𝑝(𝑓 (𝑥))}}

by the following refutation (here reflexivity is not needed):

{ }

{¬𝑝(𝑓 (𝑐))}

{¬𝑝(𝑓 (𝑓 (𝑐)))}

{¬𝑝(𝑥),¬𝑝(𝑓 (𝑥))}

{𝑝(𝑓 (𝑐))}

{𝑝(𝑥), 𝑝(𝑓 (𝑐))}

{ 𝑓 (𝑥) = 𝑥}

{¬𝑞(𝑐), 𝑓 (𝑥) = 𝑥}{𝑞(𝑐)}

3 resolution steps, 1 paramodulation step, 1 factorization step.
11/28

Paramodulation in OCaml

let rec overlapl (l,r) fm rfn = (* Find paramodulations with l = r inside a literal fm. *)

match fm with

Atom(R(f,args)) -> listcases (overlaps (l,r))

(fun i a -> rfn i (Atom(R(f,a)))) args []

| Not(p) -> overlapl (l,r) p (fun i p -> rfn i (Not(p)))

| _ -> failwith "overlapl: not a literal";;

(* Now find paramodulations within a clause. *)

let overlapc (l,r) cl rfn acc = listcases (overlapl (l,r)) rfn cl acc;;

(* Overall paramodulation of ocl by equations in pcl. *)

let paramodulate pcl ocl =

itlist (fun eq -> let pcl' = subtract pcl [eq] in

let (l,r) = dest_eq eq

and rfn i ocl' = image (subst i) (pcl' @ ocl') in

overlapc (l,r) ocl rfn ** overlapc (r,l) ocl rfn)

(filter is_eq pcl) [];;

12/28

Paramodulation in OCaml

let para_clauses cls1 cls2 =

let cls1' = rename "x" cls1 and cls2' = rename "y" cls2 in

paramodulate cls1' cls2' @ paramodulate cls2' cls1';;

let rec paraloop (used,unused) = (* Incorporation into resolution loop. *)

match unused with

[] -> failwith "No proof found"

| cls::ros ->

print_string(string_of_int(length used) ^ " used; "^

string_of_int(length unused) ^ " unused.");

print_newline();

let used' = insert cls used in

let news =

itlist (@) (mapfilter (resolve_clauses cls) used')

(itlist (@) (mapfilter (para_clauses cls) used') []) in

if mem [] news then true else

paraloop(used',itlist (incorporate cls) news ros);;

13/28

Paramodulation in OCaml

let pure_paramodulation fm =

paraloop([],[mk_eq (Var "x") (Var "x")]::simpcnf(specialize(pnf fm)));;

let paramodulation fm =

let fm1 = askolemize(Not(generalize fm)) in

map (pure_paramodulation ** list_conj) (simpdnf fm1);;

paramodulation

<<(forall x. f(f(x)) = f(x)) /\ (forall x. exists y. f(y) = x)

==> forall x. f(x) = x>>;;

0 used; 4 unused.

...

10 used; 108 unused.

11 used; 125 unused.

- : bool list = [true]

The naive application of paramodulation leads to huge proof search spaces; in
practice, strong restrictions and sophisticated strategies are implemented.

14/28

The Superposition Calculus
A spezialization of resolution/paramodulation that leads to smaller search spaces
(Leo Bachmair and Harald Ganzinger, 1991).

𝐶 ∪ {𝑙 = 𝑟 } ∈ 𝐹 𝜎 is mgu of 𝑙 and 𝑟 𝐹 ∪ {𝐶𝜎 } `
𝐹 ` (ER)

𝐶 ∪ {𝑙1 = 𝑟1, 𝑙2 = 𝑟2 } ∈ 𝐹 𝜎 is mgu of 𝑙1 and 𝑙2 𝐹 ∪ {𝐶𝜎 ∪ {(𝑙1 = 𝑟1)𝜎, ¬(𝑟1 = 𝑟2)𝜎 }} `
𝐹 ` (EF)

𝐶 ∪ {𝑙1 = 𝑟1 } ∈ 𝐹 𝐷 ∪ {𝑙2 [𝑙′1] = 𝑟2 } ∈ 𝐹 𝑙′1 is not a variable 𝜎 is mgu of 𝑙1 and 𝑙′1
𝐶 ∪ {𝑙1 = 𝑟1 } and 𝐷 ∪ {𝑙2 [𝑙′1] = 𝑟2 } have no common variables 𝐹 ∪ {𝐶𝜎 ∪ 𝐷𝜎 ∪ {(𝑙2 [𝑟1] = 𝑟2)𝜎 }} `

𝐹 ` (SUP)

𝐶 ∪ {𝑙1 = 𝑟1 } ∈ 𝐹 𝐷 ∪ {¬(𝑙2 [𝑙′1] = 𝑟2) } ∈ 𝐹 𝑙′1 is not a variable 𝜎 is mgu of 𝑙1 and 𝑙′1
𝐶 ∪ {𝑙1 = 𝑟1 } and 𝐷 ∪ {𝑙2 [𝑙′1] = 𝑟2 } have no common variables 𝐹 ∪ {𝐶𝜎 ∪ 𝐷𝜎 ∪ {¬(𝑙2 [𝑟1] = 𝑟2)𝜎 }} `

𝐹 ` (SUP)

• Actually constrained forms of above (SUP) rules.
◦ Term orderings ensure that equations are only applied in one direction.
◦ Still sound and complete with respect to normal models.

Only predicate is =; other predicates are modeled as functions into Bool. 15/28

Equational Logic
Let Δ be a set of equations of form 𝑡 = 𝑢 which are implicitly universally quantified.

(𝑠 = 𝑡) ∈ Δ
Δ ` 𝑠 = 𝑡

(AXIOM) Δ ` 𝑠 = 𝑡

Δ ` (𝑠 = 𝑡) [𝑢/𝑥] (INST)

Δ ` 𝑡 = 𝑡
(REFL) Δ ` 𝑢 = 𝑡

Δ ` 𝑡 = 𝑢
(SYM) Δ ` 𝑡 = 𝑠 Δ ` 𝑠 = 𝑢

Δ ` 𝑡 = 𝑢
(TRANS)

Δ ` 𝑡1 = 𝑢1 . . . Δ ` 𝑡𝑛 = 𝑢𝑛

Δ ` 𝑓 (𝑡1, . . . , 𝑡𝑛) = 𝑓 (𝑢1, . . . , 𝑢𝑛)
(CONG)

• Judgement Δ ` 𝑡 = 𝑢

◦ Interpreted as “every normal model of Δ satisfies 𝑡 = 𝑢”.
◦ Equivalent to: Δ |= 𝑡 = 𝑢 holds in first-order logic with equality.

• Birkhoff’s Theorem (Garrett Birkhoff, 1935):
◦ If Δ ` 𝑠 = 𝑡 is derivable by above inference rules (the “Birkhoff rules”), then every

normal model of Δ satisfies 𝑡 = 𝑢, and vice versa.

Birkhoff’s rules denote a sound and complete inference calculus for equational logic;
like first-order logic, however, equational logic is undecidable. 16/28

Equational Proving
• Let set Δ consist of the following equations:

𝑔 (𝑥, 𝑐) = 𝑥 (1)

𝑔 (𝑥, 𝑓 (𝑦)) = 𝑓 (𝑔 (𝑥, 𝑦)) (2)

ℎ (𝑥, 𝑐) = 𝑐 (3)

ℎ (𝑥, 𝑓 (𝑦)) = 𝑔 (𝑥, ℎ (𝑥, 𝑦)) (4)

• How to prove Δ |= ℎ(𝑓 (𝑓 (𝑐)), 𝑓 (𝑓 (𝑐))) = 𝑔(ℎ(𝑓 (𝑐), 𝑓 (𝑐)), 𝑓 (𝑓 (𝑓 (𝑐))))?
ℎ (𝑓 (𝑓 (𝑐)) , 𝑓 (𝑓 (𝑐))) (4)= 𝑔 (𝑓 (𝑓 (𝑐)) , ℎ (𝑓 (𝑓 (𝑐)) , 𝑓 (𝑐))) (4)= 𝑔 (𝑓 (𝑓 (𝑐)) , 𝑔 (𝑓 (𝑓 (𝑐)) , ℎ (𝑓 (𝑓 (𝑐)) , 𝑐)))

(3)
= 𝑔 (𝑓 (𝑓 (𝑐)) , 𝑔 (𝑓 (𝑓 (𝑐)) , 𝑐)) (1)= 𝑔 (𝑓 (𝑓 (𝑐)) , 𝑓 (𝑓 (𝑐))) (2)= 𝑓 (𝑔 (𝑓 (𝑓 (𝑐)) , 𝑓 (𝑐)))
(2)
= 𝑓 (𝑓 (𝑔 (𝑓 (𝑓 (𝑐)) , 𝑐))) (1)= 𝑓 (𝑓 (𝑓 (𝑓 (𝑐))))

𝑔 (ℎ (𝑓 (𝑐) , 𝑓 (𝑐)) , 𝑓 (𝑓 (𝑓 (𝑐)))) (4)= 𝑔 (𝑔 (𝑓 (𝑐) , ℎ (𝑓 (𝑐) , 𝑐)) , 𝑓 (𝑓 (𝑓 (𝑐)))) (3)= 𝑔 (𝑔 (𝑓 (𝑐) , 𝑐) , 𝑓 (𝑓 (𝑓 (𝑐))))

(1)
= 𝑔 (𝑓 (𝑐) , 𝑓 (𝑓 (𝑓 (𝑐)))) (2)= 𝑓 (𝑔 (𝑓 (𝑐) , 𝑓 (𝑓 (𝑐)))) (2)= 𝑓 (𝑓 (𝑔 (𝑓 (𝑐) , 𝑓 (𝑐)))
(2)
= 𝑓 (𝑓 (𝑓 (𝑔 (𝑓 (𝑐) , 𝑐))) (1)= 𝑓 (𝑓 (𝑓 (𝑓 (𝑐))))

By a sequence of equality substitutions in the left term and a sequence of equality substitutions in the
right term the same term can be derived; thus the left term and the right term are equal.

17/28

Equational Proving
We have just performed a strategy of “simplifying calculations”.
• Set Δ described some arithmetic axioms:

𝑥 + 0 = 𝑥 (1)

𝑥 + (𝑦′) = (𝑥 + 𝑦)′ (2)

𝑥 · 0 = 0 (3)

𝑥 · (𝑦′) = 𝑥 + (𝑥 · 𝑦) (4)

• We have proved Δ |= (0′′) · (0′′) = ((0′) · (0′)) + (0′′′) (i.e., 2 · 2 = 1 + 3):

(0′′) · (0′′) (4)= (0′′) + ((0′′) · (0′)) (4)= (0′′) + ((0′′) + ((0′′) · 0))
(3)
= (0′′) + ((0′′) + 0) (1)= (0′′) + (0′′) (2)= ((0′′) + (0′))′

(2)
= ((0′′) + 0)′′ (1)= 0′′′′

((0′) · (0′)) + (0′′′) (4)= ((0′) + ((0′) · 0)) + (0′′′) (3)= ((0′) + 0) + (0′′′)
(1)
= (0′) + (0′′′) (2)= ((0′) + (0′′))′ (2)= ((0′) + (0′))′′

(2)
= ((0′) + 0)′′′ (1)= 0′′′′

When can this strategy be performed? 18/28

Term Rewriting

Consider the elements of Δ not as equations but as (left-to-right) rewrite rules.

• Abstract reduction system (𝑆,→): a set 𝑆 and a binary relation→ on 𝑆.
◦ 𝑥 ↔ 𝑦: 𝑥 → 𝑦 or 𝑦 → 𝑥.
◦ 𝑥 →∗ 𝑦 and 𝑥 ↔∗ 𝑦: the reflexive transitive closure of→ and↔.

• Term rewriting system: an abstract reduction system induced by Δ.
◦ 𝑆 is the set of terms and→ is the “term rewriting relation” generated by Δ when

considering every equation 𝑡 = 𝑢 as a (left-to-right) rewrite rule.
• Theorem: Let→ be the term rewriting relation induced by Δ. Then we have
Δ |= 𝑡 = 𝑢 if and only if 𝑡 ↔∗ 𝑢.
◦ Proof sketch: If Δ |= 𝑡 = 𝑢, by Birkhoff’s theorem Δ ` 𝑡 = 𝑢 is derivable. One can show by

induction on the Birkhoff rules that this implies 𝑡 ↔∗ 𝑢. Conversely, by the semantics of
substitution 𝑡 → 𝑢 implies Δ |= 𝑡 = 𝑢; from this one can show by induction that also 𝑡 ↔∗ 𝑢
implies Δ |= 𝑡 = 𝑢.

To show Δ |= 𝑡 = 𝑢 it suffices to show 𝑡 ↔∗ 𝑢.
19/28

Term Rewriting as a Decision Strategy

Some fundamental notions and properties of an abstract reduction system (𝑆,→).

• Element 𝑥 ∈ 𝑆 is a normal form: there is no 𝑦 ∈ 𝑆 such that 𝑥 → 𝑦.
• → is terminating (Noetherian): there are no infinite reduction sequences

𝑥0 → 𝑥1 → · · · , i.e., every reduction sequence ends with a normal form 𝑥𝑛 ∈ 𝑆.
• → has the Church-Rosser property: if 𝑥 ↔∗ 𝑦, then 𝑥 →∗ 𝑧 and 𝑦 →∗ 𝑧 for some 𝑧 ∈ 𝑆.

◦ Lemma: If→ has the Church-Rosser property, then for every 𝑥 ∈ 𝑆 there exists at most
one normal form 𝑥′ ∈ 𝑆 such that 𝑥 →∗ 𝑥′.

• → is canonical: → is terminating and also has the Church rosser property.
◦ Lemma: If→ is canonical, then for every 𝑥 ∈ 𝑆 there exists exactly one normal form 𝑥′ ∈ 𝑆

such that 𝑥 →∗ 𝑥′.
• Theorem (Trevor Evans, 1951): If→ is canonical and 𝑥 →∗ 𝑥 ′ and 𝑦 →∗ 𝑦′ with normal

forms 𝑥 ′ ∈ 𝑆 and 𝑦′ ∈ 𝑆, then 𝑥 ↔∗ 𝑦 holds if and only if 𝑥 ′ = 𝑦′ does.

If Δ induces a canonical term rewriting system, we can decide Δ |= 𝑡 = 𝑢 by rewriting
terms 𝑡 and 𝑢 to normal forms 𝑡 ′ and 𝑢′ and comparing 𝑡 ′ with 𝑢′.

20/28

Term Rewriting in OCaml
let rec rewrite1 eqs t = (* Rewriting at the top level with first of list of equations. *)

match eqs with

Atom(R("=",[l;r]))::oeqs ->

(try tsubst (term_match undefined [l,t]) r

with Failure _ -> rewrite1 oeqs t)

| _ -> failwith "rewrite1";;

let rec rewrite eqs tm = (* Rewriting repeatedly and at depth (top-down). *)

try rewrite eqs (rewrite1 eqs tm) with Failure _ ->

match tm with

Var x -> tm

| Fn(f,args) -> let tm' = Fn(f,map (rewrite eqs) args) in

if tm' = tm then tm else rewrite eqs tm';;

rewrite [<<0 + x = x>>; <<S(x) + y = S(x + y)>>;

<<0 * x = 0>>; <<S(x) * y = y + x * y>>]

<<|S(S(S(0))) * S(S(0)) + S(S(S(S(0))))|>>;;

- : term = <<|S(S(S(S(S(S(S(S(S(S(0))))))))))|>>

21/28

Non-Canonical Term Rewriting

• Not Terminating:
𝑥 + 𝑦 = 𝑦 + 𝑥 (1)

𝑐 + 𝑑 → 𝑑 + 𝑐 → 𝑐 + 𝑑 → · · ·

• No Church-Rosser Property:
𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 (1)

(𝑥 + 𝑦) · 𝑧 = 𝑥 · 𝑧 + 𝑦 · 𝑧 (2)

(𝑎 + 𝑏) · (𝑐 + 𝑑)
(1)
→ 𝑎 · (𝑐 + 𝑑) + 𝑏 · (𝑐 + 𝑑)
(1)
→ (𝑎 · 𝑐 + 𝑎 · 𝑑) + 𝑏 · (𝑐 + 𝑑)

(1)
→ (𝑎 · 𝑐 + 𝑎 · 𝑏) + (𝑏 · 𝑐 + 𝑏 · 𝑑)

(𝑎 + 𝑏) · (𝑐 + 𝑑)
(2)
→ (𝑎 + 𝑏) · 𝑐 + (𝑎 + 𝑏) · 𝑑
(2)
→ (𝑎 · 𝑐 + 𝑏 · 𝑐) + (𝑎 + 𝑏) · 𝑑

(2)
→ (𝑎 · 𝑐 + 𝑏 · 𝑐) + (𝑎 · 𝑑 + 𝑏 · 𝑑)

If a term rewriting system is not canonical, rewriting fails as a decision strategy.
22/28

Ensuring Termination
• It is generally undecidable whether a term rewriting system is terminating.

◦ Term rewriting systems can perform arbitrary computations.
◦ The problem whether computing machines halt is undecidable (Alan Turing, 1937).

• But we can prove that a particular term rewriting system is terminating.
◦ Determine a suitable termination ordering, i.e., a well-founded relation on terms that is

decreased by the application of every rewrite rule.
◦ One such termination ordering is the lexicographic path order 𝑡 > 𝑢 defined as follows:

𝑡 > 𝑢, if 𝑢 is a proper subterm of 𝑡.
𝑓 (𝑡1, . . . , 𝑡𝑛) > 𝑡, if 𝑡𝑖 > 𝑡 for some 𝑖.
𝑓 (𝑡1, . . . , 𝑡𝑛) > 𝑓 (𝑢1, . . . , 𝑢𝑛) if 𝑡𝑖 > 𝑢𝑖 for some 𝑖 and 𝑡 𝑗 = 𝑢 𝑗 for all 𝑗 < 𝑖.
𝑓 (𝑡1, . . . , 𝑡𝑛) > 𝑔 (𝑢1, . . . , 𝑢𝑚), if 𝑓 > 𝑔 for some ordering of function/constant symbols.

In the last two rules we additionally require 𝑓 (𝑡1, . . . , 𝑡𝑛) > 𝑢𝑖 for every 𝑖.
• Example: consider the lexicographic path order for ‘ · ’ > ‘+’ > ‘ ′ ’ > ‘0’.

◦ 𝑥 + 0 > 𝑥 because 𝑥 is a proper subterm of 𝑥 + 0.
◦ 𝑥 + (𝑦′) > (𝑥 + 𝑦)′ because ‘+’ > ‘ ′ ’ and 𝑥 + (𝑦′) > 𝑥 + 𝑦 (why?).
◦ 𝑥 · 0 > 0 because 0 is a proper subterm of 𝑥 · 0.
◦ 𝑥 · (𝑦′) > 𝑥 + (𝑥 · 𝑦) because ‘ · ’ > ‘+’ and 𝑥 · (𝑦′) > 𝑥 and 𝑥 · (𝑦′) > 𝑥 · 𝑦 (why?).

Thus the previously stated arithmetic term rewriting system is terminating. 23/28

Ensuring the Church-Rosser Property
• Does the following term rewriting system have the Church-Rosser Property?

(𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧) (1)

1 · 𝑥 = 𝑥 (2)

𝑖(𝑥) · 𝑥 = 1 (3)

• We can rewrite term (1 · 𝑥) · 𝑦 in two different ways:
(1 · 𝑥) · 𝑦

(1)
→ 1 · (𝑥 · 𝑦)

(1 · 𝑥) · 𝑦
(2)
→ 𝑥 · 𝑦

• This does not violate the property, because both results have the same normal form:
1 · (𝑥 · 𝑦)

(2)
→ 𝑥 · 𝑦

• But we can also rewrite term (𝑖(𝑥) · 𝑥) · 𝑦 in two different ways:
(𝑖 (𝑥) · 𝑥) · 𝑦

(1)
→ 𝑖 (𝑥) · (𝑥 · 𝑦)

(𝑖 (𝑥) · 𝑥) · 𝑦
(3)
→ 1 · 𝑦

(2)
→ 𝑦

• Thus we have derived two different normal forms which violates the Church-Rosser property.

This may spark the idea of how to decide the Church-Rosser property. 24/28

Ensuring the Church-Rosser Property
• Reduction relation→ is locally confluent if the following property holds:

if 𝑥 → 𝑦1 and 𝑥 → 𝑦2, then 𝑦1 →∗ 𝑧 and 𝑦2 →∗ 𝑧 for some 𝑧 ∈ 𝑆.
◦ Newman’s Lemma: If a reduction relation→ is both terminating and locally confluent, it has

the Church-Rosser property.
• Thus, given a set Δ of rewrite rules whose reduction relation→ is terminating, the

following algorithm decides whether→ has the Church-Rosser property:
◦ Consider every pair 𝑙1 = 𝑟1 and 𝑙2 = 𝑟2 of rewrite rules (both rules may be the same).
◦ Rename the variables in these rules such that variables in 𝑙1 and 𝑙2 are disjoint.
◦ Determine every critical pair of these rules, i.e., terms 𝑟1𝜎 and 𝑙1 [𝑟2]𝜎 such that:

𝑙 ′2 is a non-variable term such that 𝜎 is the most general unifier of 𝑙2 and 𝑙 ′2 and
𝑙1 contains an occurrence of 𝑙 ′2 and 𝑙1 [𝑟2] is 𝑙1 with that occurrence replaced by 𝑟2.

◦ The reduction reduction system has the Church-Rosser property if and only if every critical
pair 𝑦1 and 𝑦2 can be rewritten by→ to a common normal form 𝑧.

• Example: equations 𝑥1 + 0 = 𝑥1 and 𝑥2 + 0 = 𝑥2 (the first equation renamed).
◦ 𝑥1 + 0 and 𝑥2 + 0 have mgu [𝑥1 ↦→ 𝑥2] which yields the trivial critical pair 𝑥2 and 𝑥2.
◦ We only need to consider the overlap of a rule with itself at a proper subterm of the left side.

The arithmetic system has only trivial critical pairs and thus the C.-R. property. 25/28

Critical Pairs in OCaml
let renamepair (fm1,fm2) = ... ;;

let rec listcases fn rfn lis acc = (* Rewrite with l = r inside tm to give a critical pair. *)

match lis with

[] -> acc

| h::t -> fn h (fun i h' -> rfn i (h'::t)) @ listcases fn (fun i t' -> rfn i (h::t')) t acc;;

let rec overlaps (l,r) tm rfn =

match tm with

Fn(f,args) -> listcases (overlaps (l,r)) (fun i a -> rfn i (Fn(f,a))) args

(try [rfn (fullunify [l,tm]) r] with Failure _ -> [])

| Var x -> [];;

let crit1 (Atom(R("=",[l1;r1]))) (Atom(R("=",[l2;r2]))) =

overlaps (l1,r1) l2 (fun i t -> subst i (mk_eq t r2));;

let critical_pairs fma fmb = (* Generate all critical pairs between two equations. *)

let fm1,fm2 = renamepair (fma,fmb) in

if fma = fmb then crit1 fm1 fm2

else union (crit1 fm1 fm2) (crit1 fm2 fm1);;

let eq = <<f(f(x)) = g(x)>> in critical_pairs eq eq;;

- : fol formula list = [<<f(g(x0)) = g(f(x0))>>; <<g(x1) = g(x1)>>] 26/28

Knuth-Bendix Completion
A semi-algorithm to derive a canonical term rewriting system (Donald Knuth and
Peter Bendix, 1970).

procedure COMPLETE(Δ) ⊲ if the procedure terminates, it returns a canonical system equivalent to Δ

Δ1 ← Δ

repeat ⊲ may not terminate
Δ0 ← Δ1

for every critical pair (𝑡 , 𝑢) in Δ0 do
reduce 𝑡 and 𝑢 to normal forms 𝑡′ and 𝑢′ according to Δ0 ⊲ may not terminate
if 𝑡′ ≠ 𝑢′ then

choose 𝑙 = 𝑟 ∈ {𝑡 = 𝑢, 𝑢 = 𝑡 }
Δ1 ← Δ1 ∪ {𝑙 = 𝑟 }

end if
end for

until Δ1 = Δ0

return Δ1

end procedure

There are numerous improvements to increase the practical applicability.
27/28

The Case of Variable-Free Equations

Our goal is to derive Δ ` (𝑡 = 𝑢).

• Consider the special case of only variable-free equations in Δ ` (𝑡 = 𝑢).
◦ Any occurrence of a symbol 𝑥 in 𝑡 = 𝑢 does not denote any more a “variable” (that

is universally quantified in the equation) but a “constant” (whose value is the same
in all equations in which 𝑥 occurs).

• Then proofs need not apply the Birkhoff rule (INST).

• This makes the theory decidable.

We will next consider decision procedures for variable-free equational logic and
other decidable theories.

28/28

