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The Method of Analytic (“Semantic”) Tableaux

A proof calculus for fist-order logic (Evert W. Beth, 1955) based on two elements:

• Tableau: a way to systematically organize the consequences of a formula.
◦ A “proof tree” for the unsatisfiability of a formula (plural: “tableaux”).

• Unification: a way to deduce (probably) useful instances of quantified formulas.
◦ A generalized form of “matching” a desired goal to the available knowledge.

This method deals with the problem of quantifier instantiation in a much more subtle
way than generating all possible ground instances.
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Propositional Tableau
A tree that refutes a propositional formula by exhibiting all its consequences.

• Initialization: the root is labeled with the formula to be refuted.
• Expansion: the tree is expanded according to the following rules:

¬¬𝐴
𝐴

¬>
⊥

¬⊥
>

𝐴∧ 𝐵

𝐴

𝐵

𝐴∨ 𝐵

𝐴 | 𝐵
𝐴⇒ 𝐵

¬𝐴 | 𝐵
𝐴⇔ 𝐵

𝐴⇒ 𝐵

𝐵 ⇒ 𝐴

¬(𝐴∧ 𝐵)
¬𝐴 | ¬𝐵

¬(𝐴∨ 𝐵)
¬𝐴
¬𝐵

¬(𝐴⇒ 𝐵)
𝐴

¬𝐵

¬(𝐴⇔ 𝐵)
¬(𝐴⇒ 𝐵) | ¬(𝐵 ⇒ 𝐴)

◦ A rule is applicable if its top formula occurs along some branch in the tree; the application
of the rule extends this branch according to the shape of the bottom of the rule:

𝐴: extends the branch by the single formula 𝐴.
𝐴

𝐵
: extends the branch by both formulas 𝐴 and 𝐵.

𝐴 | 𝐵: splits the branch into two by adding one node with 𝐴 and one node with 𝐵.
• Closure: a branch is closed if both formulas 𝐴 and ¬𝐴 occur on it.

If all branches of the tableau are closed, its root formula is unsatisfiable. 2/28



Tree Proof Generator

https://www.umsu.de/trees

3/28

https://www.umsu.de/trees


Correctness of the Method

The method of “propositional tableaux” is sound and complete.

• Soundness: if a closed tableau can be derived, its root formula is unsatisfiable.
◦ Proof sketch: the tableau represents a formula that is equivalent to the root formula:

Every branch denotes the conjunction of all formulas that label its nodes.
The tableau represents the disjunction of all its branches.

It can be easily checked that this property holds initially and is preserved by every expansion rule. If a
branch is closed, it represents an unsatisfiable formula. Thus, if the tableau is closed, the original
formula is equivalent to a disjunction of unsatisfiable formulas, which is itself unsatisfiable.

• Completeness: from every unsatisfiable formula, a closed tableau can be derived.
◦ Proof sketch: the expansion rules transform formulas into “structurally simpler formulas” (the

outermost connective of the original formula has less binding power than that of each derived formula);
thus eventually no more rule is applicable. We assume that this tableau is not closed and derive a
contradiction. Since the tableau is not closed, it has an open branch. From the fact that no more rule is
applicable, one can deduce that the conjunction of all literals on that branch represents a satisfying
valuation of the branch; this contradicts the assumption that the formula is unsatisfiable.

The DNF of a formula can be deduced from its fully expanded tableau (how?).
4/28



First-Order Tableau

A straight-forward extension of a propositional tableau to first-order logic.

• Initialization: the root of the tree is labeled by a closed first-order formula.
• Expansion/Closure: as for a propositional tableau with the following additional rules:

∀𝑥. 𝐹
𝐹 [𝑡/𝑥]

∃𝑥. 𝐹
𝐹 [𝑐/𝑥]

¬∀𝑥. 𝐹
¬𝐹 [𝑐/𝑥]

¬∃𝑥. 𝐹
¬𝐹 [𝑡/𝑥]

◦ Similar to the rules (∀-L) and (∃-R) in sequent calculus, but with a clear distinction
between variables and terms:

An arbitrary ground term 𝑡.
A fresh (“Skolem”) constant 𝑐.

◦ Soundness: as for the propositional tableau, also a first-order tableau represents
a formula that is equivalent to the root formula.

◦ Completeness: the systematic construction of a tableau is possible similar to the
systematic construction of a proof tree in sequent calculus.
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Tree Proof Generator
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Substitutions

We now turn to the topic of unification, starting with the prerequisites.

• A substitution 𝜎 : X → Term is a function that maps every variable to a term.
◦ The support sup(𝜎) of 𝜎 is the set of all variables 𝑥 ∈ X with 𝜎(𝑥) ≠ 𝑥.
◦ 𝜎 = [𝑥1 ↦→ 𝑡1, . . . , 𝑥𝑛 ↦→ 𝑡𝑛]: sup(𝜎) ⊆ {𝑥1, . . . , 𝑥𝑛}, 𝜎(𝑥1) = 𝑡1, . . . , 𝜎(𝑥𝑛) = 𝑡𝑛.

• The application 𝑡𝜎 of a substitution 𝜎 to a term 𝑡 is defined as follows:

𝑥𝜎 := 𝜎(𝑥)
𝑐𝜎 := 𝑐

𝑓 (𝑡1, . . . , 𝑡𝑛)𝜎 := 𝑓 (𝑡1𝜎, . . . , 𝑡𝑛𝜎)

• Example:

𝜎 = [𝑥 ↦→ 𝑓 (𝑥, 𝑦), 𝑦 ↦→ 𝑔(𝑎)]
𝑡 = 𝑓 (𝑥, 𝑔( 𝑓 (𝑥, 𝑓 (𝑦, 𝑧))))

𝑡𝜎 = 𝑓 ( 𝑓 (𝑥, 𝑦), 𝑔( 𝑓 ( 𝑓 (𝑥, 𝑦)), 𝑓 (𝑔(𝑎), 𝑧)))
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Substitution Ordering

• The composition 𝜎1𝜎2 of two substitutions 𝜎1 and 𝜎2 is the unique substitution
that satisfies the following property:

𝑡 (𝜎1𝜎2) = (𝑡𝜎1)𝜎2

◦ Example: 𝜎1 = [𝑥 ↦→ 𝑓 (𝑦), 𝑦 ↦→ 𝑧], 𝜎2 = [𝑥 ↦→ 𝑎, 𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑦].
𝜎1𝜎2 = [𝑥 ↦→ 𝑓 (𝑦)𝜎2, 𝑦 ↦→ 𝑧𝜎2, 𝑧 ↦→ 𝑦] = [𝑥 ↦→ 𝑓 (𝑏), 𝑦 ↦→ 𝑦, 𝑧 ↦→ 𝑦] = [𝑥 ↦→ 𝑓 (𝑏), 𝑧 ↦→ 𝑦]

• Substitution 𝜎 is not less general than substitution 𝜎′, written as 𝜎 � 𝜎′, if
there is some subsitution 𝜗 such that 𝜎𝜗 = 𝜎′.
◦ Relation � is a quasi-ordering (i.e., reflexive and transitive).
◦ Example: 𝜎1 = [𝑥 ↦→ 𝑦], 𝜎2 = [𝑦 ↦→ 𝑥], 𝜎3 = [𝑥 ↦→ 𝑎, 𝑦 ↦→ 𝑎].

𝜎1 � 𝜎2 because 𝜎1 [𝑦 ↦→ 𝑥] = [𝑥 ↦→ 𝑦] [𝑦 ↦→ 𝑥] = [𝑥 ↦→ 𝑥, 𝑦 ↦→ 𝑥] = [𝑦 ↦→ 𝑥] = 𝜎2.
𝜎2 � 𝜎1 because 𝜎2 [𝑥 ↦→ 𝑦] = [𝑦 ↦→ 𝑥] [𝑥 ↦→ 𝑦] = [𝑦 ↦→ 𝑦, 𝑥 ↦→ 𝑦] = [𝑥 ↦→ 𝑦] = 𝜎2.
𝜎1 � 𝜎3 because 𝜎1 [𝑦 ↦→ 𝑎] = [𝑥 ↦→ 𝑦] [𝑦 ↦→ 𝑎] = [𝑥 ↦→ 𝑎, 𝑦 ↦→ 𝑎] = 𝜎3.
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Unification

• Substitution 𝜎 is a unifier of two terms 𝑡1 and 𝑡2 if 𝑡1𝜎 = 𝑡2𝜎.
◦ Example: the following substitutions are unifiers of terms 𝑓 (𝑥, 𝑧) and 𝑓 (𝑦, 𝑔(𝑎)):

𝜎1 = [𝑥 ↦→ 𝑦, 𝑧 ↦→ 𝑔(𝑎)]
𝜎2 = [𝑦 ↦→ 𝑥, 𝑧 ↦→ 𝑔(𝑎)]
𝜎3 = [𝑥 ↦→ 𝑎, 𝑦 ↦→ 𝑎, 𝑧 ↦→ 𝑔(𝑎)]
𝜎4 = [𝑥 ↦→ 𝑔(𝑧), 𝑦 ↦→ 𝑔(𝑧), 𝑧 ↦→ 𝑔(𝑎)]
. . .

• Substitution 𝜎 is a most general unifier of 𝑡1 and 𝑡2 if it is a unifier of 𝑡1 and 𝑡2

and 𝜎 � 𝜎′ for every unifier 𝜎′ of 𝑡1 and 𝑡2.
◦ A most general unifier is unique up to variable renaming.
◦ Example: 𝜎1 and 𝜎2 above are most general unifiers of 𝑓 (𝑥, 𝑧) and 𝑓 (𝑦, 𝑔(𝑎)).

• Substitution 𝜎 is a (most general) unifier of a set 𝑆 of term pairs if it is a (most
general) unifier of every term pair in 𝑆.

The unification problem is to compute for two terms a most general unifier
(respectively to determine that these terms cannot be unified). 9/28



Inhibitors of Unification

When can two terms not be unified?

1. Both terms are not variables and differ in their outermost symbol.
◦ Constants 𝑎 and 𝑏 cannot be unified.
◦ Constant 𝑎 cannot be unified with function application 𝑓 (𝑥).
◦ Function applications 𝑓 (𝑥) and 𝑔(𝑥) cannot be unified.

2. One term is a variable 𝑥, the other one a function application in which 𝑥 occurs.
◦ Variable 𝑥 cannot be unified with function application 𝑓 (𝑥).

All other differences between two terms can be resolved by variable substitutions.
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A Unification Algorithm
John Alan Robinson, 1965.

procedure UNIFY(𝑡 , 𝑢, 𝜎) ⊲ called with 𝜎 = [ ], returns a most general unifier of 𝑡 and 𝑢

if 𝑡 and 𝑢 are the same constant 𝑐 then ⊲ but fails with an error message if 𝑡 and 𝑢 cannot be unified
return 𝜎

else if 𝑡 and 𝑢 are 𝑓 (𝑡1, . . . , 𝑡𝑛) and 𝑓 (𝑢1, . . . , 𝑢𝑛) then ⊲ the same 𝑛-ary function symbol 𝑓
for 𝑖 from 1 to 𝑛 do

𝜎 ← UNIFY (𝑡𝑖 , 𝑢𝑖 , 𝜎)
end for
return 𝜎

else if 𝑡 is a variable 𝑥 then ⊲ eliminate 𝑥

if 𝑥 ∈ sup(𝜎) return UNIFY(𝜎 (𝑥) , 𝑢, 𝜎)
if 𝑥 does not occur in 𝑢𝜎 return 𝜎 [𝑥 ↦→ 𝑢𝜎 ]

else if 𝑢 is a variable 𝑥 then ⊲ eliminate 𝑥

if 𝑥 ∈ sup(𝜎) return UNIFY(𝑡 , 𝜎 (𝑥) , 𝜎)
if 𝑥 does not occur in 𝑡 𝜎 return 𝜎 [𝑥 ↦→ 𝑡 𝜎 ]

end if
fail “unification is impossible”

end procedure

Algorithm needs worst-case
exponential time and space.
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Examples

• Unify 𝑓 (𝑥, 𝑔(𝑎), 𝑔(𝑧)) and 𝑓 (𝑔(𝑦), 𝑔(𝑦), 𝑔(𝑔(𝑥))):
1. Unify 𝑓 (𝑥, 𝑔(𝑎), 𝑔(𝑧)) and 𝑓 (𝑔(𝑦), 𝑔(𝑦), 𝑔(𝑔(𝑥))) with 𝑥 ∉ sup(𝜎) = ∅:

𝜎 = [𝑥 ↦→ 𝑔(𝑦)]
2. Unify 𝑓 (𝑥, 𝑔(𝑎), 𝑔(𝑧)) and 𝑓 (𝑔(𝑦), 𝑔(𝑦), 𝑔(𝑔(𝑥))) with 𝑦 ∉ sup(𝜎) = {𝑥}:

𝜎 = [𝑥 ↦→ 𝑔(𝑦)] [𝑦 ↦→ 𝑎] = [𝑥 ↦→ 𝑔(𝑎), 𝑦 ↦→ 𝑎]
3. Unify 𝑓 (𝑥, 𝑔(𝑎), 𝑔(𝑧)) and 𝑓 (𝑔(𝑦), 𝑔(𝑦), 𝑔(𝑔(𝑥))) with 𝑧 ∉ sup(𝜎) = {𝑥, 𝑦}:

𝜎= [𝑥 ↦→ 𝑔 (𝑎) , 𝑦 ↦→ 𝑎] [𝑧 ↦→ 𝑔 (𝑔 (𝑎)) ] = [𝑥 ↦→ 𝑔 (𝑎) , 𝑦 ↦→ 𝑎, 𝑧 ↦→ 𝑔 (𝑔 (𝑎)) ]
Unification succeeds:
𝑓 (𝑥, 𝑔(𝑎), 𝑔(𝑧))𝜎 = 𝑓 (𝑔(𝑦), 𝑔(𝑦), 𝑔(𝑔(𝑥)))𝜎 = 𝑓 (𝑔(𝑎), 𝑔(𝑎), 𝑔(𝑔(𝑔(𝑎)))).

• Unify 𝑓 (𝑥, 𝑔(𝑦)) and 𝑓 (𝑦, 𝑥):
1. Unify 𝑓 (𝑥, 𝑔(𝑦)) and 𝑓 (𝑦, 𝑥) with 𝑥 ∉ sup(𝜎) = ∅:

𝜎 = [𝑥 ↦→ 𝑦]
2. Unify 𝑓 (𝑥, 𝑔(𝑦)) and 𝑓 (𝑦, 𝑥) with 𝑥 ∈ sup(𝜎) = {𝑥}:

𝜎(𝑥) = 𝑦 { unify 𝑓 (𝑥, 𝑔(𝑦)) and 𝑓 (𝑦, 𝑦).
Variable 𝑦 occurs in 𝑔(𝑦) { unification fails.
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Correctness of the Algorithm

• Theorem: a function call UNIFY(𝑡, 𝑢, [ ]) returns a most general unifier for terms 𝑡 and 𝑢,
if such a unifier exists, and fails with an error message, otherwise.
◦ Proof sketch: to prove that UNIFY terminates, it suffices to determine a well-founded ordering on its

argument tuple (𝑡 , 𝑢, 𝜎) that is decreased in every recursive call. For this, we define a variable
relation 𝑥 → 𝑦 that holds if 𝑥 ∈ sup(𝜎) and 𝑦 ∈ fv(𝜎 (𝑥)). One can show that every recursive call
with argument tuple (𝑡′, 𝑢′, 𝜎′) ensures that the transitive closure→+ is acyclic (because we add a
mapping 𝑥 ↦→ 𝑡 𝜎 respectively 𝑥 ↦→ 𝑢𝜎 to 𝜎 only if 𝑥 does not occur in 𝑡 𝜎 respectively 𝑢𝜎). Then we
can deduce the required well-founded ordering from the fact that 𝑡′ (𝑢′) is either a syntactic subterm of
𝑡 (𝑢) or a term 𝜎 (𝑡) (𝜎 (𝑢)) in which every variable 𝑦 satisfies 𝑡 →+ 𝑦 (𝑢 →+ 𝑦).
If UNIFY fails with an error message, all the previously tested branch conditions do not hold; from our
previous considerations, it is not difficult to establish the correctness of the algorithm in this case. It
remains to prove the correctness of UNIFY, if it indeed returns a substitution. For this we denote by
𝑆 (𝜎) := { 〈𝑥, 𝜎 (𝑥) 〉 | 𝑥 ∈ sup(𝜎) } the set of term pairs represented by 𝜎. Now the correctness of
each branch that returns a substitution depends on two central properties: first, in every call of UNIFY,
its argument 𝜎 is already the most general unifier of 𝑆 (𝜎); second, in every branch, the set of unifiers
of 𝑆 (𝜎) ∪ { 〈𝑡 , 𝑢〉 } equals the set of unifiers of

⋃{𝑆 (𝜎′) ∪ { 〈𝑡′, 𝑢′〉 } | 〈𝑡′, 𝑢′, 𝜎′〉 ∈ 𝑅} where 𝑅 is the
set of all argument tuples of the calls of UNIFY in that branch. We skip the (many) details.
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Unification in OCaml
let rec istriv env x t = (* decides if env* t = x for reflexive transitive closure env* *)

match t with (* fails if adding substitution x|->t to env would lead to a cycle *)

Var y -> y = x or defined env y & istriv env x (apply env y)

| Fn(f,args) -> exists (istriv env x) args & failwith "cyclic";;

let rec unify env eqs = (* result s=[x|->t] is not fully solved: it remains to apply s to t *)

match eqs with

[] -> env

| (Fn(f,fargs),Fn(g,gargs))::oth ->

if f = g & length fargs = length gargs

then unify env (zip fargs gargs @ oth)

else failwith "impossible unification"

| (Var x,t)::oth | (t,Var x)::oth ->

if defined env x then unify env ((apply env x,t)::oth)

else unify (if istriv env x t then env else (x|->t) env) oth;;

let rec solve env = (* computes the fully solved form of substitution env *)

let env' = mapf (tsubst env) env in

if env' = env then env else solve env';;

let fullunify eqs = solve (unify undefined eqs);; 14/28



Unification in OCaml
(* WS: convenience function not in Harrison's book *)

let unification_result fm1 fm2 =

let fv = setify (fvt fm1)@(fvt fm2) in

let i = fullunify [fm1,fm2] in

let f x = if defined i x then [x,apply i x] else [] in

setify (List.concat (map f fv))

;;

# unification_result <<|f(x,y)|>> <<|f(y,x)|>> ;;

- : (string * term) list = [("x", <<|y|>>)]

# unification_result <<|f(x,g(y))|>> <<|f(f(z),w)|>> ;;

- : (string * term) list = [("x", <<|f(z)|>>); ("w", <<|g(y)|>>)]

# unification_result <<|f(x,g(a()),g(z))|>> <<|f(g(y),g(y),g(g(x)))|>> ;;

- : (string * term) list = [("x", <<|g(a)|>>); ("y", <<|a|>>); ("z", <<|g(g(a))|>>)]

# unification_result <<|f(x,g(y))|>> <<|f(y,x)|>> ;;

Exception: Failure "cyclic".
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Unification and Proving
Prawitz and Voghera (1960): derive by unification formula instances “on demand”.

• Gilmore Algorithm:
◦ Generate SNF ∀𝑥1, . . . , 𝑥𝑛 . 𝐹 [𝑥1, . . . , 𝑥𝑛] of negation of formula to be proved as valid.
◦ Generate formula instances 𝐹 [𝑡𝑖1, . . . , 𝑡

𝑖
𝑛] with ground terms 𝑡𝑖1, . . . , 𝑡

𝑖
𝑛 (for 𝑖 = 1, . . .) until the

conjunction of these instances becomes unsatisfiable.
◦ To determine the unsatisfiablity, expand the conjunction into DNF and find in each disjunct

a pair of complementary literals 𝑝(𝑡1, . . . , 𝑡𝑚) and ¬𝑝(𝑡1, . . . , 𝑡𝑚).
• New Idea: instantiate formula with fresh variables rather than ground terms.

◦ Generate formula instances 𝐹 [𝑥𝑖1, . . . , 𝑥
𝑖
𝑛] with fresh variables 𝑥𝑖1, . . . , 𝑥

𝑖
𝑛 (for 𝑖 = 1, . . .).

◦ Expand conjunction into DNF and find in each disjunct a pair of literals 𝑝(𝑡1, . . . , 𝑡𝑚) and
¬𝑝(𝑡 ′1, . . . , 𝑡

′
𝑚) with 𝑡1𝜎 = 𝑡 ′1𝜎, . . . , 𝑡𝑚𝜎 = 𝑡 ′𝑚𝜎 for some most general unifier 𝜎.

◦ Apply 𝜎 to DNF to derive new DNF where one disjunct has complimentary literals and can
be removed; repeat process until DNF is empty or no more complimentary literals exist.

If there exists a refutation by complementary literals derived from ground instances,
there also exists a refutation by complementary literals derived from unification.
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The Prawitz Algorithm in OCaml

let rec unify_literals env tmp =

match tmp with

Atom(R(p1,a1)),Atom(R(p2,a2)) -> unify env [Fn(p1,a1),Fn(p2,a2)]

| Not(p),Not(q) -> unify_literals env (p,q)

| False,False -> env

| _ -> failwith "Can't unify literals";;

let unify_complements env (p,q) = unify_literals env (p,negate q);;

let rec unify_refute djs env =

match djs with

[] -> env

| d::odjs -> let pos,neg = partition positive d in

tryfind (unify_refute odjs ** unify_complements env)

(allpairs (fun p q -> (p,q)) pos neg);;
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The Prawitz Algorithm in OCaml

let rec prawitz_loop djs0 fvs djs n =

let l = length fvs in

let newvars = map (fun k -> "_"^string_of_int (n * l + k)) (1--l) in

let inst = fpf fvs (map (fun x -> Var x) newvars) in

let djs1 = distrib (image (image (subst inst)) djs0) djs in

try unify_refute djs1 undefined,(n + 1)

with Failure _ -> prawitz_loop djs0 fvs djs1 (n + 1);;

let prawitz fm =

let fm0 = skolemize(Not(generalize fm)) in

snd(prawitz_loop (simpdnf fm0) (fv fm0) [[]] 0);;

# prawitz << (P(a) \/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(f(x)))

==> (exists x. R(x)) >>;;

- : int = 3
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The Prawitz Algorithm in OCaml

let p43 = davisputnam <<(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y))

==> forall x y. Q(x,y) <=> Q(y,x)>>;;

0 ground instances tried; 0 items in list

1 ground instances tried; 7 items in list

2 ground instances tried; 10 items in list

...

24 ground instances tried; 137 items in list

25 ground instances tried; 143 items in list

val p43 : int = 26

let p43 = prawitz <<(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y))

==> forall x y. Q(x,y) <=> Q(y,x)>>;;

val p43 : int = 2

The Prawitz algorithm often requires much fewer instantiations; however (as in the
Gilmore algorithm) the size of the DNF representation explodes.
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Free-Variable Tableau

Generate formula instances by unification without a precomputed DNF
representation (Cohen, Trillin, Wegner, 1974).

∀𝑥. 𝐹
𝐹 [𝑥 ′]

∃𝑥. 𝐹
𝐹 [ 𝑓 (𝑥1, . . . , 𝑥𝑛)]

¬∀𝑥. 𝐹
¬𝐹 [ 𝑓 (𝑥1, . . . , 𝑥𝑛)]

¬∃𝑥. 𝐹
¬𝐹 [𝑥 ′]

• Similar to the rules for a first-order tableau without unification, except:
◦ A fresh variable 𝑥 ′.
◦ A fresh 𝑛-ary (“Skolem”) function 𝑓 where {𝑥1, . . . , 𝑥𝑛} = fv(𝐹)\{𝑥}.

𝑛 = 0: Skolem constant 𝑐.
• Furthermore, we have the following new closure rule:

◦ If literals 𝑝(𝑡1, . . . , 𝑡𝑛) and ¬𝑝(𝑡 ′1, . . . , 𝑡 ′𝑛) occur in the same branch of tableaux 𝑇

where 𝑡1𝜎 = 𝑡 ′1𝜎, . . . , 𝑡𝑛𝜎 = 𝑡 ′𝑛𝜎 for some most general unifier 𝜎, then we may
replace 𝑇 by tableaux 𝑇𝜎 (in which the corresponding branch is closed).

𝑇𝜎: identical to 𝑇 except that every term 𝑡 in 𝑇 is replaced by term 𝜎𝑡 in 𝑇𝜎.

Formula instances are generated in an “incremental” fashion. 20/28



Example
(∃𝑥. 𝑝(𝑥)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦)) ⇒ ∃𝑥. ∃𝑦. 𝑞(𝑥, 𝑦)

1. (∃𝑥. 𝑝(𝑥)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦)) ∧ ¬∃𝑥. ∃𝑦. 𝑞(𝑥, 𝑦)
2. (∃𝑥. 𝑝(𝑥)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦)) (1)
3. ¬∃𝑥. ∃𝑦. 𝑞(𝑥, 𝑦) (1)
4. ¬∃𝑦. 𝑞(𝑥1, 𝑦) (3)
5. ¬𝑞(𝑥1, 𝑦1) (4)
6. ∃𝑥. 𝑝(𝑥) (2)
7. ∀𝑥. 𝑝(𝑥) ⇒ ∃𝑦. 𝑞(𝑥, 𝑦) (2)
8. 𝑝(𝑐) (6)
9. 𝑝(𝑥2) ⇒ ∃𝑦. 𝑞(𝑥2, 𝑦) (7)

10. ∃𝑦. 𝑞(𝑐, 𝑦) (c)
11. 𝑞(𝑐, 𝑑) (10)

(5,11)

10. ¬𝑝(𝑥2) (9)
(8,10)

Tableau closed with substitution [𝑥2 ↦→ 𝑐, 𝑥1 ↦→ 𝑐, 𝑦1 ↦→ 𝑑].
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Example
(𝑝(𝑎) ∨ 𝑞(𝑏)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) ∧ (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥))) ⇒ ∃𝑥. 𝑟 (𝑥)

1. (𝑝(𝑎) ∨ 𝑞(𝑏)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) ∧ (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥))) ∧ ¬∃𝑥. 𝑟 (𝑥)
2. (𝑝(𝑎) ∨ 𝑞(𝑏)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) ∧ (∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥))) (1)
3. ¬∃𝑥. 𝑟 (𝑥) (1)
4. (𝑝(𝑎) ∨ 𝑞(𝑏)) ∧ (∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥)) (2)
5. ∀𝑥. 𝑞(𝑥) ⇒ 𝑟 ( 𝑓 (𝑥)) (2)
6. 𝑝(𝑎) ∨ 𝑞(𝑏) (4)
7. ∀𝑥. 𝑝(𝑥) ⇒ 𝑟 (𝑥) (4)

8. 𝑞(𝑏) (6)
9. 𝑞(𝑥3) ⇒ 𝑟 ( 𝑓 (𝑥3)) (5)

10. 𝑟 ( 𝑓 (𝑏)) (10)
11. ¬𝑟 (𝑥4) (3)

(10,11)

10. ¬𝑞(𝑥3) (9)
(8,10)

8. 𝑝(𝑎) (6)
9. 𝑝(𝑥1) ⇒ 𝑟 (𝑥1) (7)

10. 𝑟 (𝑎) (9)
11. ¬𝑟 (𝑥2) (3)

(10,11)

10. ¬𝑝(𝑥1) (9)
(8,10)

Tableaux closed with substitution [𝑥1 ↦→ 𝑎, 𝑥2 ↦→ 𝑎, 𝑥3 ↦→ 𝑏, 𝑥4 ↦→ 𝑓 (𝑏)].
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Implementation of the Free-Variable Tableaux Method

How to implement a complete search for a closed tableau?

• We require arbitrarily many instantiations of all quantified subformulas.
◦ Complex implementation by a repeated traversal of the tableau with a new

instantiation of every quantified formula in every branch.

• Assume that we knew in advance a bound 𝑛 on the maximum number of
instantiations required in every branch for a successful refutation.
◦ We could simply expand every branch of tableau in a “depth-first” fashion by

instantating every quantifier until bound 𝑛 is reached.

• Iterative Deepening: we repeatedly run the search with bound 𝑛 = 0, 1, . . .

◦ If the root formula is unsatisfiable, we eventually reach the appropriate bound.

Iterative deepening provides a simple implementation strategy.
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Free-Variable Tableau in OCaml
The core function essentially computes a DNF in an incremental way.
• lits: literals on current branch of the tableau; fms: other formulas on current branch.
• n: the number of variable instantantations allowed in the branch before giving up.
• cont: a function (“continuation”) for processing the remaining branches.
• env: the substitution computed so far; k: a counter for generating fresh variables.
let rec tableau (fms,lits,n) cont (env,k) = (* assumes formulas are in Skolem normal form *)

if n < 0 then failwith "no proof at this level" else

match fms with

[] -> failwith "tableau: no proof"

| And(p,q)::unexp -> tableau (p::q::unexp,lits,n) cont (env,k)

| Or(p,q)::unexp -> tableau (p::unexp,lits,n) (tableau (q::unexp,lits,n) cont) (env,k)

| Forall(x,p)::unexp ->

let y = Var("_" ^ string_of_int k) in

let p' = subst (x |=> y) p in

tableau (p'::unexp@[Forall(x,p)],lits,n-1) cont (env,k+1)

| fm::unexp ->

try tryfind (fun l -> cont(unify_complements env (fm,l),k)) lits

with Failure _ -> tableau (unexp,fm::lits,n) cont (env,k);;
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Free-Variable Tableau in OCaml
let rec deepen f n = (* iterative deepending of the proof search *)

try print_string "Searching with depth limit ";

print_int n; print_newline(); f n

with Failure _ -> deepen f (n + 1);;

let tabrefute fms =

deepen (fun n -> tableau (fms,[],n) (fun x -> x) (undefined,0); n) 0;;

let tab fm =

let sfm = askolemize(Not(generalize fm)) in

if sfm = False then 0 else tabrefute [sfm];;

# tab << (P(a) \/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(f(x)))

==> (exists x. R(x)) >>;;

Searching with depth limit 0

Searching with depth limit 1

Searching with depth limit 2

Searching with depth limit 3

- : int = 3
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Free-Variable Tableau in OCaml

(* using prawitz, does not terminate after one minute *)

# let p38 = tab

<<(forall x.

P(a) /\ (P(x) ==> (exists y. P(y) /\ R(x,y))) ==>

(exists z w. P(z) /\ R(x,w) /\ R(w,z))) <=>

(forall x.

(~P(a) \/ P(x) \/ (exists z w. P(z) /\ R(x,w) /\ R(w,z))) /\

(~P(a) \/ ~(exists y. P(y) /\ R(x,y)) \/

(exists z w. P(z) /\ R(x,w) /\ R(w,z))))>>;;

Searching with depth limit 0

Searching with depth limit 1

Searching with depth limit 2

Searching with depth limit 3

Searching with depth limit 4

val p38 : int = 4
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Free-Variable Tableau in OCaml
(* try to split up the initial formula first; often a big improvement. *)

let splittab fm =

map tabrefute (simpdnf(askolemize(Not(generalize fm))));;

(* using tab, does not terminate after one minute *)

# let ewd1062 = splittab

<<(forall x. x <= x) /\

(forall x y z. x <= y /\ y <= z ==> x <= z) /\

(forall x y. f(x) <= y <=> x <= g(y))

==> (forall x y. x <= y ==> f(x) <= f(y)) /\

(forall x y. x <= y ==> g(x) <= g(y))>>;;

Searching with depth limit 1

...

Searching with depth limit 9

val ewd1062 : int list = [9; 9]

Beneficial if the formula is a propositional composition of closed universally
quantified formulas (e.g., “axioms” and “corollaries”).
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The Method of Free-Variable Tableaux
Roughly speaking, the method of free-variable tableaux combines ideas from the
Gilmore algorithm (and incremental DNF computation) with unification.

• The tableaux method has top down and global characteristics:
◦ Top-down: The generation of the tableau and the creation of formula instances is

driven by the structure of the proof “goal”; formula instances represent knowledge
that is relevant in the current context for the derivation of a particular subgoal.

◦ Global: When creating two branches from a disjunction

𝐹 [𝑥1] ∨ 𝐺 [𝑥1]

with free (generated) variable 𝑥1, the method effectively performs a “case split”
over a universally quantified disjunction:

∀𝑥. 𝐹 [𝑥] ∨ 𝐺 [𝑥]

Thus variable 𝑥1 must be instantiated in the same way in all tableau branches.

Next, we will consider another unification-based method with “dual” characteristics.
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