Course “Computational Logic”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at

J zu JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at

Our core goal is to show the validity of first-order formulas.

Problem: how to show | F?

Does M E F hold for every structure M (i.e., is every structure M a model of F)?
But there are infinitely many structures with different domains and interpretations!

Can we reduce first-order reasoning to reasoning in some “canonical structures”?

1/26

A Herbrand structure H := (Dg, I) for a formula (language) with symbols C, 7, P
consists of the Herbrand universe Dy and some Herbrand interpretation /.

The Herbrand universe Dy is the set of all terms ¢ formed according to the
following grammar:
tu=c| ft,... ty)

Every constant ¢ € C (if C = { }, we extend C by a constant ¢).

Every n-ary function symbol f € F.

Dy is the set of ground terms (no variables) that includes all constants and is

closed under the application of all function symbols (thus Dy is generally infinite).
Iy is a Herbrand interpretation if the following holds:

I(c) :=c (e Dy) I1(NH(t1,..., th) == f(t1,..., tn) (€ Dy) I(p)(t1,..., tn) € Dy

Iy interprets constant ¢ as itself, n-ary function symbol f as a term constructor,

and n-ary predicate p as an arbritrary n-ary relation over Dy .

A Herbrand structure is a (generalization of a) “term algebra”. 2/26

Theorem: Let F be a quantifier-free formula. Then there exists a structure M
with M | F if and only if there exists a Herbrand structure H with H E F.

Proof sketch: Since the implication from right to left clearly holds, only the implication from
left to right has to be shown. For this, we assume M [F for arbitrary structure M = (D, I)
and show H [F for the Herbrand structure H = (D g, I) over F with

Ig(p)(t1,....th) : & M E p(t1,...,tn)

We take arbitrary valuation vy over Dy and show [F]]‘Z{ =true. Let x1,...,x, be the
free variables of F and consider the closed formula instance

F’':=F[lvg(x1)/x1,...,vH (xn)/xn]. From M E F, we can show M [F’. Furthermore, we
can show [F |5 =[F' ™ where v/(x) := [vy (x) |¥ for any valuation v over D. From
M k= F’, we have [F' [¥ =true and thus also [F |, = true.

Herbrand structures are “canonical structures” for reasoning in first-order logic; all
proof calculi use these structures in some way or another.

3/26

An extension of the propositional sequent calculus by two additional rules.

T, A[t/x], (Vx. A), A+ A
T, (Vx. A), A+ A

'k A Aly/x], A
TrA (Vx. A), A

(V-L) (V-R)

IA[y/x],Ar A
I,(3x. A),Ar A

' A A[t/x], (3x. A), A
TrA (3x A),A

(3-L)

(3-R)

Substitution F[z/x]:
Substitution of term ¢ for every free occurrence of variable x in formula F.
Eigenvariable (Skolem constant) y
y must not occur in the conclusion of the rule.
Witness term ¢
Term ¢ may contain arbitrary variables, constants, and function symbols; however,
every variable in ¢ different from x must not be not bound by any quantifier in A.

4/26

PGy) F ()3 pT)
p(x,y),¥y. p(x,y) F 3x. p(x,y)
Vy. p(x,y) F Ix. p(x,y)
dx. Vy. p(x,y) + Ix. p(x,y)
dx. Vy. p(x,y) v Vy. x. p(x,y)
F (3x. Vy. p(x,y)) = (Vy. 3x. p(x,y))

(v-L)

(=0

(V-R)
(=-R)

A simple proof that applies all quantifier rules.

5/26

We may apply some additional “convenience” rules:
[LAFA C-AA
IALAFA T'FAAA

Reduce size of sequent; soundness can be easily derived.

(DROP) (DROP)

——— ——— (AX)
p(X), q(_x, y) Fq(x.y) (3-R.DROP)
p(x),q(x,y) F3x, y. q(x,y)
— —— (AX) — = (3-L)
p(x) F p(x) p(x),3y. ¢(x,y) F I, y. q(x,y) =1
p(X), p(x) = Jy. (X, y) ¥ I, y. 4(x,y) (v-L.DROP)
p(x),Vx. p(x) = Jy. g(x,y) F Ix, y. q(x,y) a0
Ax. p(x),Vx. p(x) = Ty. g(x,y) + x, y. g(x,y))
(Fx. p(0) A (Vx. p(x) = Fy. g(x,y)) £ 3x,y. g(xy) R)

F((3x p(x) A (Yx. p(x) = Fy. q(x,y) = 3, y. g(x,y)

We may drop formulas that have served their purpose.

6/26

(AX) (AX)

p(@.r@ (@ 40). 7)+ (7 ()
v @ Y @r@ s o) @ Y o) e
P (@ =@ rax) a(b)-a(0) = (7 (b)) - 2x.r(oo
p(a), (Vx. p(x) = r(x)) F 3x. r(x) q(b), (Vx.q(x) = r(f(x)))+ 3Ix. r(x) (v-L.DROP)
p(a) v q(b), (Vx. p(x) = r(x), (¥x. g(x) = r(f())) F Fx. r(¥)),
(p(a) v q(b)), (Yx. p(x) = r(x)) A (vx. ¢(x) = r(f(0)) ¥ 3x. rlx)),
(p(@) v q(b)) A (Yx. p(x) = r(x)) A (Vx. g(x) = r(f(x))) F Tx. r(x) (=R)

F((p(@) Vv q(b)) A (Yx. p(x) = r(x)) A (Yx. ¢(x) = r(f(x)))) = Fx. r(x)

A proof by “case distinction”.

7/26

Sequent Calculus Trainer - o x

— ropositional irst-Order O
Edit | | Help Propositional @ NBEN. i
= Logic C= 5 Logic Y

Rule set

Sequentinput

Antecedent Succedent

(P(a)| Q(b)) &
(forall x. P(x)->R(x)) &
==p| (forall x. Qx)-> R(f(x))) ->
(exists x. R(x))

scan sequent

Substitution <L = Substitution - R

Contraction-L_ Contraction- R

)WQ(b)A(Vx .P(x)—=R(x))A(Vx .Q(x)=R(f(x)))—(3Ix .R(x)) Delete subree

8/26

Sequent Calculus Trainer

B

o =

Proof completed

x
Congratulations! 0

You have successfully completed the proof.

R(a) > R(a) _
R(a) = 3x .R(x)

., o), RAW) > RED)
= 5x R(x), Q(b) Q(b), R((b) = 3x .R(x)

P@), Vx Q) R([(x) = 3% R(x). Pa) . P(a), R(a), ¥x Q@) SR(®) = 3% R(x) Q(b), QI)SR(D)) = 3x R(x) '
P(a), P(a)oR(a), Vx .Q(x) SR(I(x)) = 3x .R(x) ' Q(b), Vx .Q(x)oR(I(x)) = 3x R(x) :
P(a), ¥x .P(x)oR(x), Vx .Q(x) oR(I(x)) = 3x R(x) Q(b), Vx P(x)oR(x), Vx .Q(x) R(I(x) = 3x R(x)

P(@)VQ(b). Vx P(x) oR(x), Vx .Q)-R(Ix)) = 3x .R(x)
(P(a)VQ(D)A(Vx P()SR(), Vx -Q(x)>R(I(x)) = 3x R(x)
(P(a)VQ(b))A(Vx P(x) SR(x)A(Vx -Q(x)SR(I(x))) = 3x .R(x)
0= (P(a)VQ(b))A(Vx -P(x) >R(x))A(Vx -Q(x) SR(I(x))) —(3x -R(x))
D >

Rule set

Substitution =L | Substitution - R
Contraction-L_ Contraction- R
Reflexivity - L Weakening

Delete subtree

9/26

ProofNavigator &

ST RISC ProofNavigator - o x a/a exalnplez .tXt
Proof Tree Det:a;ajlluns newcontext ||examplezll ;
feror
T:TYPE;
a:T;
(p(a) V q(b)) A (Y2ET:p(x) = r(x)) A (Ya€T q(x) = r(f(x))) b:T:
(Sz€Tir(x)) f:T—>T;
p: (T)->BOOLEAN;
q: (T)->BOOLEAN;
e r: (T)->BOOLEAN;
;ead }examplez.txt";
ype
Vatue biT. F: FORMULA
Value f:T->T.
e o7 s (p(a) OR q(b)) AND
Value r:T->BOOLEAN. _
Fornuta F. (FORALL(x:T): p(x) => r(x)) AND
Proof read (proof status: trusted, closed, absolute).
File example2.txt read. I (FORALL(x:T): q(x) => r(£(x))) =>

0000 B0SEG0 Bl (EXISTS(x:T): r(x));

10/26

File Options Help
IProof Tree
~ [geal: scatter
~ [yxhl: split pag
~ [weyliauto
[i41]: proved (CVC3)
~ [xcy]: instantiate bin 1xo
~ [6dd]: auto
[xas]: proved (CVC3)

RISC ProofNavigator

Proof State

‘ Formula [F] proof state [6dd] (autosimp,CVCS3first order,boolean): auto

Constants (with types) 1a , b, f.p.q,7.
quv| YzeT:p(a) = riz)

ixo| YeeT:g(x) = r(f(x))

ymi| ¢(b)

3or| (b))

oys| we T

)

‘ Parent: [xcy] Children: [xas]

View Declarations

Input/Output
Proof state [i41] is closed by decision procedure.
Proof state [xas] is closed by decision procedure.
Proof replay successful.
Use 'proof F' to see proof.
proof F;
proof status: trusted, closed, absolute
[gcal: scatter
[yxhl: split pag
[wey]: auto
[i41]: proved (CVC3)
[xcy]: instantiate b in 1xo
[6dd]: auto
[xas]: proved (CVC3)

“Pae EFIXOLYRO® M-

11/26

Theorem: Every derivable sequent is valid.
Proof Sketch: It suffices to show that, if the conclusion of a rule is not valid, also some premise is not valid.

L AL/x], (. A) AR A I+ A Aly/x], A
T, (Vx. A),A+ A (v-L) kA, (Vx. A), A

(v-R)

Rule (V-L): Since the conclusion is not valid, we have some structure M and valuation v with [T M = true,
[Vx. AIM =true, [A]M =true, and [A]|M =false. Let d := [¢] . From above, to show that the
premise is not valid, it suffices to show [A[z/x] |M = true. From the side condition on #, we can show

[AL/x] M = [[AHIVVI[de]' From [Vx. A]M = true, we know [A]]’V‘”[XHd] = true and are done.

Rule (V-R): Since the conclusion is not valid, we have some structure M and valuation v with [T M = true,
[A]M =false, [Vx. A]M =false, and [A |¥ = false. From [Vx. A]|M = false, there is some d € D such
that [[A]]valx.—»dj =false. Let v/ := v[y — d]. Since y does not occur in the conclusion, we have
[T]™ =true, [A]M =false, and [A]? =false. Thus, to show that the premise is not valid, it suffices to
show [A[y/x]]]"f’,’ =false, i.e., [Aly/x]]]va[y.—)dj = false. Since y does not occur in A, we can show

M — M —
[Aly/x]]]v[yb—)dj = |[A]]le._>dJ = false and are done.
Rules (3-L) and (3-R): analogously.

12/26

To construct a proof tree for sequent ' + A, we use the following data:

vy = [y0,v1,...]: aninfinite sequence of variables that do not occur in T+ A.
These variables can be used as eigenvariables in rules (¥-R) and (3-L).

a = |ag, a1, ...]: an infinite sequence of term sequences:
The terms in these sequences are available as witnesses in rules (V-L) and (3-R).

If some function symbols occur in T + A, all sequences ag, a1, . .. are infinite.
[70] © ag = [70,...]: an enumeration of all terms constructed from the free

variables, constants, and function symbols in T + A.
If T' + A does not contain any free variable or constant, we use ¢ := yg.

a;>1: an enumeration [y;, ...] of all terms that contain y; and are constructed from
y1,...,y: and the free variables, constants, and function symbols in T" + A.

During the proof tree construction, the value of program variable » indicates that y4, ..., y,
have been used as eigenvariables in rules (V-R) or (3-L); the sequences ag, ay, ..., a,

contain all terms in which these variables may occur.
13/26

procedure SEARCH(I - A) procedure EXPAND(N, T, ts,y, In)

INITIALIZE(y, a, to) Let S be the subtree of T with root N
T,ts,n — (I'rA),[t0],0 Apply the propositional rules until the formulas
while T has some open leaf node do in all leaf nodes of S are atomic or quantified
for every open leaf node N in T do for every leaf formula in S to which (V-L) or (3-R) applies do
EXPAND(N, T, ts, y, n) repeatedly apply the rule for every ¢ € ts
end for end for
for i from 0 do n do for every leaf formula in S to which (V-R) or (3-L) applies do
if —-empty(a;) then nen+l
ts, a; « ts o [head(a;)], tail(a;) apply the rule for x « y,
end if end for
end for end procedure
?nd ,Wh"e A leaf node is open if it does not match any axiom and there is a
If 7 is complete then non-atomic node formula whose outermost symbol is
WRITE(“T proves I + A7)
else either a connective
WRITE(“T refutes '+ A”) or a quantifier to which (v-L) or (3-R) has not yet been
end if applied for every term in ts.

end procedure This has to be recorded in EXPAND. 14/26

By the soundness of the calculus, if SEARCH terminates with a complete proof tree, I' + A is valid.

Theorem: if I' + A is valid, SEARCH terminates with a complete proof tree.

Proof Sketch: we assume that I' + A is valid but SEARCH does not terminate with a complete proof
tree; from this, we derive a contradiction. There are two cases:

First, SEARCH may terminate with an incomplete tree T, i.e., there is a leaf node I';, + A; at some
depth k that does not match any axiom. But, from the loop condition, no leaf node of T is open. Thus,
I'x + Ax only contains atoms and quantified formulas to which (v-L) and (3-R) have been applied for
every term in ts. Consider every node I'; + A; along the pathT'+ A — ... — Iy + Ag from the root
I'rAtotheleaf 'y + Ar. Let S :=J{[; U-A; |0 <i < k}where -A:= {-=A | A € A}. Nowitis
possible to prove that every formula in S is satisfiable by the Herbrand structure Hs = (Dg, Is) where
(considering all free variables as constants) Dg := |J{a; | 0 <i < n} U ts (for the final values

of ts,a,n) and Is(p)(t1, ..., ty) :© p(t1,...,tn) € U{[i |0 <i < k}. Sincep =T and Ag = A,
this structure Hg refutes I' + A, which contradicts the assumption that T' + A is valid.

Second, SEARCH may not terminate. Then its execution describes the construction of an infinite
tree T (even if only a finite part of T' is ever computed). Since T is infinite but finitely branching, by
Koénig’'s lemma it contains some infinite path '+ A — Analogously to the first case, we can
construct from this path a satisfiable set S and structure Hg that refutes I' + A (to show this, it is
essential that for every universal formula in some I'; respectively existential formula in some A;, every
instance of that formula appears in the branch in some I';», respectively A;s,). 15/26

Completeness: every valid first-order formula is provable.
Kurt Gédel, 1929 (for another proof calculus of first-order logic).
A corollary of the previous theorem: given a valid formula F, procedure SEARCH
finds a complete proof tree for the sequent + F.
However, if F is invalid, SEARCH may run forever.
Undecidability: there cannot exist any procedure that, when given an arbitrary
first-order formula F, always halts and correctly states whether F is valid.
Alonzo Church/Alan Turing, 1936/1937.

The halting problem for computing machines is undecidable.
The halting problem can be reduced to the decision problem of first-order logic.

The power and the limit of reasoning in first-order logic.

16/26

Procedure SEARCH looks a bit difficult to implement.

Complex traversal of proof tree to make sure that all quantified formulas in all
leafs to which the rules (V-L) and (3-R) are applicable are indeed instantiated
by all possible terms.

Is there no “easier” way to achieve the same result?

17/26

Actually, the Godel-Herbrand-Skolem theorem (~1930).

Theorem: Let F be a quantifier-free first-order formula. Then F is first-order satisfiable
if the set of all its ground instances {Fi, Fs, ...} is propositionally satisfiable.
F is first-order satisfiable: there exists some structure M such that M = F.
F’ is a ground instance of F if F’ is identical to F except that every variable has
been replaced by a term in which only constants and function symbols appear.
F is propositionally satisfiable: F is satisfied by some valuation v, considering
every atom as a propositional variable. A set {F1, F», ...} is propositionally
satisfiable if there exists some valuation v that satisfies every formula F; in the set.
Example: formula p(x) A =g(x, y).
Ground instances: {p(c) A =q(c,c), p(c) A =q(c, f(¢)), p(f(c)) A=q(f(c),c),...}

Valuation: [p(c)—true, g(c, c)—false, g(c, f (c))—false, p(f (c))—true, g(f (c), c)—false, .. .]
The previously stated theorem abound Herbrand structures as models is actually a

consequence of Herbrand’s theorem. (8126

Theorem: Quantifier-free F is first-order satisfiable if every conjunction

F1 A ... A F, of afinite subset of its instances is propositionally satisfiable.
Proof sketch: a corollary of the “compactness theorem” of propositional logic: a
set of propositional formulas is satisfiable, if each finite subset is satisfiable.

Theorem: Quantifier-free F is first-order unsatisfiable if some conjunction

F1 A ... A F, of afinite subset of its instances is propositionally unsatisfiable.
Proof sketch: the contraposition of the previous theorem.

Theorem: Quantifier-free F is first-order valid if some disjunction F; V...V F,

of a finite subset of its instances is propositionally valid.
Proof sketch: F is valid iff —=F is unsatisfiable iff =F; A ... A =F,, is unsatisfiable iff
-(F1 V...V F,) is unsatisfiable iff F; v ...V F, is valid.

Theorem: Formula Vx1, ..., x,. F in Skolem normal form is valid if some

disjunction Fy v ... Vv F, of a finite number of instances of its matrix F is valid.
Proof sketch: by induction on n, using the previous theorem as the induction base.

The basis of various “Herbrand procedures” for first-order proving. 19/26

Paul C. Gilmore, 1960.

procedure GILMORE(G)
F «— SKOLEMNORMALFORMMATRIX(=G)
Fs T
i1
loop
Fs « Fs A F(i) > Add instance i of F
if F's is propositionally unsatisfiable then
WRITE(“G is first-order valid”)
return
end if
ie—i+1
end loop
end procedure

A systematic enumeration of all instances of the matrix. 20/26

(* Get the constants for Herbrand base, adding nullary one if necessary. *)
let herbfuns fm =

let cns,fns = partition (fun (_,ar) -> ar = 0) (functions fm) in

if c¢ns = [] then ["¢",0],fns else cns,fns;;

(* Enumeration of ground terms and m-tuples, ordered by total fms. *)
let rec groundterms cntms funcs n =
if n = 0 then cntms else
itlist (fun (£,m) 1 -> map (fun args -> Fn(f,args))
(groundtuples cntms funcs (n - 1) m) @ 1)
funcs []
and groundtuples cntms funcs n m =
if m = O then if n = 0 then [[]] else [] else
itlist (fun k 1 -> allpairs (fun h t -> h::t)
(groundterms cntms funcs k)

(groundtuples cntms funcs (n - k) (m - 1)) @ 1)
(0 --n) [;;

21/26

let rec herbloop mfn tfn f10 cntms funcs fvs n fl tried tuples =
print_string(string_of_int(length tried)~" ground instances tried; "~
string_of_int(length f1)~" items in list"); print_newline();
match tuples with
[1 -> let newtups = groundtuples cntms funcs n (length fvs) in
herbloop mfn tfn £10 cntms funcs fvs (n + 1) fl tried newtups
| tup::tups -> let f1’ = mfn £f10 (subst(fpf fvs tup)) fl in
if not(tfn f1’) then tup::tried else
herbloop mfn tfn £10 cntms funcs fvs n f1°’ (tup::tried) tups;;
let gilmore_loop f10 cntms funcs fvs n fl tried tuples =
let mfn djsO ifn djs = filter (non trivial) (distrib (image (image ifn) djs0) djs) in
herbloop mfn (fun djs -> djs <> []) £f10 cntms funcs fvs n fl tried tuples;;
let gilmore fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(gilmore_loop (simpdnf sfm) cntms funcs fvs O [[1] [1 [1);;

Verify propositional unsatisfiability of a formula in DNF by finding a pair of
complimentary literals in each disjunct. 22/26

gilmore << (P(a) \/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(£(x)))

==> (exists x. R(x)) >>;;
ground instances tried; 1 items in list
ground instances tried; items in list
ground instances tried; items in list

ground instances tried; items in list

w NN PO

ground instances tried; items in list

- : int = 4

skolemize << ~“((P(a) \/ Q(b)) /\ (forall x. P(x) ==> R(x)) /\ (forall x. Q(x) ==> R(f(x)))

==> (exists x. R(x)) >>;;
<<((P(a) \/ Qb)) /\ (C"P(x) \/ R(x)) /\ ("Qx) \/ R(£(x)))) /\ "R(x)) >>
satisfiable <<
((P(a) \/ Qb)) /\ ("P(a) \/ R(a)) /\ ("QCa) \/ R(£(a))) /\ "R(a)) /\
((P(a) \/ Qb)) /\ ("P(b) \/ R(®)) /\ (CQb) \/ R(£(®))) /\ “R(b)) /\

((Pa) \/ Q) /\ CCP(£(®)) \/ R(£()) /\ (CQEM®I) \/ REE®III) /\ "RED®)I) >> 55

- : bool = false

Our example formula can be proved with 3 ground instances: x = a,x = b,x = f(b).

23/26

val p4b5 = gilmore <<
(forall x. P(x) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y))
==> (forall y. G(y) /\ H(x,y) ==> R(y))) /\
“(exists y. L(y) /\ R(y)) /\
(exists x. P(x) /\ (forall y. H(x,y) ==> L(y)) /\ (forall y. G(y) /\ H(x,y) ==> J(x,y)))
==> (exists x. P(x) /\ “(exists y. G(y) /\ H(x,y))) >>;;
1 items in list

ground
ground
ground
ground
ground

B w NN R o

ground

val p45 :

instances
instances
instances
instances
instances
instances
int = 5

tried;
tried;
tried;
tried;
tried;

tried;

13 items
13 items
57 items
84 items

in
in
in
in

list
list
list
list

405 items in list

DNF representations explode, problems soon become intractable.

24/26

let dp_mfn c¢jsO ifn cjs = union (image (image ifn) c¢js0) cjs;;
let dp_loop = herbloop dp_mfn dpll;;
let davisputnam fm =
let sfm = skolemize(Not(generalize fm)) in
let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(dp_loop (simpcnf sfm) cntms funcs fvs 0 [1 [[1);;

let p20 = gilmore <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

18 ground instances tried; 15060 items in list

val p20 : int = 19

let p20 = davisputnam <<(forall x y. exists z. forall w. P(x) /\ Q(y) ==> R(z) /\ U(w))
==> (exists x y. P(x) /\ Q(y)) ==> (exists z. R(z))>>;;

18 ground instances tried; 37 items in list
val p20 : int = 19

Much faster propositional satisfiability testing of the smaller CNF via DPLL. 25/26

However, optimizing satisfiability checking does not eliminate the core problem.
Davis, 1983: ... effectively eliminating the truth-functional satisfiability obstacle only uncov-
ered the deeper problem of the combinatorial explosion inherent in unstructured search

trhough the Herbrand universe . ..

A more intelligent way of choosing instances is required rather than blindingly trying
out all possibilities.

26/26

