Recent development in Tropical Differential Algebra

Sebastian Falkensteiner

Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria

June 17th, 2021

References

- J. DENEF, L. LIPSHITZ, Power Series Solutions of Algebraic Differential Equations. Mathematische Annalen, 267:213–238, 1984.
- F. AROCA, C. GARAY, Z. TOGHANI, The Fundamental Theorem of Tropical Differential Algebraic Geometry. Pacific Journal of Mathematics, 283(2):257-270, 2016.
- S. Falkensteiner, C. Garay, M. Haiech, M.P. Noordman, Z. TOGHANI, F. BOULIER, The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry. Proc. ISSAC'20, 178–185.
- Y. HU, X.-S. GAO, Tropical Differential Gröbner Bases. Mathematics in Computer Science, 2020.
- S. Falkensteiner, C. Garay, M. Haiech, M.P. Noordman, F. BOULIER, Z. TOGHANI, On Initials and the Fundamental Theorem of Tropical Partial Differential Geometry. Accepted at Journal of Symbolic Computation, 2020.

From [1] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of systems of algebraic partial differential equations.

From [1] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of systems of algebraic partial differential equations.

The goal of our work is to have a better understanding, and derive necessary conditions, of the support of solutions of systems of algebraic partial differential equations.

Overview

Algebraic Structures

- Set of Vertices
- Semiring of Vertex Sets
- 2 Tropicalization Map
- Tropical Differential Algebra
 Tropical Solution
- Fundamental Theorem
- 5 Initials
 - Classical initial
 - Tropical Initials
 - Extended Fundamental Theorem

Recent Work

For $X \in \mathcal{P}(\mathbb{Z}^m_{\geq 0})$ we define the Newton polytope $\mathcal{N}(X) \subseteq \mathbb{R}^m_{\geq 0}$ as the convex hull of

$$X + \mathbb{R}^m_{\geq 0} = \{x + (a_1, \ldots, a_m) \mid x \in X, a_1, \ldots, a_m \in \mathbb{R}_{\geq 0}\}.$$

For $X \in \mathcal{P}(\mathbb{Z}^m_{\geq 0})$ we define the Newton polytope $\mathcal{N}(X) \subseteq \mathbb{R}^m_{\geq 0}$ as the convex hull of

$$X + \mathbb{R}^m_{\geq 0} = \{x + (a_1, \ldots, a_m) \mid x \in X, a_1, \ldots, a_m \in \mathbb{R}_{\geq 0}\}.$$

We call $x \in X$ a vertex if

 $x \notin \mathcal{N}(X \setminus \{x\}),$

and we denote by Vert(X) the set of vertices of X.

Let $X = \{A_1 = (1,4), A_2 = (2,3), A_3 = (3,3), A_4 = (4,1)\} \subseteq \mathbb{Z}^2_{>0}$.

Let $X = \{A_1 = (1, 4), A_2 = (2, 3), A_3 = (3, 3), A_4 = (4, 1)\} \subseteq \mathbb{Z}^2_{\geq 0}$.

The Newton polytope $\mathcal{N}(X)$ looks as follows.

The set of vertices is $Vert(X) = \{A_1, A_4\}.$

Let $X, Y \in \mathcal{P}(\mathbb{Z}^m_{\geq 0})$. Then • $\mathcal{N}(\operatorname{Vert}(X)) = \mathcal{N}(X)$.

Let $X, Y \in \mathcal{P}(\mathbb{Z}^m_{\geq 0})$. Then

• $\mathcal{N}(\operatorname{Vert}(X)) = \mathcal{N}(X).$

Moreover, The following statements are equivalent:

- $\operatorname{Vert}(X) = \operatorname{Vert}(Y)$;
- $\mathcal{N}(X) = \mathcal{N}(Y);$
- There is $Z \in \mathcal{P}(\mathbb{Z}_{\geq 0}^m)$ such that X + Z = Y + Z.

Let $X, Y \in \mathcal{P}(\mathbb{Z}_{\geq 0}^{m})$. Then • $\mathcal{N}(\operatorname{Vert}(X)) = \mathcal{N}(X)$. Moreover, The following statements are equivalent: • $\operatorname{Vert}(X) = \operatorname{Vert}(Y)$;

$$= \mathcal{N}(\mathbf{X}) = \mathcal{N}(\mathbf{X});$$

•
$$\mathcal{N}(X) = \mathcal{N}(Y);$$

• There is $Z \in \mathcal{P}(\mathbb{Z}_{\geq 0}^m)$ such that X + Z = Y + Z.

As a consequence, Vert(X) is the least set generating $\mathcal{N}(X)$ (with respect to " \subseteq " as ordering).

With abuse of notation we define the map

$$\mathsf{Vert}\colon \mathcal{P}(\mathbb{Z}^m_{\geq 0}) \longrightarrow \mathcal{P}(\mathbb{Z}^m_{\geq 0}),$$

where X is projected onto its set of vertices Vert(X).

With abuse of notation we define the map

$$\mathsf{Vert}\colon \mathcal{P}(\mathbb{Z}^m_{\geq 0}) \longrightarrow \mathcal{P}(\mathbb{Z}^m_{\geq 0}),$$

where X is projected onto its set of vertices Vert(X). We denote by \mathbb{T}_m the image of Vert and define for $X, Y \in \mathbb{T}_m$ the operations

- $X \oplus Y = \operatorname{Vert}(X \cup Y);$
- $X \odot Y = \operatorname{Vert}(X + Y)$.

Let us consider the vertex sets

$$X = \{(2,0), (1,1)\}, Y = \{(0,2), (2,1)\}.$$

Let
$$X = \{(2,0), (1,1)\}, Y = \{(0,2), (2,1)\}.$$

 $X \oplus Y = Vert(X \cup Y)$

Let
$$X = \{(2,0), (1,1)\}, Y = \{(0,2), (2,1)\}.$$

 $X \oplus Y = Vert(X \cup Y)$

Let
$$X = \{(2,0), (1,1)\}, Y = \{(0,2), (2,1)\}.$$

 $X \oplus Y = Vert(X \cup Y)$

Let
$$X = \{(2,0), (1,1)\}, Y = \{(0,2), (2,1)\}.$$

 $X \oplus Y = Vert(X \cup Y) = \{(2,0), (0,2)\},$

 $(\mathbb{T}_m, \oplus, \odot, \emptyset, \{0, \dots, 0\})$ is a commutative idempotent semiring, i.e. for all $a, b, c \in \mathbb{T}_m$

- $(\mathbb{T}_m, \oplus, \emptyset), (\mathbb{T}_m, \odot, \{0, \dots, 0\})$ are commutative monoids;
- $a \odot (b \oplus c) = a \odot b \oplus a \odot c;$
- $\emptyset \odot a = \emptyset;$
- $a \oplus a = a$.

Tropicalization Map

Let K be an algebraically closed field of characteristic zero and $m \ge 1$. The support of $\varphi = \sum a_J t^J \in K[[t_1, \dots, t_m]]$ is defined as

$$\mathsf{Supp}(\varphi) = \{J \in \mathbb{Z}^m_{\geq 0} \mid a_J \neq 0\}.$$

Tropicalization Map

Let K be an algebraically closed field of characteristic zero and $m \ge 1$. The support of $\varphi = \sum a_J t^J \in K[[t_1, \dots, t_m]]$ is defined as

$$\mathsf{Supp}(\varphi) = \{J \in \mathbb{Z}^m_{\geq 0} \mid \mathsf{a}_J \neq 0\}.$$

The tropicalization map is defined as

trop:
$$\mathcal{K}[[t_1, \dots, t_m]] \rightarrow \mathbb{T}_m$$

 $\varphi \mapsto \operatorname{Vert}(\operatorname{Supp}(\varphi))$

The tropicalization map is a non-degenerate valuation, i.e. for all $\varphi, \psi \in K[[t_1, \dots, t_m]]$

• trop(0) = \emptyset , trop(± 1) = {(0,...,0)};

•
$$trop(\varphi \cdot \psi) = trop(\varphi) \odot trop(\psi);$$

• $\operatorname{trop}(\varphi + \psi) \oplus \operatorname{trop}(\varphi) \oplus \operatorname{trop}(\psi) = \operatorname{trop}(\varphi) \oplus \operatorname{trop}(\psi);$

• trop(
$$\varphi$$
) = \emptyset implies that φ = 0.

The tropicalization map is a non-degenerate valuation, i.e. for all $\varphi, \psi \in K[[t_1, \dots, t_m]]$

• trop(0) =
$$\emptyset$$
, trop(± 1) = {(0,...,0)};

•
$$trop(\varphi \cdot \psi) = trop(\varphi) \odot trop(\psi);$$

•
$$\mathsf{trop}(\varphi + \psi) \oplus \mathsf{trop}(\varphi) \oplus \mathsf{trop}(\psi) = \mathsf{trop}(\varphi) \oplus \mathsf{trop}(\psi);$$

• trop
$$(\varphi) = \emptyset$$
 implies that $\varphi = 0$.

These properties are the essence in the proof of the Fundamental Theorem and one of the difficulties of the paper [3] was to find a "good" definition of the map trop which satisfies them.

Differential Polynomials

For $J=(j_1,\ldots,j_m)\in\mathbb{Z}_{\geq 0}^m$ we denote by $\Theta(J)$ the differential operator

$$\Theta(J) = rac{\partial^{j_1 + \cdots + j_m}}{\partial t_1^{j_1} \cdots \partial t_m^{j_m}},$$

where $\frac{\partial}{\partial t_k}$ is the partial derivative with respect to t_k .
Differential Polynomials

For $J=(j_1,\ldots,j_m)\in\mathbb{Z}_{\geq 0}^m$ we denote by $\Theta(J)$ the differential operator

$$\Theta(J) = rac{\partial^{j_1+\dots+j_m}}{\partial t_1^{j_1}\cdots\partial t_m^{j_m}},$$

where $\frac{\partial}{\partial t_k}$ is the partial derivative with respect to t_k . Then for $\varphi \in K[[t_1, \ldots, t_m]]$ we obtain

$$\mathsf{Supp}(\Theta(J)\varphi) = \left\{ (s_1 - j_1, \dots, s_m - j_m) \mid \begin{array}{c} (s_1, \dots, s_m) \in \mathsf{Supp}(\varphi), \\ s_i - j_i \ge 0 \text{ for all } i \end{array} \right\}.$$

Differential Polynomials

For $J=(j_1,\ldots,j_m)\in\mathbb{Z}_{\geq 0}^m$ we denote by $\Theta(J)$ the differential operator

$$\Theta(J) = rac{\partial^{j_1 + \dots + j_m}}{\partial t_1^{j_1} \cdots \partial t_m^{j_m}}$$

where $\frac{\partial}{\partial t_k}$ is the partial derivative with respect to t_k . Then for $\varphi \in K[[t_1, \ldots, t_m]]$ we obtain

$$\mathsf{Supp}(\Theta(J)\varphi) = \left\{ (s_1 - j_1, \dots, s_m - j_m) \ \middle| \begin{array}{c} (s_1, \dots, s_m) \in \mathsf{Supp}(\varphi), \\ s_i - j_i \ge 0 \text{ for all } i \end{array} \right\}.$$

For $\varphi = t_1^2 + t_1t_2 - t_2$ we have $Supp(\varphi) = \{(2,0), (1,1), (0,1)\}$ and $Supp(\Theta(1,0)\varphi) = \{(1,0), (0,1)\}.$ A differential monomial of order $r \in \mathbb{Z}_{\geq 0}$ depending on differential indeterminates x_1, \ldots, x_n can be written as

$$E_M = \prod_{\substack{1 \le i \le n \\ \max(J) \le r}} (\Theta(J)x_i)^{M_{i,J}}$$

for some $M = (M_{i,J}) \in (\mathbb{Z}_{\geq 0})^{n \times (r+1)^m}$.

A differential monomial of order $r \in \mathbb{Z}_{\geq 0}$ depending on differential indeterminates x_1, \ldots, x_n can be written as

$$E_M = \prod_{\substack{1 \le i \le n \\ \max(J) \le r}} (\Theta(J)x_i)^{M_{i,J}}$$

for some $M = (M_{i,J}) \in (\mathbb{Z}_{\geq 0})^{n \times (r+1)^m}$. A differential polynomial is an expression of the form

$$P = \sum_{M} \alpha_{M} \cdot E_{M},$$

where finitely many coefficients $\alpha_M \in K[[t_1, \ldots, t_m]]$ are non-zero and E_M are differential monomials.

The ring consisting of all differential polynomials in the variables x_1, \ldots, x_n will be denoted by

 $K[[t_1,\ldots,t_m]]\{x_1,\ldots,x_n\}.$

The ring consisting of all differential polynomials in the variables x_1, \ldots, x_n will be denoted by

$$K[[t_1,\ldots,t_m]]\{x_1,\ldots,x_n\}.$$

A set $\Sigma \subseteq K[[t_1, \dots, t_m]]\{x_1, \dots, x_n\}$ is called a differential ideal if

- Σ is an ideal of $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\};$
- For every $P\in \Sigma, J\in \mathbb{Z}_{\geq 0}^m$ it holds that

 $\Theta(J)P \in \Sigma.$

Let us define the corresponding tropical operations and object.

Let us define the corresponding tropical operations and object.

A tropical derivative operator $\Theta_{trop}(J) \colon \mathcal{P}(\mathbb{Z}^m_{\geq 0}) \to \mathcal{P}(\mathbb{Z}^m_{\geq 0})$ is defined as

$$\Theta_{\rm trop}(J)S = \left\{ (s_1 - j_1, \dots, s_m - j_m) \ \left| \begin{array}{c} (s_1, \dots, s_m) \in S, \\ s_i - j_i \ge 0 \text{ for all } i \end{array} \right\}.$$

Let us define the corresponding tropical operations and object.

A tropical derivative operator $\Theta_{trop}(J) \colon \mathcal{P}(\mathbb{Z}^m_{\geq 0}) \to \mathcal{P}(\mathbb{Z}^m_{\geq 0})$ is defined as

$$\Theta_{ ext{trop}}(J)S = \left\{ (s_1 - j_1, \dots, s_m - j_m) \ \left| egin{array}{c} (s_1, \dots, s_m) \in S, \ s_i - j_i \geq 0 \ ext{for all } i \end{array}
ight\}.$$

Lemma

Let
$$\varphi \in K[[t_1, ..., t_m]]$$
 and $J \in \mathbb{Z}_{\geq 0}^m$. Then
 $Supp(\Theta(J)\varphi) = \Theta_{trop}(J)(Supp(\varphi)).$

Let us define the corresponding tropical operations and object.

A tropical derivative operator $\Theta_{trop}(J) \colon \mathcal{P}(\mathbb{Z}^m_{\geq 0}) \to \mathcal{P}(\mathbb{Z}^m_{\geq 0})$ is defined as

$$\Theta_{ ext{trop}}(J)S = \left\{ (s_1 - j_1, \dots, s_m - j_m) \ \left| \begin{array}{c} (s_1, \dots, s_m) \in S, \\ s_i - j_i \geq 0 \text{ for all } i \end{array}
ight\}.$$

Lemma

Let
$$\varphi \in K[[t_1, ..., t_m]]$$
 and $J \in \mathbb{Z}_{\geq 0}^m$. Then
 $Supp(\Theta(J)\varphi) = \Theta_{trop}(J)(Supp(\varphi)).$

For $S = \text{Supp}(t_1^2 + t_1t_2 - t_2) = \{(2,0), (1,1), (0,1)\}$ we have

 $\Theta_{trop}(1,0)S = \{(1,0), (0,1)\}.$

$$E = \prod_{\substack{1 \le i \le n \\ \max(J) \le r}} (\Theta(J)x_i)^{M_{i,J}} \longleftrightarrow E_{trop} = \bigcup_{\substack{1 \le i \le n \\ \max(J) \le r}} \operatorname{Vert}(\Theta_{trop}(J)S_i)^{\odot M_{i,J}}$$

$$E = \prod_{\substack{1 \le i \le n \\ \max(J) \le r}} (\Theta(J)x_i)^{M_{i,J}} \longleftrightarrow E_{trop} = \bigcup_{\substack{1 \le i \le n \\ \max(J) \le r}} \operatorname{Vert}(\Theta_{trop}(J)S_i)^{\odot M_{i,J}}$$

$$P = \sum_{M} \alpha_{M} \cdot E_{M} \qquad \longleftrightarrow \qquad P_{trop} = \bigoplus_{M} trop(\alpha_{M}) \odot E_{M,trop}$$

$$E = \prod_{\substack{1 \le i \le n \\ \max(J) \le r}} (\Theta(J)x_i)^{M_{i,J}} \longleftrightarrow E_{trop} = \bigcup_{\substack{1 \le i \le n \\ \max(J) \le r}} \operatorname{Vert}(\Theta_{trop}(J)S_i)^{\odot M_{i,J}}$$

$$P = \sum_{M} \alpha_{M} \cdot E_{M} \qquad \longleftrightarrow \qquad P_{\text{trop}} = \bigoplus_{M} \operatorname{trop}(\alpha_{M}) \odot E_{M, \text{trop}}$$

$$P = t_1(\Theta(1,0)x_1)^2 + 2t_2^2x_2 \iff P_{trop} = \{(1,0)\} \odot (\Theta_{trop}(1,0)S_1)^{\odot 2} \\ \oplus \{(0,2)\} \odot S_2$$

Let

$$P_{\mathsf{trop}} = \bigoplus_{M \in \Delta} a_M \odot \epsilon_M$$

be a tropical differential polynomial. An *n*-tuple $S \in \mathcal{P}(\mathbb{Z}_{\geq 0}^m)^n$ is called a solution of P_{trop} if for every $J \in P_{\text{trop}}(S)$ there exist $M_1, M_2 \in \Delta$ with $M_1 \neq M_2$ such that

 $J \in a_{M_1} \odot \epsilon_{M_1}(S)$ and $J \in a_{M_2} \odot \epsilon_{M_2}(S)$.

Goal

We now want to find a relation between the solutions of the original system of differential equations and the solutions of the corresponding tropical differential polynomials.

Let

$$\mathsf{P} = t \cdot \frac{\partial x}{\partial t} - x.$$

I

The solutions of P = 0 are $\varphi = c t$, where $c \in K$. Hence, $Supp(\varphi) = \{1\}$ or $Supp(\varphi) = \emptyset$, respectively, and

 $Supp(Sol(P)) = \{\{1\}, \emptyset\}.$

Let

$$\mathsf{P} = t \cdot \frac{\partial x}{\partial t} - x.$$

The solutions of P = 0 are $\varphi = c t$, where $c \in K$. Hence, $Supp(\varphi) = \{1\}$ or $Supp(\varphi) = \emptyset$, respectively, and

 $Supp(Sol(P)) = \{\{1\}, \emptyset\}.$

The corresponding tropical differential polynomial is

$$egin{aligned} & \mathcal{P}_{\mathsf{trop}}(S) = \{(1)\} \odot \Theta_{\mathsf{trop}}(1)S \oplus S \ & = \mathsf{Vert}(\mathsf{Vert}(\{1\} + \Theta_{\mathsf{trop}}(1)S) \cup \mathsf{Vert}(S))). \end{aligned}$$

Let

$$\mathsf{P} = t \cdot \frac{\partial x}{\partial t} - x.$$

The solutions of P = 0 are $\varphi = c t$, where $c \in K$. Hence, $Supp(\varphi) = \{1\}$ or $Supp(\varphi) = \emptyset$, respectively, and

 $Supp(Sol(P)) = \{\{1\}, \emptyset\}.$

The corresponding tropical differential polynomial is

$$\begin{split} \mathcal{P}_{\mathsf{trop}}(S) &= \{(1)\} \odot \Theta_{\mathsf{trop}}(1)S \oplus S \\ &= \mathsf{Vert}(\mathsf{Vert}(\{1\} + \Theta_{\mathsf{trop}}(1)S) \cup \mathsf{Vert}(S))). \end{split}$$

Let S be a solution with $0 \in S$. Then $0 \in Vert(S)$ and $0 \in P_{trop}(S)$. But $0 \notin Vert(\{1\} + \Theta_{trop}(1)S)$ in contradiction to the assumption that S is a solution.

Since $0 \notin S$, it holds that

$$Vert({1} + \Theta_{trop}(1)S) = Vert(S)$$

and for every $J \in P_{trop}(S)$ with $J \in \mathbb{Z}_{>0}$ we obtain $J \in Vert(S)$ and $J \in Vert(\{1\} + \Theta_{trop}(1)S)$.

Since $0 \notin S$, it holds that

$$Vert({1} + \Theta_{trop}(1)S) = Vert(S)$$

and for every $J \in P_{trop}(S)$ with $J \in \mathbb{Z}_{>0}$ we obtain $J \in Vert(S)$ and $J \in Vert(\{1\} + \Theta_{trop}(1)S)$.

This means that we do not obtain more conditions on the support of the solutions of P = 0 by considering P_{trop} .

The solution $\varphi = c t$ of $P = t \cdot \frac{\partial x}{\partial t} - x = 0$ is also a solution of

$$\Theta(1)P = t \cdot rac{\partial^2 x}{\partial t^2} = 0.$$

The solution $\varphi = c t$ of $P = t \cdot \frac{\partial x}{\partial t} - x = 0$ is also a solution of

$$\Theta(1)P = t \cdot rac{\partial^2 x}{\partial t^2} = 0.$$

The corresponding tropical differential polynomial is

$$(\Theta(1)P)_{\mathsf{trop}}(S) = \mathsf{Vert}(\{1\} + \Theta(2)S) = \mathsf{min}(\{J-1 \mid J \in S, J \ge 2\}).$$

The solution $\varphi = c t$ of $P = t \cdot \frac{\partial x}{\partial t} - x = 0$ is also a solution of

$$\Theta(1)P = t \cdot rac{\partial^2 x}{\partial t^2} = 0.$$

The corresponding tropical differential polynomial is

$$(\Theta(1)P)_{\mathsf{trop}}(S) = \mathsf{Vert}(\{1\} + \Theta(2)S) = \min(\{J-1 \mid J \in S, J \ge 2\}).$$

The case $0 \in (\Theta(1)P)_{trop}(S)$ is impossible.

The solution $\varphi = c t$ of $P = t \cdot \frac{\partial x}{\partial t} - x = 0$ is also a solution of

$$\Theta(1)P = t \cdot \frac{\partial^2 x}{\partial t^2} = 0.$$

The corresponding tropical differential polynomial is

$$(\Theta(1)P)_{\mathsf{trop}}(S) = \mathsf{Vert}(\{1\} + \Theta(2)S) = \mathsf{min}(\{J-1 \mid J \in S, J \ge 2\}).$$

The case $0 \in (\Theta(1)P)_{trop}(S)$ is impossible. The case $1 \in (\Theta(1)P)_{trop}(S)$ corresponds to $S = \{2, \mathcal{O}(3)\}$. But 1 corresponds to a single tropical monomial and hence, S is not a solution.

The solution $\varphi = c t$ of $P = t \cdot \frac{\partial x}{\partial t} - x = 0$ is also a solution of

$$\Theta(1)P = t \cdot \frac{\partial^2 x}{\partial t^2} = 0.$$

The corresponding tropical differential polynomial is

$$(\Theta(1)P)_{\mathsf{trop}}(S) = \mathsf{Vert}(\{1\} + \Theta(2)S) = \mathsf{min}(\{J-1 \mid J \in S, J \ge 2\}).$$

The case $0 \in (\Theta(1)P)_{trop}(S)$ is impossible. The case $1 \in (\Theta(1)P)_{trop}(S)$ corresponds to $S = \{2, \mathcal{O}(3)\}$. But 1 corresponds to a single tropical monomial and hence, S is not a solution. Similarly, for $J \in S$ with $J \ge 2$ we obtain that J is the vertex of only one tropical monomial and S cannot be a solution.

The solution $\varphi = c t$ of $P = t \cdot \frac{\partial x}{\partial t} - x = 0$ is also a solution of

$$\Theta(1)P = t \cdot \frac{\partial^2 x}{\partial t^2} = 0.$$

The corresponding tropical differential polynomial is

$$(\Theta(1)P)_{\mathsf{trop}}(S) = \mathsf{Vert}(\{1\} + \Theta(2)S) = \mathsf{min}(\{J-1 \mid J \in S, J \ge 2\}).$$

The case $0 \in (\Theta(1)P)_{trop}(S)$ is impossible. The case $1 \in (\Theta(1)P)_{trop}(S)$ corresponds to $S = \{2, \mathcal{O}(3)\}$. But 1 corresponds to a single tropical monomial and hence, S is not a solution. Similarly, for $J \in S$ with $J \ge 2$ we obtain that J is the vertex of only one tropical monomial and S cannot be a solution. Only $(\Theta(1)P)_{trop}(S) = \emptyset$ remains which leads to $S = \emptyset$ or $S = \{1\}$ and

hence,

$$\mathsf{Sol}(P_{\mathsf{trop}}, (\Theta(1)P)_{\mathsf{trop}}) = \{\emptyset, \{1\}\}.$$

To summarize, we have obtained that

$$Supp(Sol(P, \Theta(1)P)) = Sol(P_{trop}, (\Theta(1)P)_{trop}).$$

To summarize, we have obtained that

$$\operatorname{Supp}(\operatorname{Sol}(P, \Theta(1)P)) = \operatorname{Sol}(P_{\operatorname{trop}}, (\Theta(1)P)_{\operatorname{trop}}).$$

We now want to precisely state this observation as the Fundamental Theorem.

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. Then

 $\mathsf{Supp}(\mathsf{Sol}(\Sigma)) = \mathsf{Sol}(\Sigma_{\mathsf{trop}}).$

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. Then

 $\mathsf{Supp}(\mathsf{Sol}(\Sigma)) = \mathsf{Sol}(\Sigma_{\mathsf{trop}}).$

" \subseteq " : holds for more general K.

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. Then

 $\mathsf{Supp}(\mathsf{Sol}(\Sigma)) = \mathsf{Sol}(\Sigma_{\mathsf{trop}}).$

" \subseteq " : holds for more general K.

" \supseteq " : uses ultrapower construction similar to the proof of the Strong Approximation Theorem in [1].

Initial of Differential Polynomials (Ritt, Kolchin, etc.)

An orderly ranking is a total order on the set of differential operators $\{\Theta(J) \mid J \in \mathbb{Z}_{\geq 0}^m\}$ which regards derivatives, i.e. for all $I, J, M \in \mathbb{Z}_{\geq 0}^m$ • $\Theta(J) \leq \Theta(I)\Theta(J)$;

• $\Theta(J) \leq \Theta(I) \implies \Theta(M+J) \leq \Theta(M+I).$

Initial of Differential Polynomials (Ritt, Kolchin, etc.)

An orderly ranking is a total order on the set of differential operators $\{\Theta(J) \mid J \in \mathbb{Z}_{\geq 0}^m\}$ which regards derivatives, i.e. for all $I, J, M \in \mathbb{Z}_{\geq 0}^m$ • $\Theta(J) \leq \Theta(I)\Theta(J)$;

• $\Theta(J) \leq \Theta(I) \implies \Theta(M+J) \leq \Theta(M+I).$

Let $\Theta(J)$ be the highest differential operation occuring in a differential polynomial P. Then the initial of P is defined as the coefficient of $\Theta(J)$.

Initial of Differential Polynomials (Ritt, Kolchin, etc.)

An orderly ranking is a total order on the set of differential operators $\{\Theta(J) \mid J \in \mathbb{Z}_{\geq 0}^m\}$ which regards derivatives, i.e. for all $I, J, M \in \mathbb{Z}_{\geq 0}^m$ • $\Theta(J) \leq \Theta(I)\Theta(J)$;

•
$$\Theta(J) \leq \Theta(I) \implies \Theta(M+J) \leq \Theta(M+I).$$

Let $\Theta(J)$ be the highest differential operation occuring in a differential polynomial *P*. Then the initial of *P* is defined as the coefficient of $\Theta(J)$.

For

$$P = t_1 \Theta(1,1) x_1 (\Theta(2,0) x_2)^3 - t_1^3 (\Theta(2,0) x_1)^2 + t_2^2 (\Theta(0,1) x_2)^2$$

and an orderly ranking with $\Theta(0,1) < \Theta(1,1) < \Theta(2,0)$ we obtain

$$init(P) = t_1\Theta(1,1)x_1.$$

The initial (and separant) of a differential polynomial contain the main information for simplifying (systems of) equations and finding its solutions, for example the computation of differential regular chains, Thomas decomposition and Cauchy-Kovalevski like algorithms.
The initial (and separant) of a differential polynomial contain the main information for simplifying (systems of) equations and finding its solutions, for example the computation of differential regular chains, Thomas decomposition and Cauchy-Kovalevski like algorithms.

Goal

We want to find an initial of the differential polynomial containing the main information with respect to tropicalization and solving the tropical version.

For $a \in K[[t_1, ..., t_m]]$ we denote by \overline{a} the restriction of a to its set of vertices.

For
$$a = t_1^2 + t_1 t_2 - 2t_2^2$$
 we have $\overline{a} = t_1^2 - 2t_2^2$.

For $a \in K[[t_1, ..., t_m]]$ we denote by \overline{a} the restriction of a to its set of vertices.

For
$$a = t_1^2 + t_1 t_2 - 2t_2^2$$
 we have $\overline{a} = t_1^2 - 2t_2^2$.

Let $P = \sum_{M \in \Lambda} a_M E_M$ and $S \in \mathcal{P}(\mathbb{Z}^m_{\geq 0})^n$. Then we define the initial of P (with respect to S) as

$$init_{S}(P) = \sum_{\substack{M \in \Lambda \\ \operatorname{trop}(a_{M}E_{M})(S) \cap p(S) \neq \emptyset}} \overline{a_{M}} E_{M}.$$

Let $P = x_{(1,0)} + x_{(0,1)}$ and $\varphi = \alpha t_1^2 + \beta t_2^2$. Then φ is not a solution of P = 0 for any $\alpha, \beta \neq 0$, but we obtain $init_S(P) = P$ for $S = \text{Supp}(\varphi) = \{(2,0), (0,2)\}.$

Let $P = x_{(1,0)} + x_{(0,1)}$ and $\varphi = \alpha t_1^2 + \beta t_2^2$. Then φ is not a solution of P = 0 for any $\alpha, \beta \neq 0$, but we obtain $init_S(P) = P$ for $S = \text{Supp}(\varphi) = \{(2,0), (0,2)\}$. For $\Theta(1,0)P$, however, we obtain $\Theta(1,0)P = x_{(2,0)} + x_{(1,1)}$ and

 $init_{S}(\Theta(1,0)P) = x_{(2,0)}.$

Let $P = x_{(1,0)} + x_{(0,1)}$ and $\varphi = \alpha t_1^2 + \beta t_2^2$. Then φ is not a solution of P = 0 for any $\alpha, \beta \neq 0$, but we obtain $init_S(P) = P$ for $S = \text{Supp}(\varphi) = \{(2,0), (0,2)\}.$ For $\Theta(1,0)P$, however, we obtain $\Theta(1,0)P = x_{(2,0)} + x_{(1,1)}$ and

$$init_{S}(\Theta(1,0)P) = x_{(2,0)}.$$

If we find a single monomial in the tropical initial, this cannot have any solution.

Question

Does the converse direction hold as well?

Let $P = x_{(1,0)} + x_{(0,1)}$ and $\varphi = \alpha t_1^2 + \beta t_2^2$. Then φ is not a solution of P = 0 for any $\alpha, \beta \neq 0$, but we obtain $init_S(P) = P$ for $S = \text{Supp}(\varphi) = \{(2,0), (0,2)\}.$ For $\Theta(1,0)P$, however, we obtain $\Theta(1,0)P = x_{(2,0)} + x_{(1,1)}$ and

$$init_{S}(\Theta(1,0)P) = x_{(2,0)}.$$

If we find a single monomial in the tropical initial, this cannot have any solution.

Question

Does the converse direction hold as well?

For P itself the answer is NO (see Example 4).

Instead we consider the initials of the differential ideal generated by P and from that its algebraic ideal:

Instead we consider the initials of the differential ideal generated by P and from that its algebraic ideal:

Let $\Sigma \subset K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$ be a differential ideal and $S \in \mathcal{P}(\mathbb{Z}_{\geq 0}^m)^n$. Then we define the initial ideal $init_S(\Sigma)$ with respect to S as the algebraic ideal generated by

 $\{init_{\mathcal{S}}(P) : P \in G\} \subset K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}.$

Taking derivatives and considering the initial does NOT commute. This is why we have to choose the smaller set of the algebraic ideal (instead of the differential ideal) for $init_S(\Sigma)$.

Taking derivatives and considering the initial does NOT commute. This is why we have to choose the smaller set of the algebraic ideal (instead of the differential ideal) for $init_S(\Sigma)$.

Example 4

Let $P = x_{(0)} - 1$ and $S = \{0\}$. Then $init_S(P) = P$ and for every J it holds that $init_S(\Theta(J)P) = 0$. Hence,

 $init_{\mathcal{S}}([P]) = \langle P \rangle.$

Taking derivatives and considering the initial does NOT commute. This is why we have to choose the smaller set of the algebraic ideal (instead of the differential ideal) for $init_S(\Sigma)$.

Example 4

Let $P = x_{(0)} - 1$ and $S = \{0\}$. Then $init_S(P) = P$ and for every J it holds that $init_S(\Theta(J)P) = 0$. Hence,

 $init_{\mathcal{S}}([P]) = \langle P \rangle.$

But $\Theta(1)P \in [init_S(P)]$ and the differential ideal generated by the initials is not monomial-free. In fact, $\varphi = 1$ is a solution with $S = \text{Supp}(\varphi)$.

Extended Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. Then the following three subsets of $(\mathcal{P}(\mathbb{Z}_{\geq 0}^m))^n$ coincide:

- Supp(Sol(Σ)),
- **2** Sol (Σ_{trop}) ,

Extended Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. Then the following three subsets of $(\mathcal{P}(\mathbb{Z}_{\geq 0}^m))^n$ coincide:

- Supp $(Sol(\Sigma))$,
- **2** Sol (Σ_{trop}) ,
- **③** { $S ∈ P(\mathbb{Z}_{>0}^m)^n$: *init*_S(Σ) contains no monomial}.

" \Rightarrow " : careful analysis and rewriting of the restricted coefficients and the corresponding set of vertices.

Extended Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. Then the following three subsets of $(\mathcal{P}(\mathbb{Z}_{\geq 0}^m))^n$ coincide:

- Supp $(Sol(\Sigma))$,
- **2** Sol (Σ_{trop}) ,
- **③** ${$ *S* $∈ <math>\mathcal{P}(\mathbb{Z}_{>0}^m)^n$: *init_S*(Σ) contains no monomial}.

" \Rightarrow " : careful analysis and rewriting of the restricted coefficients and the corresponding set of vertices.

" \leftarrow " : can be carried out from the proof of the Fundamental Theorem.

The notion of initial degeneration should be properly defined for differential ideals in $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$.

The notion of initial degeneration should be properly defined for differential ideals in $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. The steps in this direction are

• Consider the underlying structures $K((t_1, \ldots, t_m))$ and $Frac(\mathbb{T}_m)$. Of particular interest are prime ideals in

$$\mathcal{K}((t_1,\ldots,t_m))^\circ = \{rac{arphi}{\psi} \ : \ \mathcal{N}(\operatorname{trop}(arphi)) \subseteq \mathcal{N}(\operatorname{trop}(\psi))\}.$$

For example, $K((t_1, \ldots, t_m))^\circ$ is a non-Noetherian Bézout domain.

The notion of initial degeneration should be properly defined for differential ideals in $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. The steps in this direction are

• Consider the underlying structures $K((t_1, \ldots, t_m))$ and $Frac(\mathbb{T}_m)$. Of particular interest are prime ideals in

$$\mathcal{K}((t_1,\ldots,t_m))^\circ = \{ rac{arphi}{\psi} \, : \, \mathcal{N}(\operatorname{trop}(arphi)) \subseteq \mathcal{N}(\operatorname{trop}(\psi)) \}.$$

For example, $K((t_1, \ldots, t_m))^\circ$ is a non-Noetherian Bézout domain.

Study solutions in K((t₁,..., t_m)) and translations of differential ideals to K((t₁,..., t_m))°{x₁,...,x_n}.

The notion of initial degeneration should be properly defined for differential ideals in $K[[t_1, \ldots, t_m]]\{x_1, \ldots, x_n\}$. The steps in this direction are

• Consider the underlying structures $K((t_1, \ldots, t_m))$ and $Frac(\mathbb{T}_m)$. Of particular interest are prime ideals in

$$\mathcal{K}((t_1,\ldots,t_m))^\circ = \{\frac{\varphi}{\psi} : \mathcal{N}(\operatorname{trop}(\varphi)) \subseteq \mathcal{N}(\operatorname{trop}(\psi))\}.$$

For example, $K((t_1, \ldots, t_m))^\circ$ is a non-Noetherian Bézout domain.

Study solutions in K((t₁,..., t_m)) and translations of differential ideals to K((t₁,..., t_m))°{x₁,...,x_n}.

Onsider the (differential) varieties

$$X = \mathsf{Spec}(K((t_1, \ldots, t_m))\{x_1, \ldots, x_n\}/\Sigma),$$

defined over $K((t_1, \ldots, t_m))$, where $\Sigma \subset K((t_1, \ldots, t_m))\{x_1, \ldots, x_n\}$ is a differential ideal. Then we are interested into the affine schemes

$$\chi(S) = \operatorname{Spec}(K((t_1, \ldots, t_m))^{\circ} \{x_1, \ldots, x_n\} / \Sigma_S),$$

where Σ_S are the translated differential ideals and its fibers $\chi(S)_{\nu}$.

Additionally, we want to find the right notion of tropical bases for differential ideals in $K((t_1, \ldots, t_m))\{x_1, \ldots, x_n\}$. In particular, our goal is to

- reproduce the initial ideal;
- 2 generalize differential Gröbner bases;
- **③** obtain a reduction process for differential polynomials.