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Motivation

From [1] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of
systems of algebraic partial differential equations.

The goal of our work is to have a better understanding, and derive
necessary conditions, of the support of solutions of systems of algebraic
partial differential equations.
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Set of Vertices

For X ∈ P(Zm
≥0) we define the Newton polytope N (X ) ⊆ Rm

≥0 as the
convex hull of

X + Rm
≥0 = {x + (a1, . . . , am) | x ∈ X , a1, . . . , am ∈ R≥0}.

We call x ∈ X a vertex if

x /∈ N (X \ {x}),

and we denote by Vert(X ) the set of vertices of X .
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Example 1

Let X = {A1 = (1, 4),A2 = (2, 3),A3 = (3, 3),A4 = (4, 1)} ⊆ Z2
≥0.

t2

t1

A1•

A4•

A2•
A3•
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Example 1

The Newton polytope N (X ) looks as follows.

t2

t1

A1•

A4•

A2•
A3•
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Example 1

The set of vertices is Vert(X ) = {A1,A4}.

t2

t1

A1•

A4•
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Set of Vertices

Lemma

Let X ,Y ∈ P(Zm
≥0). Then

N (Vert(X )) = N (X ).

Moreover, The following statements are equivalent:

Vert(X ) = Vert(Y );

N (X ) = N (Y );

There is Z ∈ P(Zm
≥0) such that X + Z = Y + Z .

As a consequence, Vert(X ) is the least set generating N (X ) (with respect
to “ ⊆ ” as ordering).
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Vertex Map

With abuse of notation we define the map

Vert : P(Zm
≥0) −→ P(Zm

≥0),

where X is projected onto its set of vertices Vert(X ).

We denote by Tm the image of Vert and define for X ,Y ∈ Tm the
operations

X ⊕ Y = Vert(X ∪ Y );

X � Y = Vert(X + Y ).
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Example 2

Let us consider the vertex sets

X = {(2, 0), (1, 1)},Y = {(0, 2), (2, 1)}.

t2

t1(2, 0)
•

(1, 1)
•

(0, 2)
•

(2, 1)
•
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Semiring of Vertex Sets

Lemma

(Tm,⊕,�, ∅, {0, . . . , 0}) is a commutative idempotent semiring, i.e. for all
a, b, c ∈ Tm

(Tm,⊕, ∅), (Tm,�, {0, . . . , 0}) are commutative monoids;

a� (b ⊕ c) = a� b ⊕ a� c;

∅ � a = ∅;
a⊕ a = a.
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Tropicalization Map

Let K be an algebraically closed field of characteristic zero and m ≥ 1.
The support of ϕ =

∑
aJt

J ∈ K [[t1, . . . , tm]] is defined as

Supp(ϕ) = {J ∈ Zm
≥0 | aJ 6= 0}.

The tropicalization map is defined as

trop: K [[t1, . . . , tm]] → Tm

ϕ 7→ Vert(Supp(ϕ))

K [[t1, . . . , tm]]
Supp //

trop
))

P(Zm
≥0)

Vert
��

Tm
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Tropicalization Map

Lemma

The tropicalization map is a non-degenerate valuation, i.e. for all
ϕ,ψ ∈ K [[t1, . . . , tm]]

trop(0) = ∅, trop(±1) = {(0, . . . , 0)};
trop(ϕ · ψ) = trop(ϕ)� trop(ψ);

trop(ϕ+ ψ)⊕ trop(ϕ)⊕ trop(ψ) = trop(ϕ)⊕ trop(ψ);

trop(ϕ) = ∅ implies that ϕ = 0.

These properties are the essence in the proof of the Fundamental Theorem
and one of the difficulties of the paper [3] was to find a “good” definition
of the map trop which satisfies them.
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Differential Polynomials

For J = (j1, . . . , jm) ∈ Zm
≥0 we denote by Θ(J) the differential operator

Θ(J) =
∂j1+···+jm

∂t j11 · · · ∂t
jm
m

,

where ∂
∂tk

is the partial derivative with respect to tk .

Then for

ϕ ∈ K [[t1, . . . , tm]] we obtain

Supp(Θ(J)ϕ) =

{
(s1 − j1, . . . , sm − jm)

∣∣∣∣ (s1, . . . , sm) ∈ Supp(ϕ),
si − ji ≥ 0 for all i

}
.

For ϕ = t2
1 + t1t2 − t2 we have Supp(ϕ) = {(2, 0), (1, 1), (0, 1)} and

Supp(Θ(1, 0)ϕ) = {(1, 0), (0, 1)}.
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Differential Polynomials

A differential monomial of order r ∈ Z≥0 depending on differential
indeterminates x1, . . . , xn can be written as

EM =
∏

1≤i≤n
max(J)≤r

(Θ(J)xi )
Mi,J

for some M = (Mi ,J) ∈ (Z≥0)n×(r+1)m .

A differential polynomial is an expression of the form

P =
∑
M

αM · EM ,

where finitely many coefficients αM ∈ K [[t1, . . . , tm]] are non-zero and EM

are differential monomials.
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Differential Ideals

The ring consisting of all differential polynomials in the variables x1, . . . , xn
will be denoted by

K [[t1, . . . , tm]]{x1, . . . , xn}.

A set Σ ⊆ K [[t1, . . . , tm]]{x1, . . . , xn} is called a differential ideal if

Σ is an ideal of K [[t1, . . . , tm]]{x1, . . . , xn};
For every P ∈ Σ, J ∈ Zm

≥0 it holds that

Θ(J)P ∈ Σ.
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Tropical Derivative Operator

Let us define the corresponding tropical operations and object.

A tropical derivative operator Θtrop(J) : P(Zm
≥0)→ P(Zm

≥0) is defined as

Θtrop(J)S =

{
(s1 − j1, . . . , sm − jm)

∣∣∣∣ (s1, . . . , sm) ∈ S ,
si − ji ≥ 0 for all i

}
.

Lemma

Let ϕ ∈ K [[t1, . . . , tm]] and J ∈ Zm
≥0. Then

Supp(Θ(J)ϕ) = Θtrop(J)(Supp(ϕ)).

For S = Supp(t2
1 + t1t2 − t2) = {(2, 0), (1, 1), (0, 1)} we have

Θtrop(1, 0)S = {(1, 0), (0, 1)}.
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Tropical Differential Polynomial

By applying the tropicalization map, we obtain the corresponding tropical
differential monomial and tropical differential polynomial, respectively.

E =
∏

1≤i≤n
max(J)≤r

(Θ(J)xi )
Mi,J ←→ Etrop =

⊙
1≤i≤n

max(J)≤r

Vert(Θtrop(J)Si )
�Mi,J

P =
∑
M

αM · EM ←→ Ptrop =
⊕
M

trop(αM)� EM,trop
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Tropical Solution

Let
Ptrop =

⊕
M∈∆

aM � εM

be a tropical differential polynomial. An n-tuple S ∈ P(Zm
≥0)n is called a

solution of Ptrop if for every J ∈ Ptrop(S) there exist M1,M2 ∈ ∆ with
M1 6= M2 such that

J ∈ aM1 � εM1(S) and J ∈ aM2 � εM2(S).
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Fundamental Theorem

Goal

We now want to find a relation between the solutions of the original
system of differential equations and the solutions of the corresponding
tropical differential polynomials.
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Example 3

Let

P = t · ∂ x
∂t
− x .

The solutions of P = 0 are ϕ = c t, where c ∈ K . Hence, Supp(ϕ) = {1}
or Supp(ϕ) = ∅, respectively, and

Supp(Sol(P)) = {{1}, ∅}.

The corresponding tropical differential polynomial is

Ptrop(S) = {(1)} �Θtrop(1)S ⊕ S

= Vert(Vert({1}+ Θtrop(1)S) ∪ Vert(S))).

Let S be a solution with 0 ∈ S . Then 0 ∈ Vert(S) and 0 ∈ Ptrop(S). But
0 /∈ Vert({1}+ Θtrop(1)S) in contradiction to the assumption that S is a
solution.

S. Falkensteiner (RISC Hagenberg) Tropical Differential Algebra June 17th, 2021 37 / 50



Example 3

Let

P = t · ∂ x
∂t
− x .

The solutions of P = 0 are ϕ = c t, where c ∈ K . Hence, Supp(ϕ) = {1}
or Supp(ϕ) = ∅, respectively, and

Supp(Sol(P)) = {{1}, ∅}.

The corresponding tropical differential polynomial is

Ptrop(S) = {(1)} �Θtrop(1)S ⊕ S

= Vert(Vert({1}+ Θtrop(1)S) ∪ Vert(S))).

Let S be a solution with 0 ∈ S . Then 0 ∈ Vert(S) and 0 ∈ Ptrop(S). But
0 /∈ Vert({1}+ Θtrop(1)S) in contradiction to the assumption that S is a
solution.

S. Falkensteiner (RISC Hagenberg) Tropical Differential Algebra June 17th, 2021 37 / 50



Example 3

Let

P = t · ∂ x
∂t
− x .

The solutions of P = 0 are ϕ = c t, where c ∈ K . Hence, Supp(ϕ) = {1}
or Supp(ϕ) = ∅, respectively, and

Supp(Sol(P)) = {{1}, ∅}.

The corresponding tropical differential polynomial is

Ptrop(S) = {(1)} �Θtrop(1)S ⊕ S

= Vert(Vert({1}+ Θtrop(1)S) ∪ Vert(S))).

Let S be a solution with 0 ∈ S . Then 0 ∈ Vert(S) and 0 ∈ Ptrop(S). But
0 /∈ Vert({1}+ Θtrop(1)S) in contradiction to the assumption that S is a
solution.

S. Falkensteiner (RISC Hagenberg) Tropical Differential Algebra June 17th, 2021 37 / 50



Example 3

Since 0 /∈ S , it holds that

Vert({1}+ Θtrop(1)S) = Vert(S)

and for every J ∈ Ptrop(S) with J ∈ Z>0 we obtain J ∈ Vert(S) and
J ∈ Vert({1}+ Θtrop(1)S).

This means that we do not obtain more conditions on the support of the
solutions of P = 0 by considering Ptrop.
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Example 3

The solution ϕ = c t of P = t · ∂ x∂t − x = 0 is also a solution of

Θ(1)P = t · ∂
2 x

∂t2
= 0.

The corresponding tropical differential polynomial is

(Θ(1)P)trop(S) = Vert({1}+ Θ(2)S) = min({J − 1 | J ∈ S , J ≥ 2}).

The case 0 ∈ (Θ(1)P)trop(S) is impossible.
The case 1 ∈ (Θ(1)P)trop(S) corresponds to S = {2,O(3)}. But 1
corresponds to a single tropical monomial and hence, S is not a solution.
Similarly, for J ∈ S with J ≥ 2 we obtain that J is the vertex of only one
tropical monomial and S cannot be a solution.
Only (Θ(1)P)trop(S) = ∅ remains which leads to S = ∅ or S = {1} and
hence,

Sol(Ptrop, (Θ(1)P)trop} = {∅, {1}}.
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Example 3

To summarize, we have obtained that

Supp(Sol(P,Θ(1)P)) = Sol(Ptrop, (Θ(1)P)trop).

We now want to precisely state this observation as the Fundamental
Theorem.
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Fundamental Theorem

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero.
Let Σ be a differential ideal in the ring K [[t1, . . . , tm]]{x1, . . . , xn}. Then

Supp(Sol(Σ)) = Sol(Σtrop).

“ ⊆ ” : holds for more general K .
“ ⊇ ” : uses ultrapower construction similar to the proof of the Strong
Approximation Theorem in [1].
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Initial of Differential Polynomials (Ritt, Kolchin, etc.)

An orderly ranking is a total order on the set of differential operators
{Θ(J) | J ∈ Zm

≥0} which regards derivatives, i.e. for all I , J,M ∈ Zm
≥0

Θ(J) ≤ Θ(I )Θ(J);

Θ(J) ≤ Θ(I ) =⇒ Θ(M + J) ≤ Θ(M + I ).

Let Θ(J) be the highest differential operation occuring in a differential
polynomial P. Then the initial of P is defined as the coefficient of Θ(J).

For

P = t1Θ(1, 1)x1(Θ(2, 0)x2)3 − t3
1 (Θ(2, 0)x1)2 + t2

2 (Θ(0, 1)x2)2

and an orderly ranking with Θ(0, 1) < Θ(1, 1) < Θ(2, 0) we obtain

init(P) = t1Θ(1, 1)x1.
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Motivation for initials

The initial (and separant) of a differential polynomial contain the main
information for simplifying (systems of) equations and finding its solutions,
for example the computation of differential regular chains, Thomas
decomposition and Cauchy-Kovalevski like algorithms.

Goal

We want to find an initial of the differential polynomial containing the
main information with respect to tropicalization and solving the tropical
version.
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Tropical Initials

For a ∈ K [[t1, . . . , tm]] we denote by a the restriction of a to its set of
vertices.

For a = t2
1 + t1t2 − 2t2

2 we have a = t2
1 − 2t2

2 .

Let P =
∑

M∈Λ aMEM and S ∈ P(Zm
≥0)n. Then we define the initial of P

(with respect to S) as

initS(P) =
∑
M∈Λ

trop(aMEM)(S)∩p(S)6=∅

aMEM .
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Tropical Initials

Example 4

Let P = x(1,0) + x(0,1) and ϕ = α t2
1 + β t2

2 . Then ϕ is not a solution of
P = 0 for any α, β 6= 0, but we obtain initS(P) = P for
S = Supp(ϕ) = {(2, 0), (0, 2)}.

For Θ(1, 0)P, however, we obtain Θ(1, 0)P = x(2,0) + x(1,1) and

initS(Θ(1, 0)P) = x(2,0).

If we find a single monomial in the tropical initial, this cannot have any
solution.

Question

Does the converse direction hold as well?

For P itself the answer is NO (see Example 4).
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Initial Ideal

Instead we consider the initials of the differential ideal generated by P and
from that its algebraic ideal:

Let Σ ⊂ K [[t1, . . . , tm]]{x1, . . . , xn} be a differential ideal and
S ∈ P(Zm

≥0)n. Then we define the initial ideal initS(Σ) with respect to S
as the algebraic ideal generated by

{initS(P) : P ∈ G} ⊂ K [[t1, . . . , tm]]{x1, . . . , xn}.
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Initial ideal

Taking derivatives and considering the initial does NOT commute. This is
why we have to choose the smaller set of the algebraic ideal (instead of
the differential ideal) for initS(Σ).

Example 4

Let P = x(0) − 1 and S = {0}. Then initS(P) = P and for every J it holds
that initS(Θ(J)P) = 0. Hence,

initS([P]) = 〈P〉.

But Θ(1)P ∈ [initS(P)] and the differential ideal generated by the initials
is not monomial-free. In fact, ϕ = 1 is a solution with S = Supp(ϕ).
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Extended Fundamental Theorem

Extended Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero.
Let Σ be a differential ideal in the ring K [[t1, . . . , tm]]{x1, . . . , xn}. Then
the following three subsets of

(
P(Zm

≥0)
)n

coincide:

1 Supp(Sol(Σ)),

2 Sol(Σtrop),

3 {S ∈ P(Zm
≥0)n : initS(Σ) contains no monomial}.

“⇒ ” : careful analysis and rewriting of the restricted coefficients and the
corresponding set of vertices.
“⇐ ” : can be carried out from the proof of the Fundamental Theorem.
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Recent Work

The notion of initial degeneration should be properly defined for differential
ideals in K [[t1, . . . , tm]]{x1, . . . , xn}.

The steps in this direction are
1 Consider the underlying structures K ((t1, . . . , tm)) and Frac(Tm). Of

particular interest are prime ideals in

K ((t1, . . . , tm))◦ = {ϕ
ψ

: N (trop(ϕ)) ⊆ N (trop(ψ))}.

For example, K ((t1, . . . , tm))◦ is a non-Noetherian Bézout domain.
2 Study solutions in K ((t1, . . . , tm)) and translations of differential

ideals to K ((t1, . . . , tm))◦{x1, . . . , xn}.
3 Consider the (differential) varieties

X = Spec(K ((t1, . . . , tm)){x1, . . . , xn}/Σ),

defined over K ((t1, . . . , tm)), where Σ ⊂ K ((t1, . . . , tm)){x1, . . . , xn}
is a differential ideal. Then we are interested into the affine schemes

χ(S) = Spec(K ((t1, . . . , tm))◦{x1, . . . , xn}/ΣS),

where ΣS are the translated differential ideals and its fibers χ(S)ν .
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2 Study solutions in K ((t1, . . . , tm)) and translations of differential

ideals to K ((t1, . . . , tm))◦{x1, . . . , xn}.

3 Consider the (differential) varieties

X = Spec(K ((t1, . . . , tm)){x1, . . . , xn}/Σ),

defined over K ((t1, . . . , tm)), where Σ ⊂ K ((t1, . . . , tm)){x1, . . . , xn}
is a differential ideal. Then we are interested into the affine schemes

χ(S) = Spec(K ((t1, . . . , tm))◦{x1, . . . , xn}/ΣS),

where ΣS are the translated differential ideals and its fibers χ(S)ν .

S. Falkensteiner (RISC Hagenberg) Tropical Differential Algebra June 17th, 2021 49 / 50



Recent Work

The notion of initial degeneration should be properly defined for differential
ideals in K [[t1, . . . , tm]]{x1, . . . , xn}. The steps in this direction are

1 Consider the underlying structures K ((t1, . . . , tm)) and Frac(Tm). Of
particular interest are prime ideals in

K ((t1, . . . , tm))◦ = {ϕ
ψ

: N (trop(ϕ)) ⊆ N (trop(ψ))}.

For example, K ((t1, . . . , tm))◦ is a non-Noetherian Bézout domain.
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Recent Work

Additionally, we want to find the right notion of tropical bases for
differential ideals in K ((t1, . . . , tm)){x1, . . . , xn}. In particular, our goal is
to

1 reproduce the initial ideal;

2 generalize differential Gröbner bases;

3 obtain a reduction process for differential polynomials.
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