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Motivation

From [2] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of
systems of algebraic partial differential equations.

The goal of this work is to have a better understanding, and derive
necessary conditions, of the support of solutions of systems of algebraic
partial differential equations.

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 3 / 41



Motivation

From [2] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of
systems of algebraic partial differential equations.

The goal of this work is to have a better understanding, and derive
necessary conditions, of the support of solutions of systems of algebraic
partial differential equations.

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 3 / 41



Overview

1 Algebraic Structures
Set of Vertices
Semiring of Vertex Sets

2 Tropicalization Map

3 Tropical Differential Algebra
Tropical Solution

4 Fundamental Theorem

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 4 / 41



Set of Vertices

For X ∈ P(Zm
≥0) we define the Newton polytope N (X ) ⊆ Rm

≥0 as the
convex hull of

X + Rm
≥0 = {x + (a1, . . . , am) | x ∈ X , a1, . . . , am ∈ R≥0}.

We call x ∈ X a vertex if

x /∈ N (X \ {x}),

and we denote by Vert(X ) the set of vertices of X .

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 5 / 41



Set of Vertices

For X ∈ P(Zm
≥0) we define the Newton polytope N (X ) ⊆ Rm

≥0 as the
convex hull of

X + Rm
≥0 = {x + (a1, . . . , am) | x ∈ X , a1, . . . , am ∈ R≥0}.

We call x ∈ X a vertex if

x /∈ N (X \ {x}),

and we denote by Vert(X ) the set of vertices of X .

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 5 / 41



Example 1

Let X = {A1 = (1, 4),A2 = (2, 3),A3 = (3, 3),A4 = (4, 1)} ⊆ Z2
≥0.

t2

t1

A1•

A4•

A2•
A3•
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Example 1

The Newton polytope N (X ) looks as follows.

t2

t1

A1•

A4•

A2•
A3•
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Example 1

The set of vertices is Vert(X ) = {A1,A4}.

t2

t1

A1•

A4•
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Set of Vertices

Lemma

Let X ,Y ∈ P(Zm
≥0). Then

N (Vert(X )) = N (X );

Vert(X ) = Vert(Y ) if and only if N (X ) = N (Y ).

As a consequence, Vert(X ) is the least set generating N (X ) (with respect
to “ ⊆ ” as ordering).
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Vertex Map

With abuse of notation we define the map

Vert : P(Zm
≥0) −→ P(Zm

≥0),

where X is projected onto its set of vertices Vert(X ).

We denote by Tm the image of Vert and define for X ,Y ∈ Tm the
operations

X ⊕ Y = Vert(X ∪ Y );

X � Y = Vert(X + Y ).
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Example 2

Let us consider the vertex sets

X = {(2, 0), (1, 1)},Y = {(0, 2), (2, 1)}.

t2

t1(2, 0)
•

(1, 1)
•

(0, 2)
•

(2, 1)
•
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Example 2
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Semiring of Vertex Sets

Lemma

(Tm,⊕,�, ∅, {0, . . . , 0}) is a commutative idempotent semiring, i.e. for all
a, b, c ∈ Tm

(Tm,⊕, ∅), (Tm,�, {0, . . . , 0}) are commutative monoids;

a� (b ⊕ c) = a� b ⊕ a� c;

∅ � a = ∅;
a⊕ a = a.
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Tropicalization Map

Let K be an algebraically closed field of characteristic zero and m ≥ 1.
The support of ϕ =

∑
aJt

J ∈ K [[t1, . . . , tm]] is defined as

Supp(ϕ) = {J ∈ Zm
≥0 | aJ 6= 0}.

The tropicalization map is defined as

trop: K [[t1, . . . , tm]] → Tm

ϕ 7→ Vert(Supp(ϕ))

K [[t1, . . . , tm]]
Supp //

trop
))

P(Zm
≥0)

Vert
��

Tm
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Tropicalization Map

Lemma

The tropicalization map is a non-degenerate valuation, i.e. for all
ϕ,ψ ∈ K [[t1, . . . , tm]]

trop(0) = ∅, trop(±1) = {(0, . . . , 0)};
trop(ϕ · ψ) = trop(ϕ)� trop(ψ);

trop(ϕ+ ψ)⊕ trop(ϕ)⊕ trop(ψ) = trop(ϕ)⊕ trop(ψ);

trop(ϕ) = ∅ implies that ϕ = 0.

These properties are the essence in the proof of the main theorem and one
of the difficulties of this paper was to find a “good” definition of the map
trop which satisfies them.
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Differential Polynomials

For J = (j1, . . . , jm) ∈ Zm
≥0 we denote by Θ(J) the differential operator

Θ(J) =
∂j1+···+jm

∂t j11 · · · ∂t
jm
m

,

where ∂
∂tk

is the partial derivative with respect to tk .

Then for

ϕ ∈ K [[t1, . . . , tm]] we obtain

Supp(Θ(J)ϕ) =

{
(s1 − j1, . . . , sm − jm)

∣∣∣∣ (s1, . . . , sm) ∈ Supp(ϕ),
si − ji ≥ 0 for all i

}
.
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Differential Polynomials

A differential monomial of order r ∈ Z≥0 depending on differential
indeterminates x1, . . . , xn can be written as

EM =
∏

1≤i≤n
max(J)≤r

(Θ(J)xi )
Mi,J

for some M = (Mi ,J) ∈ (Z≥0)n×(r+1)m .

A differential polynomial is an expression of the form

P =
∑
M

αM · EM ,

where finitely many coefficients αM ∈ K [[t1, . . . , tm]] are non-zero and EM

are differential monomials.
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Differential Ideals

The ring consisting of all differential polynomials in the variables x1, . . . , xn
will be denoted by

K [[t1, . . . , tm]]{x1, . . . , xn}.

A set Σ ⊆ K [[t1, . . . , tm]]{x1, . . . , xn} is called a differential ideal if

Σ is an ideal of K [[t1, . . . , tm]]{x1, . . . , xn};
For every P ∈ Σ, J ∈ Zm

≥0 it holds that

Θ(J)P ∈ Σ.
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Tropical Derivative Operator

Let us define the corresponding tropical operations and object.

A tropical derivative operator Θtrop(J) : P(Zm
≥0)→ P(Zm

≥0) is defined as

Θtrop(J)S =

{
(s1 − j1, . . . , sm − jm)

∣∣∣∣ (s1, . . . , sm) ∈ S ,
si − ji ≥ 0 for all i

}
.
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Tropical Differential Polynomial

By applying the tropicalization map, we obtain the corresponding tropical
differential monomial and tropical differential polynomial, respectively.

E =
∏

1≤i≤n
max(J)≤r

(Θ(J)xi )
Mi,J ←→ Etrop =

⊙
1≤i≤n

max(J)≤r

Vert(Θtrop(J)Si )
�Mi,J

P =
∑
M

αM · EM ←→ Ptrop =
⊕
M

trop(αM)� EM,trop
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Tropical Solution

Let
Ptrop =

⊕
M∈∆

aM � εM

be a tropical differential polynomial. An n-tuple S ∈ P(Zm
≥0)n is called a

solution of Ptrop if for every J ∈ Ptrop(S) there exist M1,M2 ∈ ∆ with
M1 6= M2 such that

J ∈ aM1 � εM1(S) and J ∈ aM2 � εM2(S).

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 35 / 41



Fundamental Theorem

Goal

We now want to find a relation between the solutions of the original
system of differential equations and the solutions of the corresponding
tropical differential polynomials.
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Example 3

Let

P = t · ∂ x
∂t
− x .

The solutions of P = 0 are ϕ = c t, where c ∈ K . Hence, Supp(ϕ) = {1}
or Supp(ϕ) = ∅, respectively.

The corresponding tropical differential polynomial is

Ptrop(S) = Vert(Vert({1}+ Θ(1)S) ∪ Vert(S))).

Let S be a solution with 0 ∈ S . Then 0 ∈ Vert(S) and 0 ∈ Ptrop(S). But
0 /∈ Vert({1}+ Θtrop(1)S) in contradiction to the assumption that S is a
solution.
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Example 3

Since 0 /∈ S , it holds that

Vert({1}+ Θtrop(1)S) = Vert(S)

and for every J ∈ Ptrop(S) with J ∈ Z>0 we obtain J ∈ Vert(S) and
J ∈ Vert({1}+ Θtrop(1)S).

This means that we do not obtain more conditions on the support of the
solutions of P = 0 by considering Ptrop.
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Example 3

The solution ϕ = c t of P = t · ∂ x
∂t − x = 0 is also a solution of

Θ(1)P = t · ∂
2 x

∂t2
= 0.

The corresponding tropical differential polynomial is

(Θ(1)P)trop(S) = Vert({1}+ Θ(2)S) = min({J − 1 | J ∈ S , J ≥ 2}).

Since 1 cannot be an element in (Θ(1)P)trop(S), for a solution S it is
possible that 1 ∈ S . For J ∈ S with J ≥ 2 we obtain that J is the vertex
of only one tropical differential monomial and S cannot be a solution.
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Example 3

To summarize, we have obtained that

Supp(Sol(P,Θ(1)P)) = Sol(Ptrop, (Θ(1)P)trop),

where Sol denotes the set of solutions of the implicitly defined differential
equations or of the tropical differential polynomials, respectively.

We now want to precisely state this observation as the Fundamental
Theorem.

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 40 / 41



Example 3

To summarize, we have obtained that

Supp(Sol(P,Θ(1)P)) = Sol(Ptrop, (Θ(1)P)trop),

where Sol denotes the set of solutions of the implicitly defined differential
equations or of the tropical differential polynomials, respectively.

We now want to precisely state this observation as the Fundamental
Theorem.

S. Falkensteiner (RISC Hagenberg) Fundamental Theorem July 20th, 2020 40 / 41



Fundamental Theorem

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero.
Let Σ be a differential ideal in the ring K [[t1, . . . , tm]]{x1, . . . , xn}. Then

Supp(Sol(Σ)) = Sol(Σtrop).

“ ⊆ ” : holds for more general K .
“ ⊇ ” : uses ultrapower construction similar to the proof of the Strong
Approximation Theorem in [2].
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