The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry

Sebastian Falkensteiner,

C. Garay-López, M. Haiech, M.P. Noordman, Z. Toghani, F. Boulier

Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria

July 20th, 2020

References

目 F. Aroca, C. Garay, Z. Toghani, The Fundamental Theorem of Tropical Differential Algebraic Geometry. Pacific Journal of Mathematics, 283(2):257-270, 2016.
围 J. Denef, L. Lipshitz, Power Series Solutions of Algebraic Differential Equations. Mathematische Annalen, 267:213-238, 1984.

Motivation

From [2] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of systems of algebraic partial differential equations.

Motivation

From [2] the following is known.

Undecidability Result

There is no algorithm for computing formal power series solutions of systems of algebraic partial differential equations.

The goal of this work is to have a better understanding, and derive necessary conditions, of the support of solutions of systems of algebraic partial differential equations.

Overview

(1) Algebraic Structures

- Set of Vertices
- Semiring of Vertex Sets
(2) Tropicalization Map
(3) Tropical Differential Algebra
- Tropical Solution
(4) Fundamental Theorem

Set of Vertices

For $X \in \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)$ we define the Newton polytope $\mathcal{N}(X) \subseteq \mathbb{R}_{\geq 0}^{m}$ as the convex hull of

$$
X+\mathbb{R}_{\geq 0}^{m}=\left\{x+\left(a_{1}, \ldots, a_{m}\right) \mid x \in X, a_{1}, \ldots, a_{m} \in \mathbb{R}_{\geq 0}\right\}
$$

Set of Vertices

For $X \in \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)$ we define the Newton polytope $\mathcal{N}(X) \subseteq \mathbb{R}_{\geq 0}^{m}$ as the convex hull of

$$
X+\mathbb{R}_{\geq 0}^{m}=\left\{x+\left(a_{1}, \ldots, a_{m}\right) \mid x \in X, a_{1}, \ldots, a_{m} \in \mathbb{R}_{\geq 0}\right\}
$$

We call $x \in X$ a vertex if

$$
x \notin \mathcal{N}(X \backslash\{x\})
$$

and we denote by $\operatorname{Vert}(X)$ the set of vertices of X.

Example 1

$$
\text { Let } X=\left\{A_{1}=(1,4), A_{2}=(2,3), A_{3}=(3,3), A_{4}=(4,1)\right\} \subseteq \mathbb{Z}_{\geq 0}^{2} \text {. }
$$

Example 1

$$
\text { Let } X=\left\{A_{1}=(1,4), A_{2}=(2,3), A_{3}=(3,3), A_{4}=(4,1)\right\} \subseteq \mathbb{Z}_{\geq 0}^{2} \text {. }
$$

Example 1

The Newton polytope $\mathcal{N}(X)$ looks as follows.

Example 1

The set of vertices is $\operatorname{Vert}(X)=\left\{A_{1}, A_{4}\right\}$.

Set of Vertices

Lemma

Let $X, Y \in \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)$. Then

- $\mathcal{N}(\operatorname{Vert}(X))=\mathcal{N}(X)$;
- $\operatorname{Vert}(X)=\operatorname{Vert}(Y)$ if and only if $\mathcal{N}(X)=\mathcal{N}(Y)$.

Set of Vertices

Lemma

Let $X, Y \in \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)$. Then

- $\mathcal{N}(\operatorname{Vert}(X))=\mathcal{N}(X)$;
- $\operatorname{Vert}(X)=\operatorname{Vert}(Y)$ if and only if $\mathcal{N}(X)=\mathcal{N}(Y)$.

As a consequence, $\operatorname{Vert}(X)$ is the least set generating $\mathcal{N}(X)$ (with respect to " \subseteq " as ordering).

Vertex Map

With abuse of notation we define the map

$$
\text { Vert: } \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right) \longrightarrow \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)
$$

where X is projected onto its set of vertices $\operatorname{Vert}(X)$.

Vertex Map

With abuse of notation we define the map

$$
\text { Vert: } \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right) \longrightarrow \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)
$$

where X is projected onto its set of vertices $\operatorname{Vert}(X)$.
We denote by \mathbb{T}_{m} the image of Vert and define for $X, Y \in \mathbb{T}_{m}$ the operations

- $X \oplus Y=\operatorname{Vert}(X \cup Y)$;
- $X \odot Y=\operatorname{Vert}(X+Y)$.

Example 2

Let us consider the vertex sets

$$
X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
X \oplus Y=\operatorname{Vert}(X \cup Y)
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
X \oplus Y=\operatorname{Vert}(X \cup Y)
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$. $X \oplus Y=\operatorname{Vert}(X \cup Y)$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$. $X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\}$,

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

$\overbrace{(0,2)}^{t_{2}}$
$\xrightarrow{(2,0)} \quad t_{1}$
$\xrightarrow{(2,0)} \quad t_{1}$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

$\overbrace{0}^{t_{2}}(0,2)$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

$(4,1)$
$(2,0) \quad t_{1}$

$$
\uparrow^{t_{2}} \quad \begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& (1,3) \\
& \bullet(3), 2)
\end{aligned}
$$

$$
\xrightarrow{\stackrel{\rightharpoonup}{4}} \begin{aligned}
& t_{1}
\end{aligned}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\} \\
& X \odot Y=\operatorname{Vert}(X+Y)
\end{aligned}
$$

Example 2

Let $X=\{(2,0),(1,1)\}, Y=\{(0,2),(2,1)\}$.

$$
\begin{aligned}
& X \oplus Y=\operatorname{Vert}(X \cup Y)=\{(2,0),(0,2)\}, \\
& X \odot Y=\operatorname{Vert}(X+Y)=\{(4,1),(2,2),(1,3)\} .
\end{aligned}
$$

$\xrightarrow{(2,0)}$

- ${ }^{(2,2)}$
$(4,1)$

$$
\uparrow^{t_{2}} \quad(1,3)
$$

Semiring of Vertex Sets

Lemma

$\left(\mathbb{T}_{m}, \oplus, \odot, \emptyset,\{0, \ldots, 0\}\right)$ is a commutative idempotent semiring, i.e. for all $a, b, c \in \mathbb{T}_{m}$

- $\left(\mathbb{T}_{m}, \oplus, \emptyset\right),\left(\mathbb{T}_{m}, \odot,\{0, \ldots, 0\}\right)$ are commutative monoids;
- $a \odot(b \oplus c)=a \odot b \oplus a \odot c$;
- $\emptyset \odot a=\emptyset$;
- $a \oplus a=a$.

Tropicalization Map

Let K be an algebraically closed field of characteristic zero and $m \geq 1$. The support of $\varphi=\sum a_{\jmath} t^{J} \in K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$ is defined as

$$
\operatorname{Supp}(\varphi)=\left\{J \in \mathbb{Z}_{\geq 0}^{m} \mid a_{J} \neq 0\right\}
$$

Tropicalization Map

Let K be an algebraically closed field of characteristic zero and $m \geq 1$. The support of $\varphi=\sum$ aر $t^{J} \in K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$ is defined as

$$
\operatorname{Supp}(\varphi)=\left\{J \in \mathbb{Z}_{\geq 0}^{m} \mid a_{J} \neq 0\right\} .
$$

The tropicalization map is defined as

$$
\begin{array}{cccc}
\text { trop: } \quad K\left[\left[t_{1}, \ldots, t_{m}\right]\right] & \rightarrow & \mathbb{T}_{m} \\
\varphi & \mapsto & \operatorname{Vert}(\operatorname{Supp}(\varphi))
\end{array}
$$

$$
K\left[\left[t_{1}, \ldots, t_{m}\right]\right] \xrightarrow[\text { trop }]{\text { Supp }} \mathcal{P} \underset{\substack{\mathbb{Z}_{\geq 0}^{m} \\ \mid \text { Vert }}}{\substack{\mathbb{T}_{m}}}
$$

Tropicalization Map

Lemma

The tropicalization map is a non-degenerate valuation, i.e. for all $\varphi, \psi \in K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$

- $\operatorname{trop}(0)=\emptyset, \operatorname{trop}(\pm 1)=\{(0, \ldots, 0)\}$;
- $\operatorname{trop}(\varphi \cdot \psi)=\operatorname{trop}(\varphi) \odot \operatorname{trop}(\psi)$;
- $\operatorname{trop}(\varphi+\psi) \oplus \operatorname{trop}(\varphi) \oplus \operatorname{trop}(\psi)=\operatorname{trop}(\varphi) \oplus \operatorname{trop}(\psi)$;
- $\operatorname{trop}(\varphi)=\emptyset$ implies that $\varphi=0$.

Tropicalization Map

Lemma

The tropicalization map is a non-degenerate valuation, i.e. for all $\varphi, \psi \in K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$

- $\operatorname{trop}(0)=\emptyset, \operatorname{trop}(\pm 1)=\{(0, \ldots, 0)\} ;$
- $\operatorname{trop}(\varphi \cdot \psi)=\operatorname{trop}(\varphi) \odot \operatorname{trop}(\psi)$;
- $\operatorname{trop}(\varphi+\psi) \oplus \operatorname{trop}(\varphi) \oplus \operatorname{trop}(\psi)=\operatorname{trop}(\varphi) \oplus \operatorname{trop}(\psi)$;
- $\operatorname{trop}(\varphi)=\emptyset$ implies that $\varphi=0$.

These properties are the essence in the proof of the main theorem and one of the difficulties of this paper was to find a "good" definition of the map trop which satisfies them.

Differential Polynomials

For $J=\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ we denote by $\Theta(J)$ the differential operator

$$
\Theta(J)=\frac{\partial^{j_{1}+\cdots+j_{m}}}{\partial t_{1}^{j_{1}} \cdots \partial t_{m}^{j_{m}}},
$$

where $\frac{\partial}{\partial t_{k}}$ is the partial derivative with respect to t_{k}.

Differential Polynomials

For $J=\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ we denote by $\Theta(J)$ the differential operator

$$
\Theta(J)=\frac{\partial^{j_{1}+\cdots+j_{m}}}{\partial t_{1}^{j_{1}} \cdots \partial t_{m}^{j_{m}}},
$$

where $\frac{\partial}{\partial t_{k}}$ is the partial derivative with respect to t_{k}. Then for $\varphi \in K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$ we obtain

$$
\operatorname{Supp}(\Theta(J) \varphi)=\left\{\begin{array}{l|c}
\left(s_{1}-j_{1}, \ldots, s_{m}-j_{m}\right) & \left(s_{1}, \ldots, s_{m}\right) \in \operatorname{Supp}(\varphi) \\
s_{i}-j_{i} \geq 0 \text { for all } i
\end{array}\right\}
$$

Differential Polynomials

A differential monomial of order $r \in \mathbb{Z}_{\geq 0}$ depending on differential indeterminates x_{1}, \ldots, x_{n} can be written as

$$
E_{M}=\prod_{\substack{1 \leq i \leq n \\ \max (J) \leq r}}\left(\Theta(J) x_{i}\right)^{M_{i, J}}
$$

for some $M=\left(M_{i, J}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n \times(r+1)^{m}}$.

Differential Polynomials

A differential monomial of order $r \in \mathbb{Z}_{\geq 0}$ depending on differential indeterminates x_{1}, \ldots, x_{n} can be written as

$$
E_{M}=\prod_{\substack{1 \leq i \leq n \\ \max (J) \leq r}}\left(\Theta(J) x_{i}\right)^{M_{i, J}}
$$

for some $M=\left(M_{i, J}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n \times(r+1)^{m}}$.
A differential polynomial is an expression of the form

$$
P=\sum_{M} \alpha_{M} \cdot E_{M},
$$

where finitely many coefficients $\alpha_{M} \in K\left[\left[t_{1}, \ldots, t_{m}\right]\right]$ are non-zero and E_{M} are differential monomials.

Differential Ideals

The ring consisting of all differential polynomials in the variables x_{1}, \ldots, x_{n} will be denoted by

$$
K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\} .
$$

Differential Ideals

The ring consisting of all differential polynomials in the variables x_{1}, \ldots, x_{n} will be denoted by

$$
K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\} .
$$

A set $\Sigma \subseteq K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\}$ is called a differential ideal if

- Σ is an ideal of $K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\}$;
- For every $P \in \Sigma, J \in \mathbb{Z}_{\geq 0}^{m}$ it holds that

$$
\Theta(J) P \in \Sigma
$$

Tropical Derivative Operator

Let us define the corresponding tropical operations and object.

Tropical Derivative Operator

Let us define the corresponding tropical operations and object.
A tropical derivative operator $\Theta_{\text {trop }}(J): \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right) \rightarrow \mathcal{P}\left(\mathbb{Z}_{\geq 0}^{m}\right)$ is defined as

$$
\Theta_{\text {trop }}(J) S=\left\{\begin{array}{l|l}
\left(s_{1}-j_{1}, \ldots, s_{m}-j_{m}\right) & \begin{array}{c}
\left(s_{1}, \ldots, s_{m}\right) \in S \\
s_{i}-j_{i} \geq 0 \text { for all } i
\end{array}
\end{array}\right\}
$$

Tropical Differential Polynomial

By applying the tropicalization map, we obtain the corresponding tropical differential monomial and tropical differential polynomial, respectively.

Tropical Differential Polynomial

By applying the tropicalization map, we obtain the corresponding tropical differential monomial and tropical differential polynomial, respectively.

$$
E=\prod_{\substack{1 \leq i \leq n \\ \max (J) \leq r}}\left(\Theta(J) x_{i}\right)^{M_{i, J}} \quad \longleftrightarrow \quad E_{\text {trop }}=\bigodot_{\substack{1 \leq i \leq n \\ \max (J) \leq r}} \operatorname{Vert}\left(\Theta_{\text {trop }}(J) S_{i}\right)^{\odot} M_{i, J}
$$

Tropical Differential Polynomial

By applying the tropicalization map, we obtain the corresponding tropical differential monomial and tropical differential polynomial, respectively.

$$
\begin{gathered}
E=\prod_{\substack{1 \leq i \leq n \\
\max (J) \leq r}}\left(\Theta(J) x_{i}\right)^{M_{i, J}} \quad \longleftrightarrow \quad E_{\text {trop }}=\underset{\substack{1 \leq i \leq n \\
\max (J) \leq r}}{\bigodot_{\operatorname{trop}}} \operatorname{Vert}\left(\Theta_{\text {trop }}(J) S_{i}\right)^{\odot M_{i, J}} \\
P=\sum_{M} \alpha_{M} \cdot E_{M} \quad \longleftrightarrow \quad P_{\text {trop }}=\bigoplus_{M} \operatorname{trop}\left(\alpha_{M}\right) \odot E_{M, \text { trop }}
\end{gathered}
$$

Tropical Solution

Let

$$
P_{\text {trop }}=\bigoplus_{M \in \Delta} a_{M} \odot \epsilon_{M}
$$

be a tropical differential polynomial. An n-tuple $S \in \mathcal{P}\left(\mathbb{Z}_{>0}^{m}\right)^{n}$ is called a solution of $P_{\text {trop }}$ if for every $J \in P_{\text {trop }}(S)$ there exist $M_{1}, \bar{M}_{2} \in \Delta$ with $M_{1} \neq M_{2}$ such that

$$
J \in a_{M_{1}} \odot \epsilon_{M_{1}}(S) \quad \text { and } \quad J \in a_{M_{2}} \odot \epsilon_{M_{2}}(S)
$$

Fundamental Theorem

Goal

We now want to find a relation between the solutions of the original system of differential equations and the solutions of the corresponding tropical differential polynomials.

Example 3

Let

$$
P=t \cdot \frac{\partial x}{\partial t}-x
$$

The solutions of $P=0$ are $\varphi=c t$, where $c \in K$. Hence, $\operatorname{Supp}(\varphi)=\{1\}$ or $\operatorname{Supp}(\varphi)=\emptyset$, respectively.

Example 3

Let

$$
P=t \cdot \frac{\partial x}{\partial t}-x
$$

The solutions of $P=0$ are $\varphi=c t$, where $c \in K$. Hence, $\operatorname{Supp}(\varphi)=\{1\}$ or $\operatorname{Supp}(\varphi)=\emptyset$, respectively.
The corresponding tropical differential polynomial is

$$
\left.P_{\text {trop }}(S)=\operatorname{Vert}(\operatorname{Vert}(\{1\}+\Theta(1) S) \cup \operatorname{Vert}(S))\right)
$$

Example 3

Let

$$
P=t \cdot \frac{\partial x}{\partial t}-x
$$

The solutions of $P=0$ are $\varphi=c t$, where $c \in K$. Hence, $\operatorname{Supp}(\varphi)=\{1\}$ or $\operatorname{Supp}(\varphi)=\emptyset$, respectively.
The corresponding tropical differential polynomial is

$$
\left.P_{\text {trop }}(S)=\operatorname{Vert}(\operatorname{Vert}(\{1\}+\Theta(1) S) \cup \operatorname{Vert}(S))\right)
$$

Let S be a solution with $0 \in S$. Then $0 \in \operatorname{Vert}(S)$ and $0 \in P_{\text {trop }}(S)$. But $0 \notin \operatorname{Vert}\left(\{1\}+\Theta_{\text {trop }}(1) S\right)$ in contradiction to the assumption that S is a solution.

Example 3

Since $0 \notin S$, it holds that

$$
\operatorname{Vert}\left(\{1\}+\Theta_{\text {trop }}(1) S\right)=\operatorname{Vert}(S)
$$

and for every $J \in P_{\text {trop }}(S)$ with $J \in \mathbb{Z}_{>0}$ we obtain $J \in \operatorname{Vert}(S)$ and $J \in \operatorname{Vert}\left(\{1\}+\Theta_{\text {trop }}(1) S\right)$.

Example 3

Since $0 \notin S$, it holds that

$$
\operatorname{Vert}\left(\{1\}+\Theta_{\text {trop }}(1) S\right)=\operatorname{Vert}(S)
$$

and for every $J \in P_{\text {trop }}(S)$ with $J \in \mathbb{Z}_{>0}$ we obtain $J \in \operatorname{Vert}(S)$ and $J \in \operatorname{Vert}\left(\{1\}+\Theta_{\text {trop }}(1) S\right)$.

This means that we do not obtain more conditions on the support of the solutions of $P=0$ by considering $P_{\text {trop }}$.

Example 3

The solution $\varphi=c t$ of $P=t \cdot \frac{\partial x}{\partial t}-x=0$ is also a solution of

$$
\Theta(1) P=t \cdot \frac{\partial^{2} x}{\partial t^{2}}=0
$$

Example 3

The solution $\varphi=c t$ of $P=t \cdot \frac{\partial x}{\partial t}-x=0$ is also a solution of

$$
\Theta(1) P=t \cdot \frac{\partial^{2} x}{\partial t^{2}}=0
$$

The corresponding tropical differential polynomial is

$$
(\Theta(1) P)_{\operatorname{trop}}(S)=\operatorname{Vert}(\{1\}+\Theta(2) S)=\min (\{J-1 \mid J \in S, J \geq 2\})
$$

Example 3

The solution $\varphi=c t$ of $P=t \cdot \frac{\partial x}{\partial t}-x=0$ is also a solution of

$$
\Theta(1) P=t \cdot \frac{\partial^{2} x}{\partial t^{2}}=0
$$

The corresponding tropical differential polynomial is

$$
(\Theta(1) P)_{\operatorname{trop}}(S)=\operatorname{Vert}(\{1\}+\Theta(2) S)=\min (\{J-1 \mid J \in S, J \geq 2\})
$$

Since 1 cannot be an element in $(\Theta(1) P)_{\text {trop }}(S)$, for a solution S it is possible that $1 \in S$.

Example 3

The solution $\varphi=c t$ of $P=t \cdot \frac{\partial x}{\partial t}-x=0$ is also a solution of

$$
\Theta(1) P=t \cdot \frac{\partial^{2} x}{\partial t^{2}}=0
$$

The corresponding tropical differential polynomial is

$$
(\Theta(1) P)_{\operatorname{trop}}(S)=\operatorname{Vert}(\{1\}+\Theta(2) S)=\min (\{J-1 \mid J \in S, J \geq 2\})
$$

Since 1 cannot be an element in $(\Theta(1) P)_{\text {trop }}(S)$, for a solution S it is possible that $1 \in S$. For $J \in S$ with $J \geq 2$ we obtain that J is the vertex of only one tropical differential monomial and S cannot be a solution.

Example 3

To summarize, we have obtained that

$$
\operatorname{Supp}(\operatorname{Sol}(P, \Theta(1) P))=\operatorname{Sol}\left(P_{\text {trop }},(\Theta(1) P)_{\text {trop }}\right),
$$

where Sol denotes the set of solutions of the implicitly defined differential equations or of the tropical differential polynomials, respectively.

Example 3

To summarize, we have obtained that

$$
\operatorname{Supp}(\operatorname{Sol}(P, \Theta(1) P))=\operatorname{Sol}\left(P_{\text {trop }},(\Theta(1) P)_{\text {trop }}\right),
$$

where Sol denotes the set of solutions of the implicitly defined differential equations or of the tropical differential polynomials, respectively.

We now want to precisely state this observation as the Fundamental Theorem.

Fundamental Theorem

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\}$. Then

$$
\operatorname{Supp}(\operatorname{Sol}(\Sigma))=\operatorname{Sol}\left(\Sigma_{\text {trop }}\right)
$$

Fundamental Theorem

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\}$. Then

$$
\operatorname{Supp}(\operatorname{Sol}(\Sigma))=\operatorname{Sol}\left(\Sigma_{\text {trop }}\right)
$$

" \subseteq " : holds for more general K.

Fundamental Theorem

Fundamental Theorem

Let K be an uncountable, algebraically closed field of characteristic zero. Let Σ be a differential ideal in the ring $K\left[\left[t_{1}, \ldots, t_{m}\right]\right]\left\{x_{1}, \ldots, x_{n}\right\}$. Then

$$
\operatorname{Supp}(\operatorname{Sol}(\Sigma))=\operatorname{Sol}\left(\Sigma_{\text {trop }}\right)
$$

" \subseteq " : holds for more general K.
" \supseteq " : uses ultrapower construction similar to the proof of the Strong Approximation Theorem in [2].

