Chapter 7
Concurrent Systems

Finally, we are going to employ the concepts introduced in the previous
chapter for their core purpose: the modeling and analysis of systems with
concurrently executing components. Examples of such systems are programs
with multiple processes or threads that cooperate via shared variables, as
well as multiple independent programs that interact by exchanging messages
over a network.

The core idea is to replace the somewhat intricate notion of “concurrency’
by the more tractable notion of “nondeterminism”. While in a concurrent
system multiple actions may be executed simultaneously, the nondeterministic
model of such a system considers the execution of individual actions only,
but of any possible action; thus the analysis of the model investigates all
possible “interleavings” of actions. Although this does not consider the truly
simultaneous execution of two actions a1 and 4, one may argue that it suffices
to consider just two possibilities, that a1 is executed before a5, and that a, is
executed before a1: either both actions affect a common physical component,
then this component has to arrange them in one of these orders to achieve a
well-defined effect; or they only affect components at different locations, then
the notion of “simultaneity” is meaningless (due to the principle of relativity).

When reasoning about such models, we will focus on their safety properties,
i.e., properties whose violation can be observed at a particular point of
the system execution; such properties ensure that “nothing bad can ever
happen”. The verification of a safety property requires the formulation of a
system invariant that constrains the set of reachable system states as closely
as possible and that implies the safety property. The correctness of the
invariant is shown by an induction proof: all initial system states must satisfy
the invariant (the induction base), and, if the invariant holds in a state (the
induction hypothesis), it must hold again after every possible action of the
system (the induction step); typically the safety property of interest has to
be be sufficiently strengthened to yield valid induction steps. Indeed the
formulation of inductive invariants is the core problem of concurrent system
verification; only via such invariants a system is truly understood.

7

173

7.3 A Resource Allocator 195

a7 shared system AlternatingBitNetwork
{ Execute operation
// the messages sent and received (local to each process) ~ Verify specification preconditions
0 var sent:Msg = Default; Isindexvalue legal?

91 var revd:Msg = Default; Is index value legal?

Is index value legal?

93 // the protocol bits

94 var sbit:Bit = i1; Isindex value legal?

95 var sack:Bit = 1; Is index value legal?
96 var rbit:Bit = 1; Isindex value legal?
97 Is index value legal?
98 // the communication channels Isindex value legal?
99 var msgq:Queue = {len:@,pack:Array[M,Package](cmsg:Default,h@t:L) 1) Is index value legal?
igtll var ackq:Queue = (len:@,pack:Array[M,Package] ((msg:Default,bit:1))}; 15 index value legal?

102 // the history of the messages sent and received Isindex value legal?

103 var smsgs:Seq = Array[N,Msg] (Default); Isindexvalue legal?

164 var snum:Index = ©; ¥ Verify specification

105 var rmsgs:Seq = Array[N,Msg] (Default); Does system invariant initially hold?
166 var rnum:Index = 6; Does system invariant initially hold?
167 Does system invariant initially hold?
188 // safety property: the messages received are the messages sent Does system invariant initally hold?
109 invariant rnum = snum A Vi:Index with i < rnum. rmsgs[i] = smsgs[i];

Does system invariant nitially hold?

Does system invariant nitially hold?
111 // invariants from the shared memory version v v

112 invariant snum-1 s rnum;
113 invariant sack = sbit = rnum = snum;
114 invariant rbit = sbit A rnum < N - rnum < snum A sent = smsgs[snum-1]; Does system invariant initially hold?
115 Does system invariant initially hold?
116 // additional invariants »
117 invariant rnum < snum - rbit = sbit; »
118 invariant vi:m[M] with 1 < msgg.len. »
119 (msgq.pack[i].bit # rbit - msgq.pack[i]l.msg = sent a msgq.pack[i].bit = sbit); N
»
»
»

Does system invarfant initally hold?
Does system invariant initially hold?

action sender
actionresend
action receiveAck

120 invariant wi:m[M] with i+l < msgq.len. actionreceiver
121 (msgq.pack[i] .bit = rbit - msgq.pack[i+1].bit = rbit);
122 invariant vi:®[M] with i+1 < ackg.len.

action sendAck
action loseMsg

123 (ackq.pack[i].bit # sack - ackq.pack[i+1].bit # sack); action loseAck
124 invariant sack = sbit - (vi:M[M] with i < msgq.len. (msgq.pack[i].bit = rbit)); Verifyinitialization precondtions
125 invariant sack = rbit = (vi:M[M] with i < ackq.len. (ackq.pack[i].bit = rbit)); b Verifyaction preconditions

Fig. 7.7 Verification of the Alternating Bit Protocol (Distributed Version)

7.3 A Resource Allocator

We consider a system described in [44] which consists of a server and a set of
clients (see Figure 7.8). The server manages a pool of resources which clients
request from the server by sending corresponding messages; the server grants
these requests by sending corresponding replies. The central safety property
of the system is that the server grants every resource to at most one client at a
time, i.e., no two clients may simultaneously use the same resource.

The problem becomes complex, because both requests and grants do not
only refer to single resources; in particular, every client may request any set
resources. However, the server may respond by a message that contains only
some of the requested resources; if it does not immediately grant all resources,
the server will send later further messages that grant more of them, until the
complete request is satisfied. Furthermore, as soon as a client holds some of
the requested resources, it may (even if its request has not yet been satisfied
completely) return some of them to the server. However, a client may not
send another request for new resources before it has received and returned
all the resources from its previous request.

To fairly satisfy requests from the various clients, the server keeps track
of the sequence of still pending requests in the order in which they were
received. The server grants a resource to a client if there is no earlier request
from another client for the same resource.

© 2021 Wolfgang Schreiner.

196 7 Concurrent Systems

Resources

Sever FOO@OOOO

Clients . . O . . O

Fig. 7.8 A Resource Allocator

We will model this system in RISCAL based on the following declarations:

val C:N; val R:N;

axiom notNull & C > 0® A R > 0;
type Client = N[C-1];

type Resource N[R-1];

type Position = N[(C];

Here the model parameter C > 0 denotes the number of clients while R > 0
denotes the number of resources. Clients are denoted by values of type Client
while resources are denoted by values of type Resource. Values of type Position
represent the positions of requests queued in the server; smaller values denote
requests that have been received earlier and that therefore have higher priority
(value C indicates “no position”).

The model makes use of the following auxiliary operations:

fun position(c:Client,pos:Map[Client,Position]):Position =
let p = pos[c] in
if p < C then

p
else if Vc0:Client. pos[cO®] = C then
0
else
1 + max c0:Client with pos[c®] < C. pos[cO®];

The value of position(c, pos) denotes the position of client ¢ in the “queue” of
requests, according to the mapping pos of clients to positions (this queue is
purely “virtual”, i.e., it is only represented by pos). If this mapping already
contains a position for ¢, we use this position; otherwise, if the mapping
is empty, the position is 0 (the client is at the “front” of the queue); if the
mapping is not empty, the position is one plus the maximum position in the
mapping (the client is at the “back” of the queue).

© 2021 Wolfgang Schreiner.

7.3 A Resource Allocator 197

proc remove(pos:Map[Client,Position], c:Client):Map[Client,Position]
ensures Yc0:Client. result[c®] = if c® = c then C else
if pos[c] < pos[cO®] A pos[c®] < C then pos[cO®]-1 else pos[cO];

var p:Map[Client,Position] = pos;

for c0:Client with p[c] < p[c®] A p[c®] < C do
plcd] = p[cOd]-1;

plcl =G

return p;

The value of remove(pos, c) denotes the mapping of clients to positions that
arises from pos if we remove client ¢ from the queue of requests: the position
of all clients before ¢ remain unchanged while the positions of all clients
after ¢ are decreased by one; the position of c itself is set to C (“no position”).

pred grant(c:Client,S:Set[Resource],unsat:Map[Client,Set[Resource]],
alloc:Map[Client,Set[Resource]],pos:Map[Client,Position])
& pos[c] < C A S # @[Resource] A
(VreS. reunsat[c] A —3JcO®:Client. realloc[cO®]) A
(VcO:Client with pos[cO®]<pos[c]. VreS. r¢unsat[c0]);

The truth value of grant(c, S, unsat, alloc, pos) states whether the server may
allocate to client c the resource set S, depending on its state described by the
variables unsat, alloc, and pos which will be further explained below.

A Shared Model

Our first model is that of a system with nondeterministic transitions operating
on a set of shared variables; in particular, the state of the network isbdefined
by the set of messages that are currently in transit. These messages are formed
according to the following declarations:

type Tag = N[2];
val request = 0; val allocate = 1; val giveback = 2;
type Message = Record[tag:Tag,client:Client,resources:Set[Resource]];

Thus a message is a value m of type Message where the record field
m.tag € {request,allocate, giveback} denotes the purpose of the message,
m.client denotes the client sending respectively receiving the message, and

© 2021 Wolfgang Schreiner.

198 7 Concurrent Systems

m.resources denotes the set of resources carried by the message. On the basis
of these declarations, the model can now be formalized as follows:

shared system SharedAllocator
{

var unsat:Map[Client,Set[Resource]] =
Map[Client,Set[Resource]] (@[Resource]);

var alloc:Map[Client,Set[Resource]] =
Map[Client,Set[Resource]] (@[Resource]);

var pos:Map[Client,Position] = Map[Client,Position](C);

var requests: Map[Client,Set[Resource]] =
Map[Client,Set[Resource]] (@[Resource]);

var holding: Map[Client,Set[Resource]] =
Map[Client,Set[Resource]] (@[Resource]);

var network: Set[Message] = @[Message];

action serverRequest(m:Message) with
m € network A m.tag = request A alloc[m.client] = @[Resource];

{
network := network\{m}; val ¢ = m.client; val S = m.resources;
unsat[c] := unsat[c]US; pos[c] := position(c,pos);

}

action serverAllocate(c:Client,S:Set[Resource]) with
grant(c,S,unsat,alloc,pos);

{
alloc[c] = alloc[c]US; unsat[c] := unsat[c]\S;
if unsat[c] = @[Resource] then pos := remove(pos,c);
network := networkU{(tag:allocate,client:c,resources:S)};
}
action serverGiveBack(m:Message) with m € network A m.tag = giveback;
{
network := network\{m}; val ¢ = m.client; val S = m.resources;
alloc[c] := alloc[c]\S;
}

action clientRequest(c:Client,S:Set[Resource]) with
requests[c]=@[Resource] A holding[c]=@[Resource] A S#@[Resource];

{
requests[c] = S;
network := networkU{(tag:request,client:c,resources:S)};
}
action clientAllocate(m:Message) with m € network A m.tag = allocate;
{
network := network\{m}; val ¢ = m.client; val S = m.resources;
requests[c] = requests[c]\S; holding[c] := holding[c]US;
}

action clientGiveBack(c:Client,S:Set[Resource]) with
S # @[Resource] A S C holding[c];
{
holding[c] := holding[c]\S;
network = networkU{(tag:giveback,client:c,resources:S)};
}
}

© 2021 Wolfgang Schreiner.

	Theories and Algorithms
	Theories and Models
	Theorems
	Problems
	Algorithms
	Summary
	Further Reading

	Searching and Sorting
	Searching in Arrays
	Loop Invariants and Termination Measures
	Generating and Checking Verification Conditions
	Constructing Invariants
	Binary Search
	Sorting Arrays
	Further Reading

	Sets, Relations, and Graphs
	Sets
	Relations and Directed Graphs
	The Reachability of Nodes
	Shortest Paths Between All Pairs of Nodes
	Shortest Paths Between Two Nodes
	Further Reading

	Propositional Logic
	Boolean Algebras
	Propositional Formulas
	Clausal Normal Forms
	Translating Propositional Formulas to Normal Forms
	The Minimization of Disjunctive Normal Forms
	The Satisfiability of Conjunctive Normal Forms
	Further Reading

	Big Number and Polynomial Arithmetic
	Arbitrary Precision Numbers
	The Karatsuba Algorithm
	Modular Arithmetic
	Univariate Polynomials
	Multivariate Polynomials
	Further Reading

	Puzzles and Games
	Chess Puzzles
	Mathematical Puzzles
	River-Crossing Puzzles
	Games for Two Players
	Further Reading

	Concurrent Systems
	Peterson's Algorithm
	The Alternating Bit Protocol
	A Resource Allocator
	Further Reading

	The RISCAL Software
	RISCAL Models
	Theories and Algorithms
	Searching and Sorting
	Sets, Relations, and Graphs
	Propositional Logic
	Big Number and Polynomial Arithmetic
	Puzzles and Games
	Concurrent Systems

	References
	Index

