
Chapter 9
Concurrent Systems

Was mir an deinem System am besten gefällt? Es ist so
unverständlich wie die Welt. (What do I like most about your system?
It is as incomprehensible as the world.) — Franz Grillparzer

The previous chapters have modeled computer programs mainly as “black boxes”
that accept some input and produce some output; the internal operation of a program
to achieve this behavior was considered as “irrelevant” to the external observer and
thus deliberately hidden. While this view is indeed adequate to model sequential
program executions, it fails if we wish to consider concurrent systems, i.e., systems
where multiple components (cores, processors, computers) execute multiple activities
(threads, processes) in parallel. The various components may interact with each other
by synchronization respectively communication; such systems of components that
react to influences from other components are also called reactive systems.

In this chapter, we will consider the formal modeling and reasoning about such
systems. This presentation is based on system models expressed in the language of
first-order logic as well as on property specifications expressed in linear temporal
logic, an extension of first-order logic that is able to talk not only about a single state
or a fixed number of states but about arbitrary sequences of such states.

The first part of this chapter focuses on the formal modeling of concurrent systems.
Section 9.1 lays the groundwork by introducing the core concept of labeled transition
systems that represent the formal semantics of concurrent systems; these models
can be described by formulas in first-order logic. Sections 9.2 and 9.3 continue by
presenting two languages of shared systems (systems that consist of closely coupled
threads interacting via shared variables in a single store) respectively distributed
systems (systems composed of loosely coupled processes that interact via well-defined
interfaces by exchanging messages); we formally define a denotational semantics of
both languages as labeled transition systems.

Further on, we turn our attention to the formal specification and verification of
properties of labeled transition systems. Section 9.4 introduces the language of linear
temporal logic that is adequate to express many relevant system properties; we also
provide a semantic characterization of these properties as safety properties, liveness
properties, or properties that are mixtures of both aspects. In Section 9.5, we consider
in more detail the verification of invariance, a particular class of safety properties that
is also fundamental to reasoning about other properties; the notion of invariance can
be considered as a generalization of the partial correctness of sequential programs.
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492 9 Concurrent Systems

Likewise, we discuss in Section 9.6 the verification of response, a particular class
of liveness properties that can be considered as a generalization of the notion of the
termination of sequential programs. Finally Section 9.7 concludes by discussing the
formal refinement of systems as the basis of a systematic methodology for concurrent
system development.

9.1 Labeled Transition Systems

Systems, States, Actions, and Runs

For modeling and analyzing concurrent systems, it is not only the two states at the
start and at the end of the execution that matter; we rather have to consider also all
intermediate states. In other words, we have to deal with complete system runs of the
following kind:

s0
l0
→ s1

l1
→ s2

l2
→ . . .

Such a run embeds the sequence [s0, s1, s2, . . .] of those states that arise in an execution
of the system; as in Chapter 7, each state is represented by a mapping of variables
to values. Every “step” s

l
→ s′ of the run represents the execution of an action with

label l that performs a transition from one intermediate state s, the prestate of the
transition, to another intermediate state s′, the transition’s poststate. In contrast to
sequential computer programs, systems may intentionally not terminate, thus the
state sequence may not only be finite but also infinite.

A system run exposes all those states that are “visible” among the components of
the system; however, a transition s

l
→ s′may also involve some “hidden” intermediate

states occurring between prestate s and poststate s′, provided that these intermediate
states do not affect the interactions among the components. For example, consider the
execution of the following system XY1 (whose notation will be formally introduced
in Section 9.2):
shared XY1 {
var x:nat, y:nat;
init { x := 0; y := 0 }
action inc { x := x+1; y := y+x }

}

The states of this system are pairs of natural numbers x ∈N and y ∈N. Starting
with the initial state [x ↦→ 0, y ↦→ 0], the values are repeatedly incremented by an
action inc, which gives rise to the following system run:

[x ↦→ 0, y ↦→ 0] inc
→ [x ↦→ 1, y ↦→ 1] inc

→ [x ↦→ 2, y ↦→ 3] inc
→ . . .

In each step of this run both x and y are simultaneously incremented, “hiding” the
action’s intermediate state where x has been already incremented but y has not yet
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9.1 Labeled Transition Systems 493

changed. Each action thus represents an “atomic” unit of execution whose effects
are simultaneously exposed to the external observer. The “granularity” of a system
run may thus be adapted by combining multiple commands into a single action
respectively by separating commands into multiple actions.

Above example system contains a single action, which naturally models a system
with a single component. The execution of such a system, starting in some given
initial state, clearly yields a predetermined sequence of successor states; we call
such a system deterministic. However, if a system consists of multiple components
that may execute concurrently with each other, we can model such a system only by
multiple actions, at least one per component. Then in a given system state it can be
generally not predetermined which of the actions is executed next, which gives rise
to multiple possible system runs with different sequences of states; we call such a
system nondeterministic. As an example, consider the following system XY2:
shared XY2 {
var x:nat, y:nat;
init { x := 0; y := 0 }
action incX { x := x+1 }
action incY { y := y+x }

}

This system has two actions incX and incY incrementing x and y, respectively. In
every system state it is possible that each of these actions is executed; thus there are
always two possible successor states. All possible executions of the system can be
represented by a labeled directed graph as follows:

[x ↦→ 0, y ↦→ 0]

[x ↦→ 1, y ↦→ 0]

[x ↦→ 1, y ↦→ 1]

. . .. . .

incX incY

[x ↦→ 2, y ↦→ 0]

[x ↦→ 2, y ↦→ 2]

. . .. . .

incX incY

[x ↦→ 3, y ↦→ 0]

. . .. . .

incX incY

incX incY

incX incY

incX, incY

Every node in this graph represents a state of the system; every edge represents a
transition from a prestate (denoted by the source of the edge) to a poststate (denoted
by the target of the edge); the edge label denotes the action that performs the transition.
We can draw (a finite portion of) the graph by drawing, starting with a node for every
initial system state (depicted by nodes with incoming arrows without sources and
labels), an edge for every transition, which (potentially) leads to new states for which
new graph nodes are created from which again new edges arise. The graph is not
necessarily a tree, because in general the same poststate may be reached from different
prestates; the graph may even contain cycles that describe how from a certain state a
number of transitions lead to the same state again.
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494 9 Concurrent Systems

Every path in the graph starting from an initial state (i.e., a node representing such
a state) describes a potential run of the system. Every depicted graph node represents
a reachable state, i.e., a state that may arise in some system run. If a run leads to a
node with no outgoing edge (we will see later that this is possible), the run is finite. A
run is infinite, if it passes through infinitely many different states or if it infinitely
often returns to the same state again.

Labeled Transition Systems

We are now going to formalize the concepts we have introduced above, in particular
a mathematical model of “systems”.

Definition 9.1 (Labeled Transition Systems). Given a set L of elements which we
call labels and a set S of elements which we call states, we define the set

LTSL,S ⊆ space:Set(S) × init:Set(S) × next:Set(L × S × S)

of labeled transition systems over L and S as follows:

LTSL,S ≔ {⟨space:S0, init:I,next:R⟩ | S0 ⊆ S ∧ I ⊆ S0 ∧ R ⊆ L × S0 × S0}

Thus a labeled transition system (LTS) lts over L and S consists of a state space
S0 ≔ lts.space ⊆ S, an initial state condition I ≔ lts.init ⊆ S0, and a (labeled) transition
relation R ≔ lts.next ⊆ L × S0 × S0.

This definition differentiates between the set S of system states and the state
space S0 of a concrete LTS; this difference is only due to technical reasons in the
subsequent formal definitions and may be mainly ignored.

Given a fixed LTS with label set L, state space S0, and transition relation R, we
write s

l
→ s′ to indicate the transition R⟨l, s, s′⟩ where l ∈ L is the label of the action

performing the transition, s ∈ S0 is its prestate, and s′ ∈ S0 is its poststate.
A LTS gives rise to system runs of the following kind.

Definition 9.2 (System Runs). Given a set S, we define the set

RunS ≔ S∗ ∪ Sω

as the set of system runs (short: runs) over S. Thus a run r ∈ RunS is a finite or infinite
sequence of values from S.
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System Analysis in TLA+ and RISCAL

In this chapter we present two instances of the logical model of the client-
server system introduced in Examples 9.4 and 9.18 of the previous chapter;
we will verify these instances with the help of model checking software.

The �rst instance is developed in the TLA+ toolbox [76] which is based on
Lamport's Temporal Logic of Actions [74] and is described in the book [75]
and the chapter [88]. This toolbox is an integrated development environment
for writing system speci�cations in the TLA+ modeling language, including
the TLC model checker and the TLAPS proof system. The language and
system have been used for modeling and analyzing industrial hardware and
software systems, e.g., Amazon Web Services (AWS). TLA+ system models
are essentially (unlabeled) transition systems as presented in Chapter 9 ex-
pressed as linear temporal logic (LTL) formulas constructed from an initial
state condition and a transition relation. The TLC model checker can fully
automatically verify the correctness of �nite instances of such systems with
respect to arbitrary correctness properties expressible as LTL formulas. For
in�nite state systems, the interactive TLPS prover can be used to construct
invariant-based proofs of safety properties as described in Chapter 9, using
internal tactics or external SMT solvers or provers (such as Isabelle) as back-
ends. In our presentation, however, we will focus on the TLC checker.

The second instance is developed in the RISCAL software [132,133] that
was introduced on page 479. RISCAL also supports the modeling of shared
and distributed systems as described in Sections 9.2 and 9.3. We demonstrate
the veri�cation of a safety property of such systems, by checking the property
in all reachable states and by checking invariant-based veri�cation conditions.

The speci�cations used in this chapter can be downloaded from the URLs

https://www.risc.jku.at/people/schreine/TP/software/systems/System.tla
https://www.risc.jku.at/people/schreine/TP/software/systems/System.txt

and loaded by executing from the command line the following commands:

toolbox System.tla &
RISCAL System.txt &
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578 System Analysis in TLA+ and RISCAL

Fig. 9.11 The TLA+ Toolbox

The TLA+ ToolBox

When starting the toolbox from the command line with the name of the
speci�cation �le System.tla as an argument, a graphical user interface is
displayed as shown in Figure 9.11. This �le essentially describes the model
of the client-server system described in Example 9.4 as a module System:

--------------------------- MODULE System ----------------------------
EXTENDS Naturals
CONSTANTS N
VARIABLES given, waiting, pc, req, ans

The module starts with the import of another module Naturals that con-
tains some auxiliary operations on the domain of natural numbers; then it
introduces a model constant N that denotes the number of clients and it
declares those variables whose values represent the state of the system. Now
we capture by the following de�nition the list of system variables under the
name Vars for later reference:

Vars == <<given,waiting,pc,req,ans>>

Every such de�nition introduces an �operator� that describes a named entity
(the left side of the de�nition) by an expression (a term or a formula on the
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right side of the de�nition). It is easiest to think of an operator as a syntactic
abbreviation where any later occurrence of the operator name is replaced
by its de�ning expression. Operators may also have parameters and then be
instantiated by arbitrary argument expressions; they can be considered as
the functions respectively predicates of TLA+.

TLA+ has no static type system, but we may de�ne a predicate that de-
scribes the expected domain of these variables (the invariance of this property
will be later veri�ed with the TLC checker):

Clients == 0..N-1
TypeInvariant ==
/\ given \in Clients \union { N }
/\ waiting \in SUBSET Clients
/\ pc \in [ Clients -> { 0,1,2 } ]
/\ req \in SUBSET Clients
/\ ans \in SUBSET Clients

As shown in this de�nition, conjunctions respectively disjunctions may be
expressed not only by the logical in�x connectives /\ and \/ but also as
�itemized lists� where the connectives serve as labels at the beginnings of the
list items; this simpli�es the reading of speci�cations.

The initial state condition of the system is de�ned as a predicate I :

I ==
/\ given = N
/\ waiting = {}
/\ pc = [ i \in Clients |-> 0 ]
/\ req = {}
/\ ans = {}

For a concise de�nition of the transition relation we introduce a couple of
auxiliary predicates:

Goto(i,from,to) ==
pc[i] = from /\ pc’ = [ pc EXCEPT ![i] = to ]

Send(channel,message) ==
message \notin channel /\ channel’ = channel\union{message}

Receive(channel,message) ==
message \in channel /\ channel’ = channel\{message}

Any plain variable reference such as pc refers here to the value of the system
variable in the prestate of a transition while the primed reference pc' refers
to the value of the variable in the poststate. With the help of these predicates,
we may de�ne the transition relation RC(i) of client i as follows:

RC0(i) ==
\/ Goto(i,0,1) /\ Send(req,i) /\ ans’ = ans
\/ Goto(i,1,2) /\ Receive(ans,i) /\ req’ = req
\/ Goto(i,2,0) /\ Send(req,i) /\ ans’ = ans

RC(i) == RC0(i) /\ given’ = given /\ waiting’ = waiting

Similarly we describe the transition relation RC(i) of the server when pro-
cessing a message from client i:
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ClientServer ==
/\ I /\ [][R]_Vars
/\ \A i \in Clients: WF_Vars(RC(i)) /\ WF_Vars(RS(i))
/\ \A g \in Clients:

SF_Vars(\E i \in Clients: Receive(req,i) /\ i = given /\
GiveWaiting(g) /\ pc’ = pc)

Here we require strong fairness for every message from a client g in the set
waiting of the server: if it is in�nitely often possible that, by the receipt of
a message i of some client that was given the resource (and that thus by
the message gives back the resource) it is possible to give the resource to
the waiting client g, this must be eventually also done. It is really necessary
to demand strong (not just weak) fairness, because, if the resource is given
to another client, the enabling condition is disabled until the message is
returned again. The predicate described in the fairness condition is exactly
the enabling condition of the second transition of the server:

RS0(i) ==
\/ ...
\/ (i = given /\ \E g \in Clients: GiveWaiting(g))
\/ ...

RS(i) == Receive(req,i) /\ RS0(i) /\ pc’ = pc

Indeed with this re�ned de�nition of the server also for N=3 the check of
property NotStarve succeeds.

RISCAL

This section shows how to verify in RISCAL invariance conditions for shared
and distributed systems as presented in Sections 9.2 and 9.3.

Shared Systems

First we are going to model the RISCAL version of the shared system pre-
sented in Example 9.4. For this we introduce the number N of clients aund
various auxiliary types:

val N:N; axiom minN ⇔ N ≥ 1;
type Client = N[N-1]; type Client0 = N[N]; type PC = N[2];

The core declaration of the system describes its state space and its initial
state as follows:

shared system ClientServer1
{
var given: Client0; var waiting: Set[Client];
var pc: Array[N,PC]; var req: Set[Client]; var ans: Set[Client];
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584 System Analysis in TLA+ and RISCAL

init()
{
given ≔ N; waiting ≔ ∅[Client];
pc ≔ Array[N,PC](0); req ≔ ∅[Client]; ans ≔ ∅[Client];

}
...

}

This declaration is extended by the transitions of every client i:

action cask(i:Client) with pc[i] = 0 ∧ i ∉ req;
{ pc[i] ≔ 1; req ≔ req ∪ {i}; }
action cget(i:Client) with pc[i] = 1 ∧ i ∈ ans;
{ pc[i] ≔ 2; ans ≔ ans \ {i}; }
action cret(i:Client) with pc[i] = 2 ∧ i ∉ req;
{ pc[i] ≔ 0; req ≔ req ∪ {i}; }

Likewise we add the transitions of the server:

action sget(i:Client) with i ∈ req ∧ given = N ∧ i ∉ ans;
{ req ≔ req \ {i}; given ≔ i; ans ≔ ans ∪ {i}; }
action swait(i:Client) with i ∈ req ∧ given ≠ N ∧ given ≠ i;
{ req ≔ req \ {i}; waiting ≔ waiting ∪ {i}; }
action sret1(i:Client) with i ∈ req ∧ given = i ∧ waiting = ∅[Client];
{ req := req \ {i}; given ≔ N; }
action sret2(i:Client,j:Client)
with i ∈ req ∧ given = i ∧ j ∈ waiting ∧ j ∉ ans;
{ req := req \ {i}; given ≔ j;
waiting = waiting \ {j}; ans ≔ ans ∪ {j}; }

Furthermore, we annotate the system with the invariant that shall be satis�ed
by every reachable state of the system, i.e., the mutual exclusion property:

invariant ¬∃i1:Client,i2:Client with i1 < i2. pc[i1] = 2 ∧ pc[i2] = 2;

Now checking the system with N=4 quickly demonstrates its correctness:

Executing system ClientServer1.
340 system states found with search depth 213.
Execution completed (46 ms).

However, if we invalidate the correctness of the system by commenting out
the command given ≔ i in server action sget we get the following result:

Executing system ClientServer1.
ERROR in execution of system ClientServer1: evaluation of
invariant ¬(∃i1:Client, i2:Client with i1 < i2. ...);

at line 28 in file System.txt:
invariant is violated

The system run leading to this error:
0:[given:4,waiting:{},pc:[0,0,0,0],req:{},ans:{}]->cask(0)->
1:[given:4,waiting:{},pc:[1,0,0,0],req:{0},ans:{}]->cask(1)->
2:[given:4,waiting:{},pc:[1,1,0,0],req:{0,1},ans:{}]->sget(0)->
3:[given:4,waiting:{},pc:[1,1,0,0],req:{1},ans:{0}]->cget(0)->
4:[given:4,waiting:{},pc:[2,1,0,0],req:{1},ans:{}]->sget(1)->

© 2020 Wolfgang Schreiner.



585

5:[given:4,waiting:{},pc:[2,1,0,0],req:{},ans:{1}]->cget(1)->
6:[given:4,waiting:{},pc:[2,2,0,0],req:{},ans:{}]

ERROR encountered in execution.

This message produces a counterexample run, i.e., a run that leads to a state
violating the invariant. The system may be further annotated with more
invariants (see Example 9.18):

invariant ∀i:Client with i = given.
(pc[i] = 0 ∧ i ∈ req) ∨ (pc[i] = 1 ∧ i ∈ ans) ∨
(pc[i] = 2 ∧ i ∉ req ∧ i ∉ ans);

invariant ∀i:Client with i ∈ waiting.
i ≠ given ∧ pc[i] = 1 ∧ i ∉ req ∧ i ∉ ans;

invariant ∀i: Client with i ∈ req. i ∉ ans;
invariant ∀i: Client with i ∈ ans. given = i;
invariant ∀i: Client with pc[i] = 0. i ∉ ans ∧ (i ∈ req ⇒ i = given);
invariant ∀i: Client with pc[i] = 1. i ∈ req ∨ i ∈ waiting ∨ i ∈ ans;
invariant ∀i: Client with pc[i] = 2. i = given;

Also these invariants can be quickly checked:

Executing system ClientServer1.
340 system states found with search depth 213.
Execution completed (39 ms).

Actually, these invariants are inductive and imply the mutual exclusion prop-
erty; as shown below, they can be used to prove the correctness of the system.

Distributed Systems

Now we demonstrate the RISCAL version of the distributed system presented
in Example 9.10. For this we introduce (in addition to the entities de�ned
at the beginning of this section) the size B of the message bu�ers associated
the actions of the server:

val B:N; axiom minB ⇔ B ≥ 1;

The actual system declaration then looks as follows:

distributed system ClientServer2
{
component Server
{
var client: Client0;
init() { client := N; }
action[B] request(i:Client) with client = N;
{ client := i; send Client[i].enter(); }
action[B] giveback(i:Client) { client ≔ N; }

}
component Client[N]
{
var req: N[1]; var use: N[1];
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