
BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

Problems Solved: 46 47 48 49 50

Name:

Matrikel-Nr.:

Problem 46. Let T (n) be the total number of times that the instruction
a[i,j] = a[i,j] + 1 is executed during the execution of P(n,0,0).

procedure P(n, x, y)

if n >= 1 then

for (i = x; i < x+n; i++)

for (j = y; j < y+n; j++)

a[i,j] = a[i,j] + 1

h = floor(n / 2)

P(h, x, y)

P(h, x+h, y)

P(h, x, y+h)

P(h, x+h, y+h)

end if

end procedure

1. Compute T (1), T (2) and T (4).

2. Give a recurrence relation for T (n).

3. Solve your recurrence relation for T (n) in the special case where n = 2m

is a power of two, i.e. derive a guess for and explicit expression of T (2m)
and then prove this formula by induction.

4. Use the Master Theorem to determine asymptotic bounds for T (n).

Solution of Problem 46:

1. T (1) = 1, T (2) = 8, T (4) = 48

2.
T (n) = 4T (bn/2c) + n2

3. For powers of two,

T (2m) = 22m + 4T (2m−1)

(You may want to view this as a recursion for t(m) := T (2m).) Unfolding
this recurrence twice gives

T (2m) = 4m + 4× (4m−1 + 4× T (2m−2)

which can be simpli�ed. Continuing the pattern, unfolding the recurrence
k times gives

T (2m) = k4m + 4kT (2m−k).

In particular, for k = m we get T (2m) = m4m + 4mT (1). Since T (1) =
1, we get T (2m) = (m + 1)4m.

Berechenbarkeit und Komplexität, WS2020 1

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

We must prove this formula by induction on m. If m=0, we get T (1) =
T (20) = (0+1)40 = 1, which is obviously correct. Assume that t ∈ N is
an arbitrary but �xed number and T (2t) = (t + 1)4t. Then T (2t+1) =
4t+1 + 4T (2t) by the recurrence for T . Plugging in the induction hy-
pothesis, we get T (2t+1) = 4t+1 + 4× (t+ 1)4t = ((t+ 1) + 1)4t+1. By
induction principle, T (2m) = (m + 1)4m holds for every m ∈ N.

4.
T (n) = 22T (n/2) + Θ(n2)

Divisor for divide-and-conquer: b = 2. Number of new subproblems:
a = 4 = 22. �Critical exponent�: logb a = log2 4 = 2. Indeed

n2 = Θ(nlogb a).

so we are in the case where all logb n = Θ(log n) layers of the recursion
tree contribute and we get

T (n) = Θ(n2 log n).

This result agrees with what we have found in (3).

Problem 47. Let T (n) be the number of multiplications carried out by the
following Java program.

1 int a, b, i, product, max;

2 max = 1;

3 a = 0;

4 while (a < n) {

5 b = a;

6 while (b <= n) {

7 product = 1;

8 i = a;

9 while (i < b) {

10 product = product * factors[i];

11 i = i + 1; }

12 if (product > max) { max = product; }

13 b = b + 1; }

14 a = a + 1; }

1. Determine T (n) exactly as a nested sum.

2. Determine T (n) asymptotically using Θ-Notation by a derivation that jus-
ti�es your result. In your derivation, you may use the asymptotic equation

n∑
k=0

km = Θ(nm+1) for n→∞

for �xed m ≥ 0 which follows from approximating the sum by an integral:

n∑
k=0

km '
∫ n

0

xm dx =
1

m + 1
nm+1 = Θ(nm+1)

Berechenbarkeit und Komplexität, WS2020 2

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

Solution of Problem 47:

1.
line frequency of execution
2, 3 1
4

∑
0≤a<n+1 1

5, 14
∑

0≤a<n 1

6
∑

0≤a<n

∑
a≤b≤n+1 1

7, 8, 12, 13
∑

0≤a<n

∑
a≤b≤n 1

9
∑

0≤a<n

∑
a≤b≤n

∑
a≤i<b+1 1

10, 11
∑

0≤a<n

∑
a≤b≤n

∑
a≤i<b 1

2. See line 10 above:

T (n) =

n−1∑
a=0

n∑
b=a

b−1∑
i=a

1

To get the correct answer T (n) = Θ(n3) we evaluate

T (n) =
∑

0≤a<n

∑
a≤b≤n

∑
a≤i<b

1

starting with the innermost sum:∑
a≤i<b

1 = b− a

We proceed with the sum in the middle, starting with a shift of the
summation index b, i.e., we replace b by a + k.∑
a≤b≤n

(b− a) =
∑

0≤b−a≤n−a

(b− a) =
∑

0≤k≤n−a

k =
1

2
(n− a)(n− a+ 1)

1

2
(n− a)(n− a + 1) =

1

2
(n2 − 2na + a2 + n− a)

After splitting the sum
∑

0≤a<n
1
2 (n2 − 2na + a2 + n− a) and pulling

out constant factors (i.e., factors free of the summation index a), all

that remains are the sums
∑n−1

a=0 a
m for m = 0, 1, 2. The asymptotics of

these sums is given by the hint, and the �nal result is Θ(n3). Remark: To
shorten the calculation, it is tempting to use Θ-notation already in the
summands. But those Θ's would refer to limits involving the summation
indices instead of the limit n → ∞. As the limit taken is suppressed in
Θ-notation, that would be most confusing for the uninitiated.

Problem 48. Consider the following pseudo code of an implementation of a
FIFO (�rst in �rst out) queue with two functions enqueue and dequeue.

1 input := EMPTYLIST

2 output := EMPTYLIST

3 function enqueue(e, input , output) { push(e, input) }

4 function dequeue(input , output) {

Berechenbarkeit und Komplexität, WS2020 3

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

5 if isempty(output) {

6 while not isempty(input) { push(pop(input), output) }

7 }

8 pop(output)

9 }

Analyze its amortized cost of these functions by (a) the aggregate method and
(b) the potential method.
Here,

• push(e, L) is the operation of adding an element e to the front of a list
L,

• isempty(L) returns TRUE if the list L is empty,

• pop(L) is the operation that removes the �rst element of a list L and
returns it.

All these operations are assumed to cost constant time.
In the code above, a queue is represented by a pair (input, output). Putting
a new element into the queue via enqueue, �rst puts it to the front of input.
Only when an element is requested via a call to dequeue, elements are moved
from input to output list, thus e�ectively reversing input so that in total the
queue returns its elements in a FIFO principle.
Hint: For the potential method you might want to consider the function Φ such
that for a queue q that is represented by the pair (input, output) of two lists,
Φ(q) is the size of the input list.

Solution of Problem 48:

(a) Aggregate method:
Let us assume that in the sequence of n operations occur k dequeue

operations. Let the number of enqueue operations after the (i − 1)-th
dequeue operation and before the i-th dequeue operation be denoted

by ri (i = 1, . . . , k). And let rk+1 ≥ 0 be such that n = k +
∑k+1

i=1 ri.

The size of the input list before the i-th dequeue operation is ri. It
is clear that the i-th dequeue operation has cost E · ri−1 for some
constant E. Since the enqueue operation has constant cost C, we get
for the total complexity over the n operations.

T (n) =

k∑
i=1

(C · ri + E · ri) + C · rk+1

≤
k+1∑
i=1

(C + E) · ri

≤ (C + E) · k +

k+1∑
i=1

(C + E) · ri

= (C + E) · n = O(n).

Thus, the amortized cost of a single operation is O(1).

Berechenbarkeit und Komplexität, WS2020 4

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

(b) Potential method:
Take C ≥ 0 such that it bounds the constant time of enqueue, and
the time of dequeue in the constant case and C · n bounds the time
of dequeue in the linear case. Furthermore, let Φ(q) be the size of the
input list of the queue q.

Let ci be the actual cost and ĉi be the amortized cost of the i-th oper-
ation, and let qi be the queue after the i-th operation (i = 1, . . . , n).

Then we have

• for enqueue:

ĉi = ci + C(Φ(qi)− Φ(qi−1))

≤ C + C((ni + 1)− ni) = 2C

Where ni denotes the size of the input list of qi.

• for dequeue:

ĉi = ci + Φ(qi)− Φ(qi−1)

≤ C · ni + C(0− ni) = 0

Where ni denotes the size of the input list of qi.

Thus, the amortized cost of one operation is O(1).

Problem 49. Consider a RAM program that evaluates the value of
∑n

i=1 i
2 in

the naive way (by iteration). Analyze the worst-case asymptotic time and space
complexity of this program assuming the existence of operations ADD r and MUL

r for the addition and multiplication of the accumulator with the content of
register r.

1. Determine a Θ-expression for the number S(n) of registers used in the
program with input n (space complexity).

2. Determine a Θ-expression for the number T (n) of instructions executed
for input n (time complexity in constant cost model),

3. Assume a simpli�ed version of the logarithmic cost model of a RAM where
the cost of every operaton is proportional to the length of the arguments
involved. In particular, if a is the (bit) length of the accumulator and l is
the (bit) length of the content of register r then MUL r costs a+ l and ADD

r costs max(a, l).

Determine the asymptotic costs C(n) (using O-notation) of the program
for input n.

As usual, you must give appropriate justi�cation for each of your results.

Solution of Problem 49:

Berechenbarkeit und Komplexität, WS2020 5

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

1. There is only need for accumulator, a register for the resulting sum and
a register for the summation index. So we get S(n) = Θ(1).

2. Since multiplication can be done by just one operation, we only have to
iterate over the summation index, i.e., T (n) = Θ(n).

3. The cost of the i-th iteration is:

multiplication of accumulator with Register 2 (holding i)

• LOAD 2 . . . log(i)

• MUL 2 . . . log(i) + log(i)

addition of partial sum with i2

• accu already has i2

• partial sum s =
∑i−1

k=1 i
2 = Θ(i3)

• cost of addition: max(log(i2), log(s)) = Θ(3 log(i))

We have to compute the sum

C(n) = O

(
n∑

i=1

(log(i2) + 3 log(i))

)

≤ O

(
n∑

i=1

(log(n2) + 3 log(n))

)
= O(n log n)

Problem 50. Take the following recursive program.

1 f(n,b) ==

2 if n < 1 then return 0

3 d := floor(n/3)

4 return b + f(d,1) + 2*f(d,2)

Let C(n) be the number of comparisons executed in line 2 while running f(n, 0)
for some positive integer n.

1. Write down a recurrence for C and determine enough initial values.

2. Solve that recurrence for the given initial values and arguments n of the
form n = 3m, i.e., derive a guess for a closed form expression for C(3m).

3. Prove by induction that your guess is correct.

Solution of Problem 50:

1. C(n) = 1 + 2 · C(bn3 c), C(0) = 1.

2. Let n = 3m for some m ∈ N. Then

C(3m) = 1 + 2C(3m−1) = . . . = 1 + 2 + . . . 2m−1 + 2mC(3(m−m))

=

m∑
k=0

2k + 2 · 2m

= 2m+1 − 1 + 2m+1 = 2m+2 − 1

Berechenbarkeit und Komplexität, WS2020 6

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

3. We show C(3m) = 2m+2 − 1 by induction on m. For m = 0 we have
C(30) = 1+2C(b 13c) = 3 = 20+2−1, i.e., we have shown the induction
base. Now assume that for an arbitrary but �xed k it holds C(3m) =
2m+2 − 1 (induction hypothesis). Then

C(3k+1) = 1 + 2C

(⌊
3k+1

3

⌋)
= 1 + 2C(3k)

= 1 + 2(2k+2 − 1) = 1 + 2(k+1)+2 − 2 = 2(k+1)+2 − 1.

Therefore, by induction principle, C(3m) = 2m+2−1 holds for all natural
numbers m.

Berechenbarkeit und Komplexität, WS2020 7

