Problems Solved:

46	47	48	49	50

Name:

Matrikel-Nr.:

Problem 46. Let $T(n)$ be the total number of times that the instruction $a[i, j]=a[i, j]+1$ is executed during the execution of $P(n, 0,0)$.

```
procedure P(n, x, y)
    if n >= 1 then
        for (i = x; i < x+n; i++)
            for (j = y; j < y+n; j++)
                a[i,j] = a[i,j] + 1
        h = floor( n / 2)
        P(h, x, y )
        P(h, x+h, y )
        P(h, x, y+h)
        P(h, x+h, y+h)
    end if
end procedure
```

1. Compute $T(1), T(2)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two, i.e. derive a guess for and explicit expression of $T\left(2^{m}\right)$ and then prove this formula by induction.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.

Solution of Problem 46:

1. $T(1)=1, T(2)=8, T(4)=48$
2.

$$
T(n)=4 T(\lfloor n / 2\rfloor)+n^{2}
$$

3. For powers of two,

$$
T\left(2^{m}\right)=2^{2 m}+4 T\left(2^{m-1}\right)
$$

(You may want to view this as a recursion for $t(m):=T\left(2^{m}\right)$.) Unfolding this recurrence twice gives

$$
T\left(2^{m}\right)=4^{m}+4 \times\left(4^{m-1}+4 \times T\left(2^{m-2}\right)\right.
$$

which can be simplified. Continuing the pattern, unfolding the recurrence k times gives

$$
T\left(2^{m}\right)=k 4^{m}+4^{k} T\left(2^{m-k}\right)
$$

In particular, for $k=m$ we get $T\left(2^{m}\right)=m 4^{m}+4^{m} T(1)$. Since $T(1)=$ 1, we get $T\left(2^{m}\right)=(m+1) 4^{m}$.

We must prove this formula by induction on m. If $\mathbf{m}=0$, we get $T(1)=$ $T\left(2^{0}\right)=(0+1) 4^{0}=1$, which is obviously correct. Assume that $t \in \mathbb{N}$ is an arbitrary but fixed number and $T\left(2^{t}\right)=(t+1) 4^{t}$. Then $T\left(2^{t+1}\right)=$ $4^{t+1}+4 T\left(2^{t}\right)$ by the recurrence for T. Plugging in the induction hypothesis, we get $T\left(2^{t+1}\right)=4^{t+1}+4 \times(t+1) 4^{t}=((t+1)+1) 4^{t+1}$. By induction principle, $T\left(2^{m}\right)=(m+1) 4^{m}$ holds for every $m \in \mathbb{N}$.
4.

$$
T(n)=2^{2} T(n / 2)+\Theta\left(n^{2}\right)
$$

Divisor for divide-and-conquer: $b=2$. Number of new subproblems: $a=4=2^{2}$. "Critical exponent": $\log _{b} a=\log _{2} 4=2$. Indeed

$$
n^{2}=\Theta\left(n^{\log _{b} a}\right)
$$

so we are in the case where all $\log _{b} n=\Theta(\log n)$ layers of the recursion tree contribute and we get

$$
T(n)=\Theta\left(n^{2} \log n\right)
$$

This result agrees with what we have found in (3).

Problem 47. Let $T(n)$ be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
max = 1;
a = 0;
while ( a < n ) {
    b = a;
    while (b <= n) {
        product = 1;
        i = a;
        while (i < b) {
            product = product * factors[i];
            i = i + 1; }
        if (product > max) { max = product; }
        b = b + 1; }
    a=a+1; }
```

1. Determine $T(n)$ exactly as a nested sum.
2. Determine $T(n)$ asymptotically using Θ-Notation by a derivation that justifies your result. In your derivation, you may use the asymptotic equation

$$
\sum_{k=0}^{n} k^{m}=\Theta\left(n^{m+1}\right) \text { for } n \rightarrow \infty
$$

for fixed $m \geq 0$ which follows from approximating the sum by an integral:

$$
\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} d x=\frac{1}{m+1} n^{m+1}=\Theta\left(n^{m+1}\right)
$$

Solution of Problem 47:

1.

line	frequency of execution
2,3	1
4	$\sum_{0 \leq a<n+1} 1$
5,14	$\sum_{0 \leq a<n} 1$
6	$\sum_{0 \leq a<n} \sum_{a \leq b \leq n+1} 1$
$7,8,12,13$	$\sum_{0 \leq a<n} \sum_{a \leq b \leq n} 1$
9	$\sum_{0 \leq a<n} \sum_{a \leq b \leq n} \sum_{a \leq i<b+1} 1$
10,11	$\sum_{0 \leq a<n} \sum_{a \leq b \leq n} \sum_{a \leq i<b} 1$

2. See line 10 above:

$$
T(n)=\sum_{a=0}^{n-1} \sum_{b=a}^{n} \sum_{i=a}^{b-1} 1
$$

To get the correct answer $T(n)=\Theta\left(n^{3}\right)$ we evaluate

$$
T(n)=\sum_{0 \leq a<n} \sum_{a \leq b \leq n} \sum_{a \leq i<b} 1
$$

starting with the innermost sum:

$$
\sum_{a \leq i<b} 1=b-a
$$

We proceed with the sum in the middle, starting with a shift of the summation index b, i.e., we replace b by $a+k$.

$$
\begin{gathered}
\sum_{a \leq b \leq n}(b-a)=\sum_{0 \leq b-a \leq n-a}(b-a)=\sum_{0 \leq k \leq n-a} k=\frac{1}{2}(n-a)(n-a+1) \\
\frac{1}{2}(n-a)(n-a+1)=\frac{1}{2}\left(n^{2}-2 n a+a^{2}+n-a\right)
\end{gathered}
$$

After splitting the sum $\sum_{0 \leq a<n} \frac{1}{2}\left(n^{2}-2 n a+a^{2}+n-a\right)$ and pulling out constant factors (i.e., factors free of the summation index a), all that remains are the sums $\sum_{a=0}^{n-1} a^{m}$ for $m=0,1,2$. The asymptotics of these sums is given by the hint, and the final result is $\Theta\left(n^{3}\right)$. Remark: To shorten the calculation, it is tempting to use Θ-notation already in the summands. But those Θ 's would refer to limits involving the summation indices instead of the limit $n \rightarrow \infty$. As the limit taken is suppressed in Θ-notation, that would be most confusing for the uninitiated.

Problem 48. Consider the following pseudo code of an implementation of a FIFO (first in first out) queue with two functions enqueue and dequeue.

```
input := EMPTYLIST
output := EMPTYLIST
function enqueue(e, input, output) { push(e, input) }
function dequeue(input, output) {
```

```
if isempty(output) {
        while not isempty(input) { push(pop(input), output) }
}
pop(output)
```

\}

Analyze its amortized cost of these functions by (a) the aggregate method and (b) the potential method.

Here,

- push (e, L) is the operation of adding an element e to the front of a list L,
- isempty (L) returns TRUE if the list L is empty,
- $\operatorname{pop}(\mathrm{L})$ is the operation that removes the first element of a list L and returns it.

All these operations are assumed to cost constant time.
In the code above, a queue is represented by a pair (input, output). Putting a new element into the queue via enqueue, first puts it to the front of input. Only when an element is requested via a call to dequeue, elements are moved from input to output list, thus effectively reversing input so that in total the queue returns its elements in a FIFO principle.
Hint: For the potential method you might want to consider the function Φ such that for a queue q that is represented by the pair (input, output) of two lists, $\Phi(q)$ is the size of the input list.

Solution of Problem 48:

(a) Aggregate method:

Let us assume that in the sequence of n operations occur k dequeue operations. Let the number of enqueue operations after the $(i-1)$-th dequeue operation and before the i-th dequeue operation be denoted by $r_{i}(i=1, \ldots, k)$. And let $r_{k+1} \geq 0$ be such that $n=k+\sum_{i=1}^{k+1} r_{i}$. The size of the input list before the i-th dequeue operation is r_{i}. It is clear that the i-th dequeue operation has cost $E \cdot r_{i-1}$ for some constant E. Since the enqueue operation has constant cost C, we get for the total complexity over the n operations.

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{k}\left(C \cdot r_{i}+E \cdot r_{i}\right)+C \cdot r_{k+1} \\
& \leq \sum_{i=1}^{k+1}(C+E) \cdot r_{i} \\
& \leq(C+E) \cdot k+\sum_{i=1}^{k+1}(C+E) \cdot r_{i} \\
& =(C+E) \cdot n=O(n) .
\end{aligned}
$$

Thus, the amortized cost of a single operation is $O(1)$.
(b) Potential method:

Take $C \geq 0$ such that it bounds the constant time of enqueue, and the time of dequeue in the constant case and $C \cdot n$ bounds the time of dequeue in the linear case. Furthermore, let $\Phi(q)$ be the size of the input list of the queue q.
Let c_{i} be the actual cost and \hat{c}_{i} be the amortized cost of the i-th operation, and let q_{i} be the queue after the i-th operation $(i=1, \ldots, n)$.
Then we have

- for enqueue:

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+C\left(\Phi\left(q_{i}\right)-\Phi\left(q_{i-1}\right)\right) \\
& \leq C+C\left(\left(n_{i}+1\right)-n_{i}\right)=2 C
\end{aligned}
$$

Where n_{i} denotes the size of the input list of q_{i}.

- for dequeue:

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(q_{i}\right)-\Phi\left(q_{i-1}\right) \\
& \leq C \cdot n_{i}+C\left(0-n_{i}\right)=0
\end{aligned}
$$

Where n_{i} denotes the size of the input list of q_{i}.
Thus, the amortized cost of one operation is $O(1)$.

Problem 49. Consider a RAM program that evaluates the value of $\sum_{i=1}^{n} i^{2}$ in the naive way (by iteration). Analyze the worst-case asymptotic time and space complexity of this program assuming the existence of operations ADD r and MUL r for the addition and multiplication of the accumulator with the content of register r.

1. Determine a Θ-expression for the number $S(n)$ of registers used in the program with input n (space complexity).
2. Determine a Θ-expression for the number $T(n)$ of instructions executed for input n (time complexity in constant cost model),
3. Assume a simplified version of the logarithmic cost model of a RAM where the cost of every operaton is proportional to the length of the arguments involved. In particular, if a is the (bit) length of the accumulator and l is the (bit) length of the content of register r then MUL r costs $a+l$ and ADD r costs $\max (a, l)$.
Determine the asymptotic costs $C(n)$ (using O-notation) of the program for input n.

As usual, you must give appropriate justification for each of your results.

Solution of Problem 49:

1. There is only need for accumulator, a register for the resulting sum and a register for the summation index. So we get $S(n)=\Theta(1)$.
2. Since multiplication can be done by just one operation, we only have to iterate over the summation index, i.e., $T(n)=\Theta(n)$.
3. The cost of the i-th iteration is:
multiplication of accumulator with Register 2 (holding i)

- LOAD $2 \ldots \log (i)$
- MUL $2 \ldots \log (i)+\log (i)$
addition of partial sum with i^{2}
- accu already has i^{2}
- partial sum $s=\sum_{k=1}^{i-1} i^{2}=\Theta\left(i^{3}\right)$
- cost of addition: $\max \left(\log \left(i^{2}\right), \log (s)\right)=\Theta(3 \log (i))$

We have to compute the sum

$$
\begin{aligned}
C(n) & =O\left(\sum_{i=1}^{n}\left(\log \left(i^{2}\right)+3 \log (i)\right)\right) \\
& \leq O\left(\sum_{i=1}^{n}\left(\log \left(n^{2}\right)+3 \log (n)\right)\right) \\
& =O(n \log n)
\end{aligned}
$$

Problem 50. Take the following recursive program.

```
f(n,b) ==
    if n < 1 then return 0
    d := floor(n/3)
    return b + f(d,1) + 2*f(d,2)
```

Let $C(n)$ be the number of comparisons executed in line 2 while running $f(n, 0)$ for some positive integer n.

1. Write down a recurrence for C and determine enough initial values.
2. Solve that recurrence for the given initial values and arguments n of the form $n=3^{m}$, i.e., derive a guess for a closed form expression for $C\left(3^{m}\right)$.
3. Prove by induction that your guess is correct.

Solution of Problem 50:

1. $C(n)=1+2 \cdot C\left(\left\lfloor\frac{n}{3}\right\rfloor\right), C(0)=1$.
2. Let $n=3^{m}$ for some $m \in \mathbb{N}$. Then

$$
\begin{aligned}
C\left(3^{m}\right) & =1+2 C\left(3^{m-1}\right)=\ldots=1+2+\ldots 2^{m-1}+2^{m} C\left(3^{(m-m)}\right) \\
& =\sum_{k=0}^{m} 2^{k}+2 \cdot 2^{m} \\
& =2^{m+1}-1+2^{m+1}=2^{m+2}-1
\end{aligned}
$$

3. We show $C\left(3^{m}\right)=2^{m+2}-1$ by induction on m. For $m=0$ we have $C\left(3^{0}\right)=1+2 C\left(\left\lfloor\frac{1}{3}\right\rfloor\right)=3=2^{0+2}-1$, i.e., we have shown the induction base. Now assume that for an arbitrary but fixed k it holds $C\left(3^{m}\right)=$ $2^{m+2}-1$ (induction hypothesis). Then

$$
\begin{aligned}
C\left(3^{k+1}\right) & =1+2 C\left(\left\lfloor\frac{3^{k+1}}{3}\right\rfloor\right)=1+2 C\left(3^{k}\right) \\
& =1+2\left(2^{k+2}-1\right)=1+2^{(k+1)+2}-2=2^{(k+1)+2}-1
\end{aligned}
$$

Therefore, by induction principle, $C\left(3^{m}\right)=2^{m+2}-1$ holds for all natural numbers m.

