BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

Problems Solved: ’ 46 \ 47 \ 48 \ 49 \ 50 ‘

Name:

Matrikel-Nr.:

Problem 46. Let T'(n) be the total number of times that the instruction
ali,jl = ali,j] + 1 is executed during the execution of P(n,0,0).

procedure P(n, x, y)
if n >= 1 then
for (i = x; 1 < x+n; i++)
for (j = y; j < ytn; j++)
ali,jl = ali,jl + 1
h = floor(n / 2)
P(h, x, vy)
P(h, xth, y)
P(h, x, y+h)
P(h, x+h, y+h)
end if
end procedure

1. Compute T'(1), T'(2) and T'(4).
2. Give a recurrence relation for T'(n).

3. Solve your recurrence relation for 7'(n) in the special case where n = 2™
is a power of two, i.e. derive a guess for and explicit expression of T'(2™)
and then prove this formula by induction.

4. Use the Master Theorem to determine asymptotic bounds for T'(n).

Solution of Problem 46:

1. T(1) =1, T(2) = 8, T(4) = 48
2.
T(n) = 4T(|n/2]) + n?

3. For powers of two,
T(2™) = 22" 4 4T(2™ 1)

(You may want to view this as a recursion for t(m) := T'(2).) Unfolding
this recurrence twice gives

T(2™) =4™ 44 x (4™ +4 x T(2m2)

which can be simplified. Continuing the pattern, unfolding the recurrence
k times gives

T(2m) = k4™ 4+ 4kT(2m—k).
In particular, for k = m we get T'(2™) = m4™ +4™T(1). Since T'(1) =
1, we get T(2™) = (m + 1)4™.

Berechenbarkeit und Komplexitidt, WS2020 1

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

We must prove this formula by induction on m. If m=0, we get T'(1) =
T(2°) = (0+1)4° = 1, which is obviously correct. Assume that ¢t € N is
an arbitrary but fixed number and T'(2%) = (¢t + 1)4'. Then T'(2!!) =
441 4 4T (2%) by the recurrence for T. Plugging in the induction hy-
pothesis, we get T'(2!F1) = 4t+1 4 x (¢ 4+1)4" = ((t+1) +1)4'+L. By
induction principle, T'(2™) = (m + 1)4™ holds for every m € N.

T(n) = 22T(n/2) + ©(n?)

Divisor for divide-and-conquer: b = 2. Number of new subproblems:
a = 4 = 22, “Critical exponent™: log, a = log, 4 = 2. Indeed

n? = Q(n'er).

so we are in the case where all log, n = ©(logn) layers of the recursion
tree contribute and we get

T(n) = ©(n*logn).

This result agrees with what we have found in (3).

Problem 47. Let T'(n) be the number of multiplications carried out by the
following Java program.

O 00 ~NO O WN -

e el
S W N = O

int a, b, i, product, max;
max = 1;

=0;

while (a <n) {

b = a;

while (b <= n) {

product = 1;

i= a;

while (i < b) {
product = product * factors[i];
i=1i+1;}

if (product > max) { max = product; }

b=b+1; }

a=a+1; }

1. Determine T'(n) exactly as a nested sum.

2. Determine T'(n) asymptotically using ©-Notation by a derivation that jus-
tifies your result. In your derivation, you may use the asymptotic equation

Z E™ = 0(n™*!) for n — oo
k=0

for fixed m > 0 which follows from approximating the sum by an integral:

n n 1
Z E™ o~ / 2™ dx = n™t = (™)
=0 0 m+1

Berechenbarkeit und Komplexitidt, WS2020 2

=~ W N =

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

Solution of Problem 47:

1.
line frequency of execution
2,3 1
4 ZO§a<n+1 1
5) 14 ZU§a<n 1
6 20§a<n Zagbgn-i-l 1
7’ 8’]‘2’ 13 20§a<n Zaﬁbgn 1
9 20§a<n Eaﬁbgn Za§i<b+1 1
10,11 20§a<n Eagbgn Za§i<b 1

2. See line 10 above: -

T(n) = i 1
a=01b

0 b=a i=a

To get the correct answer T'(n) = O(n?) we evaluate

starting with the innermost sum:

Z l1=b—a

a<i<b

We proceed with the sum in the middle, starting with a shift of the
summation index b, i.e., we replace b by a + k.

o b-a)= > (b-a)= > k:%(n—a)(n—a—i—l)

a<b<n 0<b—a<n—a 0<k<n—a

%(n—a)(n—a—&—l) = %(n2—2na—|—a2+n—a)
After splitting the sum >~ 5(n* — 2na + a® + n — a) and pulling
out constant factors (i.e., factors free of the summation index a), all
that remains are the sums ZZ;S a™ for m = 0,1, 2. The asymptotics of
these sums is given by the hint, and the final result is ©(n?). Remark: To
shorten the calculation, it is tempting to use ©-notation already in the
summands. But those ©'s would refer to limits involving the summation
indices instead of the limit n — oco. As the limit taken is suppressed in
O-notation, that would be most confusing for the uninitiated.

Problem 48. Consider the following pseudo code of an implementation of a
FIFO (first in first out) queue with two functions enqueue and dequeue.

input := EMPTYLIST

output EMPTYLIST

function enqueue(e, input, output) { push(e, input) }
function dequeue (input, output) {

Berechenbarkeit und Komplexitidt, WS2020 3

© 00~ O Ot

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

if isempty(output) {

while not isempty(input) { push(pop(input), output)

}
pop (output)
}

Analyze its amortized cost of these functions by (a) the aggregate method and
(b) the potential method.
Here,

e push(e, L) is the operation of adding an element e to the front of a list
L,

e isempty(L) returns TRUE if the list L is empty,

e pop(L) is the operation that removes the first element of a list L and
returns it.

All these operations are assumed to cost constant time.

In the code above, a queue is represented by a pair (input,output). Putting
a new element into the queue via enqueue, first puts it to the front of input.
Only when an element is requested via a call to dequeue, elements are moved
from input to output list, thus effectively reversing input so that in total the
queue returns its elements in a FIFO principle.

Hint: For the potential method you might want to consider the function ® such
that for a queue ¢ that is represented by the pair (input, output) of two lists,
®(q) is the size of the input list.

Solution of Problem 48:

(a) Aggregate method:

Let us assume that in the sequence of n operations occur k& dequeue
operations. Let the number of enqueue operations after the (i — 1)-th
dequeue operation and before the i-th dequeue operation be denoted
by i (i =1,...,k). And let 71 > 0 be such that n = k + S5 * ! r,.
The size of the input list before the i-th dequeue operation is r;. It
is clear that the i-th dequeue operation has cost E - r;_; for some
constant E. Since the enqueue operation has constant cost C, we get
for the total complexity over the n operations.

k
T(n):Z(C’-ri+E~ri)+C~rk+1

k41
< Z(C +E)-r;
i—1

k+1
<(C+E) k+> (C+E)-r
=1

=(C+E)-n=0(n).

Thus, the amortized cost of a single operation is O(1).

Berechenbarkeit und Komplexitidt, WS2020 4

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

(b) Potential method:
Take C' > 0 such that it bounds the constant time of enqueue, and
the time of dequeue in the constant case and C' - n bounds the time
of dequeue in the linear case. Furthermore, let ®(q) be the size of the
input list of the queue g.

Let ¢; be the actual cost and ¢; be the amortized cost of the i-th oper-
ation, and let ¢; be the queue after the i-th operation (i = 1,...,n).

Then we have

e for enqueue:

¢ =ci +C(P(q;) — P(gi-1))
S O+C((ﬂz+1)*nl) =2C

Where n; denotes the size of the input list of ¢;.

e for dequeue:

¢ = ci + ®(q;) — ®(qi-1)
<C-ni+C0—mn;)=0

Where n; denotes the size of the input list of ¢;.

Thus, the amortized cost of one operation is O(1).

Problem 49. Consider a RAM program that evaluates the value of Y-, i* in
the naive way (by iteration). Analyze the worst-case asymptotic time and space
complexity of this program assuming the existence of operations ADD r and MUL
r for the addition and multiplication of the accumulator with the content of
register 7.

1. Determine a ©-expression for the number S(n) of registers used in the
program with input n (space complexity).

2. Determine a ©-expression for the number T'(n) of instructions executed
for input n (time complexity in constant cost model),

3. Assume a simplified version of the logarithmic cost model of a RAM where
the cost of every operaton is proportional to the length of the arguments
involved. In particular, if a is the (bit) length of the accumulator and [is
the (bit) length of the content of register r then MUL r costs a+ [and ADD
r costs max(a,l).

Determine the asymptotic costs C(n) (using O-notation) of the program
for input n.

As usual, you must give appropriate justification for each of your results.

Solution of Problem 49:

Berechenbarkeit und Komplexitidt, WS2020 5

=W N =

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

1. There is only need for accumulator, a register for the resulting sum and
a register for the summation index. So we get S(n) = O(1).
2. Since multiplication can be done by just one operation, we only have to
iterate over the summation index, i.e., T'(n) = O(n).
3. The cost of the i-th iteration is:
multiplication of accumulator with Register 2 (holding i)
e LOAD 2 ...log()
e MUL 2 ...log(4) + log(7)
addition of partial sum with 2
e accu already has 2
e partial sum s = 31" i2 = O(i3)
e cost of addition: max(log(i?),log(s)) = ©(3log(i))

We have to compute the sum
C(n)=0 (Z(log(zg) + 31og(i))>

i=1

<0 (i(log(nz) + 3log(n))>

i=1

= O(nlogn)

Problem 50. Take the following recursive program.

f(n,b) ==
if n < 1 then returmn O
d := floor(n/3)

return b + £(d,1) + 2%xf(d4d,2)

Let C(n) be the number of comparisons executed in line 2 while running f(n,0)
for some positive integer n.

1. Write down a recurrence for C' and determine enough initial values.

2. Solve that recurrence for the given initial values and arguments n of the
form n = 3™, i.e., derive a guess for a closed form expression for C'(3™).

3. Prove by induction that your guess is correct.

Solution of Problem 50:

L. Cn)=1+2-C(l3]). C(0)=1.
2. Let n = 3™ for some m € N. Then

C(3™) =1+20(3") =...=142+...27" 1 y2mC(3(m—™)

:i2k+2-2m
k=0

— 2’m+1 -1 + 2m+1 _ 27n+2 -1

Berechenbarkeit und Komplexitidt, WS2020 6

BeKomp Problem Set 10 due date: 20 January 2021, 23:59 via Moodle

3. We show C(3™) = 2m*2 — 1 by induction on m. For m = 0 we have
C(3%) =1+2C(5]) =3=2%2—1, i.e,, we have shown the induction
base. Now assume that for an arbitrary but fixed k it holds C'(3™) =
2m+2 _ 1 (induction hypothesis). Then

k+1

3
oMY =1+ 20 Q J) =1+20(3%)
= 142022 — 1) =1 4 20:FD+2 _9 — o(kt1)+2 _ 4

Therefore, by induction principle, C(3™) = 2™*2 —1 holds for all natural
numbers m.

Berechenbarkeit und Komplexitidt, WS2020 7

