Problems Solved:

46	47	48	49	50

Name:

Matrikel-Nr.:

Problem 46. Let $T(n)$ be the total number of times that the instruction $a[i, j]=a[i, j]+1$ is executed during the execution of $P(n, 0,0)$.

```
procedure P(n, x, y)
    if n >= 1 then
        for (i = x; i < x+n; i++)
            for (j = y; j < y+n; j++)
                a[i,j] = a[i,j] + 1
        h = floor( n / 2)
        P(h, x, y )
        P(h, x+h, y )
        P(h, x, y+h)
        P(h, x+h, y+h)
    end if
end procedure
```

1. Compute $T(1), T(2)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two, i.e. derive a guess for and explicit expression of $T\left(2^{m}\right)$ and then prove this formula by induction.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.

Problem 47. Let $T(n)$ be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
max = 1;
a = 0;
while ( a < n ) {
    b = a;
    while (b <= n) {
        product = 1;
        i = a;
        while (i < b) {
            product = product * factors[i];
            i = i + 1; }
        if (product > max) { max = product; }
        b = b + 1; }
    a = a + 1; }
```

1. Determine $T(n)$ exactly as a nested sum.
2. Determine $T(n)$ asymptotically using Θ-Notation by a derivation that justifies your result. In your derivation, you may use the asymptotic equation

$$
\sum_{k=0}^{n} k^{m}=\Theta\left(n^{m+1}\right) \text { for } n \rightarrow \infty
$$

for fixed $m \geq 0$ which follows from approximating the sum by an integral:

$$
\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} d x=\frac{1}{m+1} n^{m+1}=\Theta\left(n^{m+1}\right)
$$

Problem 48. Consider the following pseudo code of an implementation of a FIFO (first in first out) queue with two functions enqueue and dequeue.

```
input := EMPTYLIST
output := EMPTYLIST
function enqueue(e, input, output) { push(e, input) }
function dequeue(input, output) {
    if isempty(output) {
        while not isempty(input) { push(pop(input), output) }
    }
    pop(output)
}
```

Analyze its amortized cost of these functions by (a) the aggregate method and (b) the potential method.

Here,

- push (e, L) is the operation of adding an element e to the front of a list L,
- isempty (L) returns TRUE if the list L is empty,
- pop(L) is the operation that removes the first element of a list L and returns it.

All these operations are assumed to cost constant time.
In the code above, a queue is represented by a pair (input, output). Putting a new element into the queue via enqueue, first puts it to the front of input. Only when an element is requested via a call to dequeue, elements are moved from input to output list, thus effectively reversing input so that in total the queue returns its elements in a FIFO principle.
Hint: For the potential method you might want to consider the function Φ such that for a queue q that is represented by the pair (input, output) of two lists, $\Phi(q)$ is the size of the input list.

Problem 49. Consider a RAM program that evaluates the value of $\sum_{i=1}^{n} i^{2}$ in the naive way (by iteration). Analyze the worst-case asymptotic time and space complexity of this program assuming the existence of operations ADD r and MUL r for the addition and multiplication of the accumulator with the content of register r.

1. Determine a Θ-expression for the number $S(n)$ of registers used in the program with input n (space complexity).
2. Determine a Θ-expression for the number $T(n)$ of instructions executed for input n (time complexity in constant cost model),
3. Assume a simplified version of the logarithmic cost model of a RAM where the cost of every operaton is proportional to the length of the arguments involved. In particular, if a is the (bit) length of the accumulator and l is the (bit) length of the content of register r then MUL r costs $a+l$ and ADD r costs $\max (a, l)$.

Determine the asymptotic costs $C(n)$ (using O-notation) of the program for input n.

As usual, you must give appropriate justification for each of your results.
Problem 50. Take the following recursive program.

```
f(n,b) ==
    if n < 1 then return 0
    d := floor(n/3)
    return b + f(d,1) + 2*f(d,2)
```

Let $C(n)$ be the number of comparisons executed in line 2 while running $f(n, 0)$ for some positive integer n.

1. Write down a recurrence for C and determine enough initial values.
2. Solve that recurrence for the given initial values and arguments n of the form $n=3^{m}$, i.e., derive a guess for a closed form expression for $C\left(3^{m}\right)$.
3. Prove by induction that your guess is correct.
