
BeKomp Problem Set 8 due date: 16 Dezember 2020, 23:59 via Moodle

Problems Solved: 36 37 38 39 40

Name:

Matrikel-Nr.:

Problem 36. Is there a Turing machine M over the alphabet Σ = {0, 1} that
can multiply two 128 bit integers in O(1) steps? The Turing machine would
get the binary representations of two integers, i. e., two words of length 128, as
input and has to produce the product in binary form as output. Justify your
answer. If the answer is yes, describe how the multiplication is done and �nd an
upper bound for the number of steps, if the answer is no, explain why it is not
possible.

Solution of Problem 36:

Yes. This is a �nite problem. So we need 2256 states in order to read the
256 input letters from the tape. Each of these states basically represents the
product. Then for each of these 2256 states we need 256 states to write out
the answer to the tape. So basically we go over the input (256 steps) then
back to the beginning of the tape and eventually write out the result. All this
is done in roughly 3 · 256 steps. But this number is a constant. So the Turing
machine returns a result in less than 2000 steps, that's clearly O(1) no matter
how the input length is taken into account.

Problem 37. True or false?

1. 5n2 + 7 = O(n2)

2. 5n2 = O(n3)

3. 4n + n log n = O(n)

4. (n log n + 1024 log n)2 = O(n2(log n)3)

5. 3n = O(9n)

6. 9n = O(3n)

Prove your answers based on the formal de�nition of O(f(n)), i. e., for all func-
tions f, g : N→ R≥0 we have

g(n) = O(f(n)) ⇐⇒ ∃c ∈ R>0 : ∃N ∈ N : ∀n ≥ N : g(n) ≤ c · f(n).

Solution of Problem 37:

For each of the cases we prove or disprove according to the de�nition of
g(n) = O(f(n)), i. e., we have to show the existence/non-existence of c ∈
R>0 and N ∈ N such that for all n ≥ N the inequality g(n) ≤ c · f(n) holds.

1. 5n2 + 7 = O(n2) is true.
Take c = 12 and N = 2, then for all natural n ≥ N it holds:

5n2 + 7 < 5n2 + 7n2 = 12n2.

Berechenbarkeit und Komplexität, WS2020 1

BeKomp Problem Set 8 due date: 16 Dezember 2020, 23:59 via Moodle

2. 5n2 = O(n3) is true.
Take c = 1 and N = 6, then for all natural n ≥ N it holds:

5n2 < n3.

3. 4n + n log n = O(n) is false.
The log function is a monotonically increasing function with the property
that for any y ∈ R there exists an x ∈ R such that log(x) > y. Therefore,
there is no c ∈ R>0 and no N ∈ N such that for all n ≥ N the relation
(4 + log n)n ≤ cn holds.

4. (n log n + 1024 log n)2 = O(n2(log n)3) is true
Since the base of the log function is not explicitly given, we must prove
it for any base b ∈ R>0, i. e. log(n) = logb(n). Take c = 2048 and
N = max(1024, b), then for all natural n ≥ N it holds 1 ≤ log(n) and

(n log n + 1024 log n)2 ≤ n2(log n)2 ≤ n2(log n)3.

5. 3n = O(9n) is true.
Take c = 1 and N = 1, then for all natural n ≥ N it holds:

3n ≤ 9n.

6. 9n = O(3n) is false.
For all c ∈ R>0 we can �nd N ∈ N such that for all n ≥ N it holds
9n = 3n · 3n > c3n.

Problem 38. Let f, g, h : N → R≥0. Prove or disprove based on De�nition 45
from the lecture notes.

1. f(n) = O(f(n))

2. f(n) = O(g(n)) =⇒ g(n) = O(f(n))

3. f(n) = O(g(n)) ∧ g(n) = O(h(n)) =⇒ f(n) = O(h(n))

Solution of Problem 38:

For each of the cases we prove or disprove according to the de�nition of
g(n) = O(f(n)), i. e., we have to show the existence/non-existence of c ∈
R>0 and N ∈ N such that for all n ≥ N the inequality g(n) ≤ c · f(n) holds.

1. f(n) = O(f(n)) is true.
Take c = 1 andN = 1, then for all natural n ≥ N it holds f(n) ≤ cf(n).

2. f(n) = O(g(n)) =⇒ g(n) = O(f(n)) is false.
Counter example: f(n) = 3n, g(n) = 9n. See proof in Problem 37 (5)
and (6).

3. f(n) = O(g(n)) ∧ g(n) = O(h(n)) =⇒ f(n) = O(h(n)) is true.
Assume f(n) = O(g(n)) and g(n) = O(h(n)). Then by de�nition of
the big-O notation, there exist c1, c2 ∈ R>0 and N1, N2 ∈ N such that
for all n ≥ N1 f(n) ≤ c1g(n) and for all n ≥ N2 g(n) ≤ c2h(n). We
can take c3 := c1C2 and N3 := max(N1, N2) then we have f(n) ≤
c1g(n) ≤ c1c2h(n) for all n ≥ N3. This is exactly what we have to show
for the above implication to be true.

Berechenbarkeit und Komplexität, WS2020 2

BeKomp Problem Set 8 due date: 16 Dezember 2020, 23:59 via Moodle

Problem 39. Write a LOOP program in the core syntax (variables may be
only incremented/decremented by 1) that computes the function f : N → N,
f(n) = 2n.

1. Count the number of variable assignments (depending on n) during the
execution of your LOOP program with input n.

2. What is the time complexity (the asymptotic complexity of the number
of variable assignments) of your program (depending on n)?

3. Is it possible to write a LOOP program with time complexity better than
O(2n)? Give an informal reasoning of your answer.

4. Optional. Let l(k) denote the bit length of a number k ∈ N. Let b = l(n),
i.e., b denotes the bit length of the input. What is the time complexity of
your program depending on b, if every variable assignment xi := xj + 1
costs time O(l(xj))?

Hint: You must determine an O-notation for s(n) =
∑2n−1

k=0 l(k). Split this

sum into s(n) =
∑2n−1−1

k=0 l(k) +
∑2n−1−1

k=0 l(2n−1 + k). The number of bits
of each term of the second sum is easy to determine. Compare the �rst
sum with s(n− 1). Then continue by expanding s(n− 1) in the same way.

Solution of Problem 39:

x 0 := 0 ;

x 0 := x 0 + 1 ;

LOOP x 1 DO

LOOP x 0 DO

x 0 := x 0 + 1 ;

END ;

END ;

1. At the end of the program we have x0 = 2n. Since we start with x0 := 0
there are exactly 2n additional assignments, i.e. 2n + 1 assignments.

2. From the previous reasoning, we get a time complexity of O(2n).

3. Since the result must be 2n and the only way in a loop program to
reach this value is by adding 1 to a previous value, we must have at
least 2n assignments. So the complexity (depending on n) cannot be
better. There is no way to design a divide and conquer algorithm with
the primitive operations from De�nition 23 (lecture notes).

4. We (roughly) have to determine the sum

s(n) =

2n−1∑
k=0

l(k)

since the operation x0 := x0 + 1 is executed 2n times. (We ignore
decrements of the loop counters.)

Berechenbarkeit und Komplexität, WS2020 3

BeKomp Problem Set 8 due date: 16 Dezember 2020, 23:59 via Moodle

Note that the above sum can be split in two halves. So we get

s(n) =

2n−1−1∑
k=0

l(k) +

2n−1−1∑
k=0

l(2n−1 + k)

=

2n−1−1∑
k=0

l(k) +

2n−1−1∑
k=0

(n− 1)

= s(n− 1) + (n− 1)2n−1

= s(n− 2) + (n− 2)2n−2 + (n− 1)2n−1

= . . .

= s(0) + 1 · 21 + 2 · 22 + 3 · 23 + · · ·+ (n− 2)2n−2 + (n− 1)2n−1

= 1 +

n−1∑
k=1

k · 2k

= 3 + (n− 2)2n

= O(n2n)

Since n ≈ 2b we get: O(2b · 22b) as the time complexity depending on
b = l(n).

Problem 40. De�ne concrete languages Li (i = 1, . . . , 4) over the alphabet
Σ = {0, 1} such that Li has in�nitely many words and Li 6= Σ∗. The following
properties must be ful�lled.

(i) There exists a (deterministic) Turing machine M1 with L1 = L(M1) such
that there is a constant K ∈ N and every word w ∈ L1 is accepted in less
then K steps.

(ii) Every (deterministic) Turing machine M2 with L2 = L(M2) needs at least
n steps to accept a word w ∈ L2 with |w| = n ∈ N.

(iii) Every (deterministic) Turing machine M3 with L3 = L(M3) needs at least
n2 steps to accept a word w ∈ L3 with |w| = n ∈ N.

(iv) Every (deterministic) Turing machine M4 with L4 = L(M4) needs at least
2n steps to accept a word w ∈ L4 with |w| = n ∈ N.

By concrete language it is meant that your de�nition de�nes an explicit set of
words (preferably of the form Li = {w ∈ Σ∗ | . . .}) and not simply a class from
which to choose. In other words,

Let L1 6= Σ∗ be an in�nite language such that (i) holds.

does not count as a concrete language.
In each case (informally) argue why your language ful�lls the respective condi-
tions.
Note that the exercise asks about acceptance of a word, not the computation of
a result.

Solution of Problem 40:

Berechenbarkeit und Komplexität, WS2020 4

BeKomp Problem Set 8 due date: 16 Dezember 2020, 23:59 via Moodle

(i) L1 = {0w |w ∈ Σ∗ } Check whether the �rst letter is 0 and stop.

(ii) L2 = {1n |n ∈ N}
(iii) L3 =

{
ww−1

∣∣w ∈ Σ∗} Palindromes. A TM would have to check letter
by letter. That amounts to roughly O(n) steps for each of the n letters
of w.

(iv) L4 = {w ∈ Σ∗ | ∃n ∈ N,∃M TM : |w| = n ∧ w = 〈M〉 ∧M accepts ε in 2n steps}
A �proof� relies on the assumption that there is no other way to check
whether M accepts ε in 2n steps than by simulating M .

Berechenbarkeit und Komplexität, WS2020 5

