Problems Solved:

41	42	43	44	45

Name:

Matrikel-Nr.:

Problem 41.

1. Consider the probability space $\Omega=\{0,1\}^{n}$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n}. Let X : $\Omega \rightarrow \mathbb{N}$ be a random variable that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X\left(0^{n}\right)=0$. Positions are numbered from 1 to n. Give a term (not necessarily in closed form, i.e., the solution may use the summation sign) for the expected value $E(X)$ of the random variable X and justify your answer.
2. Evaluate the sum

$$
S=\sum_{k=1}^{n} \frac{1}{2^{k}} k
$$

in closed form, i.e., find a formula for the sum which does not involve a summation sign.
Hint: Take the function

$$
F(z):=\sum_{k=0}^{n}\left(\frac{z}{2}\right)^{k} .
$$

and let $F^{\prime}(z)$ denote the first derivative of $F(z)$. We then have $S=F^{\prime}(1)$. Why?
Thus, it suffices to compute a closed form of $F(z)$, using your high-school knowledge about geometric series. Then compute the first derivative $F^{\prime}(z)$ of this form, and, finally, evaluate $F^{\prime}(1)$.
You may check your result with the help of a computer algebra system or https://www.wolframalpha.com. Note, however, that simply writing down what the computer algebra system gives you is only counted, if it comes along with a proof that the function that you called gives exactly what is asked for in this problem together with a proof that this function is implemented without bugs.
Note that the index for the geometric series starts at $k=0$.

Problem 42. Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=$ $\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{1}\right\}$ and the following transition function δ :

δ	0	1	\sqcup
q_{0}	$q_{0} 0 R$	$q_{1} 1 R$	-
q_{1}	-	-	-

1. Determine the (worst-case) time complexity $T(n)$ and the (worst-case) space complexity $S(n)$ of M.
2. Determine the average-case time complexity $\bar{T}(n)$ and the average-case space complexity $\bar{S}(n)$ of M. (Assume that all 2^{n} input words of length n occur with the same probability, i.e., $1 / 2^{n}$.)
3. Bonus: Using results from Problem 41, express all answers in closed form, i.e., without the use of the summation symbol.

Problem 43. Let M be a Turing machine over the alphabet $\{0,1\}$ that takes as input a string $b_{1} b_{2} \ldots b_{n}\left(b_{i} \in\{0,1\}\right)$, prepends an additional 1 to the string and then interprets the result $1 b_{1} b_{2} \ldots b_{n}$ as the binary representation of a number $k . M$ then writes out the unary representation of k (consisting of a string of k letters 1) onto the tape and stops.
Note that in the above description it is not said how M computes the result. In particular M need not be the most efficient Turing machine fulfilling the above specification.

1. Give a reasonably close asymptotic lower-bound for the space- and timecomplexity $S(n)$ and $T(n)$ for the execution of the task and justify these bounds (without giving a detailed construction of M). Choose adequate Landau-symbols for formulating the bounds.
2. Give an informal description of a (reasonably efficient) Turing machine M^{\prime} that performs the task described above. Analyze the space and time complexity $S(n)$ and $T(n)$ and write down an upper/exact asymptotic bound for these complexities. Again choose adequate Landau symbols for formulating the bounds.
Hint: Let M^{\prime} apply the binary powering strategy.

Problem 44. Let X be a monoid. Device an "algorithm" (as recursive/iterative pseudo-code in the style of Chapter 6 of the lecture notes) for the computation of x^{n} for $x \in X, n \in \mathbb{N}$ that uses less multiplications than the naive algorithm of n times multiplying x to the result obtained so far. Determine the complexity as $M(n)$, i.e., the number of multiplications of your "algorithm" depending on the exponent n.
Hint: Note that x^{8} can be computed with just 3 multiplications while the naive algorithm would use 7 multiplications. Based on this observation, the algorithm can be based on a kind of "binary powering" strategy.

Problem 45. Let $T(n)$ be given by the recurrence relation

$$
T(n)=3 T(\lfloor n / 2\rfloor)
$$

and the initial value $T(1)=1$. Show that $T(n)=O\left(n^{\alpha}\right)$ with $\alpha=\log _{2}(3)$.
Hint: Define $P(n): \Longleftrightarrow T(n) \leq n^{\alpha}$. Show that $P(n)$ holds for all $n \geq 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

