
BeKomp Problem Set 7 due date: 09 Dezember 2020, 23:59 via Moodle

Problems Solved: 31 32 33 34 35

Name:

Matrikel-Nr.:

Problem 31. For a Turing machine M let P (M) be the following property: If
M runs at least 1000 steps on a word w, then w ∈ L(M). Note that there is
no statement about acceptance or non-acceptance if the machine runs less than
1000 steps.
In the following let M be a Turing machine that has the property P (M).

1. Is there a Turing machine E with P (E) such that ε ∈ L(E).

2. Is there a Turing machine E with P (E) such that ε /∈ L(E).

3. Is the property of L(M) to contain the empty word, decidable?

4. Is L(M) recursively enumerable?

5. Is the complement L(M) recursively enumerable?

6. Is L(M) recursive?

7. Is L(M) necessarily �nite?

8. Is L(M) necessarily in�nite?

Justify your answers.

Solution of Problem 31:

1. Yes. Namely, a TM that �rst runs 1000 (dummy) steps, then goes into
an accepting state and halts

2. Yes. Namely, a TM with the empty transition function (which accepts
nothing).

3. Yes. Simulate (at most) 1000 steps ofM on the empty word. If the empty
word is not accepted up to this point, return not accepted, otherwise
return accepted. That simulator decides the property in question.

4. Yes. L(M) is always recursively enumerable by de�nition.

5. Yes. For any word w one can run such a simulation of M for 1000 steps
and thus decide whether or not w ∈ L(M).

6. Yes. Previous two answers combined.

7. No. Property P (M) says nothing about the number of steps M really
takes on a word. For example, a TM X that accepts every word has
property P (X). So M = X is an example that violates �niteness of
L(M) = L(X).

8. No. A TMM that does not make a single step, does not accept anything
and still has the property P (M).

Berechenbarkeit und Komplexität, WS2020 1



BeKomp Problem Set 7 due date: 09 Dezember 2020, 23:59 via Moodle

Problem 32. Which of the following problems are decidable? In each problem
below, the input of the problem is the code 〈M〉 of a Turing machine M with
input alphabet {0, 1}.

(a) Does M have at least 4 states?

(b) Is L(M) ⊆ {0, 1}∗?

(c) Is L(M) recursive?

(d) Is L(M) �nite?

(e) Is 10101 ∈ L(M)?

(f) Is L(M) not recursively enumerable?

(g) Does there exist a word w ∈ L(M) such that M does not halt on w?

Justify your answer.

Solution of Problem 32:

Question a is �syntactical� and easy to decide. Question b does always have
the answer yes and is therefore decidable. Question f does always have the
answer no and is therefore decidable. Question g does always have the answer
no and is therefore decidable.

Questions c�e are undecidable by the Theorem of Rice. The properties of
L(M) are not trivial

Problem 33. LetM0,M1,M2, . . . be a list of all Turing machines with alphabet
Σ = {0, 1} such that the function i 7→ 〈Mi〉 is computable. Let wi := 10i10i1
for all natural numbers i. Let A := {wi | i ∈ N ∧ wi ∈ L(Mi)} and A = Σ∗ \A.

(a) Is A recursively enumerable? (Justify your answer.)

(b) Suppose there is an oracle XDelphi that decides the Halting problem, i. e.,
you can give to XDelphi the code 〈M〉 of a a Turing machine M and a word
w and XDelphi returns 1 (YES) or 0 (NO) depending on whether or not M
halts on w.

Show that one can construct an Oracle-Turing machine T (which is allowed
by a special extension to give some word 〈M〉 (a Turing machine code) and
a word w to XDelphi and gets back 1 or 0 depending on whether or not M
halts on w) such that L(T ) = A.

(c) Does it follow from (a) and (b) that XDelphi is not a Turing machine? Justify
your answer. Note that you are not allowed to use the fact that the Halting
problem is undecidable, but you must give a proof that only follows from
(a) and (b).

Solution of Problem 33:

Let W = {wi | i ∈ N} =
{

10i10i1
∣∣ i ∈ N

}
, W ′ = Σ∗ \W .

Berechenbarkeit und Komplexität, WS2020 2



BeKomp Problem Set 7 due date: 09 Dezember 2020, 23:59 via Moodle

(a) No. A is recursively enumerable. One can construct a Turing machine
U that generates successively all natural numbers i, then computes the
code 〈Mi〉 and the word wi and simulatesMi on input wi. IfMi accepts
wi, then U writes wi to its output tape.

Let A′ = {wi | i ∈ N ∧ wi /∈ L(Mi)}. Note that W ′ is recursive, since
W is. Since, A = W ′ ∪A′ and W ′ ∩A′ = ∅, it su�ces to show that A′

is not recursively enumerable.

Indirect proof. Suppose there is a Turing machine V with L(V ) = A′.
Then V = Mk for some natural number k. Consider the word wk. If
wk ∈ A then wk ∈ L(Mk) = L(V ) = A′ and, therefore, wk /∈ A.
If wk /∈ A then wk ∈ A′ = L(V ) = L(Mk). Therefore, wk ∈ A by
de�nition of A. So the assumtion that A′ is recursively enumerable is
false. Therefore also A is not recursively enumerable.

(b) T takes a word w and checks if it is in W . If it is not then w ∈ A and
T accepts w. If w ∈ W then w = wi for some i. T constructs this i
and computes the Turing machine code 〈Mi〉. Then T gives 〈Mi〉 and
w to the oracle XDelphi. If the answer is 0 then T accepts the word w.
Otherwise, T simulates Mi on w. Since Mi halts on w, T can read the
�nal state of Mi. If that state is a non-accepting state then T accepts
w, otherwise it does not accept w.

(c) Yes. Assume XDelphi is a Turing machine. By (b) we can conclude that
A is recursively enumerable. However, that contradicts (a). So the as-
sumption must be false.

Problem 34. Show that the Acceptance Problem is reducible to the restricted
Halting problem. First explain clearly which Turing machine you have to con-
struct to prove this statement and then give a reasonably detailed description
of this construction.

Solution of Problem 34:

Assume the restriced halting problem is decidable. There exists a TM MH

such that MH accepts input c, i� c is the code of a TM M and M halts on
ε.

Then we can de�ne a TM MA that accepts input (c, w) i� c is the code of a
TM M that accepts the word w.

MA works as follows. If c is not a well-formed Turing machine code, thenMA

does not accept its input. Otherwise MA slightly modi�es c to the code c′ of
a TM M ′ which halts on ε i� M accepts w.

Thus c′ is constructed such that

(a) M ′ �rst writes w on the tape,

(b) when M halts and does not accept w, then M ′ does not halt. In other
words, for each non-accepting state and each letter σ where there is no
transition in M , it adds a transition to a new state qloop and this state
�loops� for every letter to itself.

This modi�cation of c to c′ is clearly computable by a Turing machine.

Berechenbarkeit und Komplexität, WS2020 3



BeKomp Problem Set 7 due date: 09 Dezember 2020, 23:59 via Moodle

MA passes c′ to MH . If MH accepts c′ then MA accepts (c, w). If MH does
not accept c′ then MA does not accepts (c, w).

In fact, this �proof� contains a gap. It might happen that M does not accept
w, because M starts on w and �rst tries to move its head to the left. This
situation is not covered by the above construction. But it is easy to remedy
this by assuming that the tape is in�nite in both directions or by introducing
a new tape symbol X that is used as an end marker on the left. Thus, M ′

would have to write Xw on the tape then position it's head on the beginning
of w. Furthermore, c has to be extended in such a way that wheneverM ′ hits
X it loops forever. Clearly, also this can be done by a Turing machine.

Problem 35. Let a language L = L(T ) ⊆ {0, 1}∗ be given by the code of a
Turing machine 〈T 〉. It is known that ε ∈ L.
Let S0 be the set of Turing machines of the form (Q, {0, 1, X,t} ,t, {0, 1} , δ, q0, ∅).
Let S1 be the set of Turing machines of the form (Q, {0, 1, X,t} ,t, {0, 1} , δ, q0, Q).
Is it decidable whether L = L(M) and M ∈ S0? That is: Is there a Turing
machine D0 such that it takes a word w as input and returns �yes� if w = 〈M〉
for a TM M ∈ S0 with the property L(M) = L, and returns �no� otherwise?
What is the answer, if you replace S0 by S1? Justify your answers.

Solution of Problem 35:

The answer for S0 is clearly, �decidable�. D0 simply always say �no�. The
reason that D0 doesn't have to look at it's input is that no TM in S0 accepts
anything, i. e., L(M) = ∅ for every M ∈ S0. Since ε ∈ L 6= ∅ = L(M), D0

can always say �no�.

For S1 the answer is not that easy, because, there is no condition that says
that M ∈ S1 always halts. However, the problem can be solved using the
Theorem of Rice.

Suppose X is a Turing machine. One can construct from X a TM M with
L(M) = L(X) and M ∈ S1, i.e., there is a computable mapping f such that
f(〈X〉) = 〈M〉 (with M as just described).

The construction ofM works as follows:M is identical to X, exept that ifM
halts in a non-accepting state, the transition function for M is modi�ed such
that it leads to a new (accepting) state andM never halts in that state. Then
every non-accepting state can be turned into an accepting state (because M
never halts in such a state). So M accepts the same langauge as X, but
whenever X would halt in an accepting state, M does not halt (i.e., does
not accept the word, even though it �loops� inde�nitely between accepting
states).

We have shown above that the condition M ∈ S1 is not really a restriction,
because if we �nd a TM X with L(X) = L = L(T ), we can also �nd a TM
M with L(M) = L and M ∈ S1.

Our task is to �nd out whether P1 = {〈M〉 |L(M) = L ∧M ∈ S1 } is decid-
able.

We prove that P1 is undecidable by an indirect proof. Suppose P1 is decidable.
Then the set P = {〈X〉 |L(X) = L} would also be decidable, because one
can build a TM D1 that takes 〈X〉 as input and simply decides whether or

Berechenbarkeit und Komplexität, WS2020 4



BeKomp Problem Set 7 due date: 09 Dezember 2020, 23:59 via Moodle

not f(〈X〉) ∈ P1. However, P = PS for the nontrivial Problem S = {L} (see
Lecture notes Def. 43). By the Theorem of Rice, PS is undecidable and so
the assumption must be wrong, i. e., P1 must also be undecidable.

Berechenbarkeit und Komplexität, WS2020 5


