
BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

Problems Solved: 26 27 28 29 30

Name:

Matrikel-Nr.:

Problem 26. Consider the following term rewriting system:

(Rule 1) p(x, s(y))→ p(s(s(x)), y)

(Rule 2) p(x, 0)→ s(x)

1. Show that

p(0, s(p(0, s(0))))
∗→ s(s(s(s(s(s(s(s(s(0)))))))))

by a suitable reduction sequence. For each reduction step, underline the
subterm that you reduce, and indicate the reduction rule and the matching
substitution σ used explicitly.

2. Prove or disprove (an informal argument su�ces)

p(0, p(0, p(0, p(0, s(0)))))
∗→ s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(︸ ︷︷ ︸

16×s

0)))))))))))))))).

Solution of Problem 26:

1.

p(0, s(p(0, s(0))))
(1)→ p(0, s(p(s(s(0)), 0)))

(1)→ p(0, s(s(s(s(0)))))

(1)→ p(s(s(0)), s(s(s(0))))

(1)→ p(s(s(s(s(0)))), s(s(0)))

(1)→ p(s(s(s(s(s(s(0)))))), s(0))

(1)→ p(s(s(s(s(s(s(s(s(0)))))))), 0)

(2)→ s(s(s(s(s(s(s(s(s(0)))))))))

2. Clearly, any s in the second argument of p leads to 2 s in the �rst
argument. Consider the outermost p. After resolving the inner p by Rule
1 and Rule 2, there will be an even number of s in the �rst argument of
the outermost p and a 0 in the second argument. Applying Rule 2 leads
to an odd number of s in the result. That number is, therefore not equal
to 16. Informally, p is the function (x, y) 7→ x + 2y + 1. If x = 0, then
the result cannot be 16.

Berechenbarkeit und Komplexität, WS2020 1

BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

Problem 27. Construct a DFSM recognizing L(G) whereG = ({A,B} , {a, b, c} , P,A)
with the production rules P given by

A→ aA|bA|cA|bB|cB,
B → cA|cB|b|c.

Hint: Start by a constructing a NFSM N . Then turn N into a DFSM D such
that L(G) = L(N) = L(D).
�Construct� means to explain how you turn the grammar into a DFSM. Simply
writing down a DFSMD with the required property, does not count as a solution
unless you prove that L(G) = L(D).

Solution of Problem 27:

Since this grammar has a particular form, we �rst turn it into a NFSM N
that accepts the same language. The terminal symbols will form the alphabet
of N . Every non-terminal symbol of the grammar becomes a state of N .
Additionally, we use a state X for the case that there is no non-terminal
symbol on the right of a rule. X is also the only accepting state. Let the
NDFSM N = (Q,Σ, ν, A, F) where Q = {A,B,X}, Σ = {a, b}, F = {X}.
The transition function δ : Q × Σ → Q can be constructed from looking at
the production rules. Every rule of the form U → σV becomes a transition
from state U to state V labelled with the letter σ, i.e., the graph of ν is as
follows.

Astart B

X

a, b, c

b, c
c

c

b, c

This NFSM N can easily be translated into a DFSM

D = ({{A} , {A,B} , {A,B,C}} , {a, b, c} , δ, {A} , {{A,B,X}})

by the general powerset construction where δ is given as follows.

{A}start {A,B}

{A,B,X}

a

b, c

a b, c

b, c

a

Berechenbarkeit und Komplexität, WS2020 2

BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

Problem 28. Let Q(x) =
{
y ∈ N

∣∣x ≤ y2} ⊆ N and f : N→ N be the (partial)
function

f(x) =

{
minQ(x) if Q(x) 6= ∅,
unde�ned otherwise.

1. Is f LOOP-computable?

2. Is f a primitive recursive function?

3. Is f a WHILE-computable function?

4. Is f a µ-recursive function?

In each case justify your answer. If it is yes, give a corresponding program and/or
an explicit de�nition as a (primitive/µ-) recursive function.
Remark: When de�ning f , you are allowed to use the De�nition 29 and 30
from the lecture notes and the primitive recursive functions (respectively loop
programs computing these functions)

m : N2 → N, (x, y) 7→ x · y

u : N2 → N,

u(x, y) =

{
0 if x = y,

1 if x 6= y.

and IF : N3 → N,

IF (x, y, z) =

{
y if x = 0

z otherwise.

Other functions or rules are forbidden.

Solution of Problem 28:

Of course, the answer is yes in all four cases. If you can de�ne a function by
mu-recursion, it may be nevertheless also primitive recursive.

1. Clearly Q(x) is non-empty for any x ∈ N, i.e., f is a total function. It is
LOOP-computable, because the following program computes f .

(input is in x1, output is in x0)

x 0 := 0 ; // r e s u l t
x 2 := 0 ; // s t a r t w i th y=0
LOOP x 1 DO

x 3 := 0 ;
LOOP x 2 DO LOOP x 2 DO x 3 :=x 3+1; END ; END ; // x 3=y^2
// i f x 3 < x 1 then x 0 := x 2 + 1 ; END ;
x 4 := x 1 ;
LOOP x 3 DO x 4 := x 4 − 1 ; END ; // x 4 := x 1 − x 3 −− x−y^2
LOOP x 4 DO x 0 := x 2 + 1 ; // i f 0 < x 4 then x 0 := x 2 + 1
x 2 := x 2 + 1 ;

END ;

Berechenbarkeit und Komplexität, WS2020 3

BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

2. We can compute the �rst values for (x, f(x)) for n = 0, 1, . . . 10. That
results in

(0, 0), (1, 1), (2, 2)(3, 2), (4, 2), (5, 3), (6, 3), (7, 3), (8, 3), (9, 3), (10, 4)

Note that

f(x) = f(x− 1) if f(x− 1)2 6= (x− 1) (1)

and

f(x) = f(x− 1) + 1 if f(x− 1)2 = (x− 1). (2)

Unfortunately, the condition is not of the form y = 0, so we must move
it �somehow� into the �rst argument of a two-argument function h.

Note that for primitive recursive functions, the recursion scheme is the
only way to provide case distinctions. We start with an ansatz for a yet
unknown function g.

f(x) =

{
0 if x = 0,

g(x− 1, f(x− 1)) otherwise.

If we want to use the conditions (1) and (2) from above, we must com-
pare the square of the second argument of g(a, b) with its �rst argument.
Note that a and b correspond to x−1 and f(x−1), respectively. We can
use the function u via u(a, b2) in order to get a result 0 (not equal) or 1
(equal). Since in the primitive recursion scheme, one can �branch� upon
a zero test of the �rst argument, we introduce another function h such
that g(a, b) = h(u(a, b2), b). Note that this equation is not formally a
correct application of the composition scheme from De�nition 29 of the
lecture notes. We make it formal later. Let's �rst deal with a de�nition
of the (yet unknown) funktion h. If the �rst argument of h is zero, then
we are in the case f(x − 1)2 6= (x − 1), thus we can simply return the
second argument of h. Otherwise, we just apply the recursion scheme
with a (yet unknown) function i.

h(y, x) =

{
proj11(x) if y = 0,

i(y − 1, h(y − 1, x), x) otherwise.

Note that, the recursion scheme wants a function with one argument
in case y = 0, so formally we have to write proj11(x) instead of simply
writing x. According condition (2), the function i should return the
successor of its last argument, i.e.,

i(x, y, z) = s(proj33(x, y, z))

Now we de�ne g in a formal way. For that we need some helper functions
p and q. Whereas q stands for squaring its second argument, p(a, b) is

Berechenbarkeit und Komplexität, WS2020 4

BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

needed to form u(a, b2) in a formal manner by applying the composition
scheme.

g(a, b) = h(p(a, b),proj22(a, b))

p(a′, b′) = u(proj21(a′, b′), q(a′, b′))

q(a′′, b′′) = m(proj22(a′′, b′′),proj22(a′′, b′′)) (b′′)2

3. The LOOP-program from above is also a WHILE-programm.

4. A primitive recursive function is µ-recursive.

Problem 29. According to De�nition 32 of the lecture notes, there are no
natural numbers in Lambda calculus. However, natural numbers can be encoded
(known as Church encoding) as �Church numerals� (see below), i.e., as functions
n that map any function f to its n-fold application fn = f ◦ . . . ◦ f . Note that
we denote such a �natural number� representation via boldface symbols in order
to emphasize that these are lambda terms. In other words, we de�ne Church
numerals as follows. By letting �application� bind stronger than �abstraction�,
we avoid writing parentheses where appropriate.

0 = λf.λx.x

1 = λf.λx.fx

2 = λf.λx.f(fx)

3 = λf.λx.f(f(fx))

4 = λf.λx.f(f(f(fx)))

...

n = λf.λx. f(· · · (f︸ ︷︷ ︸
n-fold

x) · · ·)

1. De�ne a lambda term add that represents addition of �Church numerals�.

2. Show the intermediate steps of a reduction from ((add 2) 1) to 3.

Hint: a bit of literature research may help.

Solution of Problem 29:

Except for the derivation, the solution is more or less given here. https:
//en.wikipedia.org/wiki/Church_encoding In other words, this task ac-
tually asks the students �nd (maybe in books or on the Internet) a de�nition
of add and how to apply the normal form algorithm in Lambda calculus.
Additionally, the student learns how natural numbers can be embedded into
lambda calculus.

1. Clearly, if n is a natural number, then nf stands for the lambda term
of n-fold application of f and (nf)x for the lambda term of n-fold
application of f to x. Similarly for (mf)y. If we now replace y in the

Berechenbarkeit und Komplexität, WS2020 5

https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Church_encoding

BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

second term by (nf)x, the result would be (m+n)-fold application of f
to x. We only have to abstract in order to arrive at our additon function.

add = λm.λn.λf.λx.((mf)((nf)x)) (3)

2. Here is the derivation to add 2 and 1.

((add 2) 1) = ((λm.λn.λf.λx.((mf)((nf)x))) 2) 1

→ (λn.λf.λx.((2f)((nf)x))) 1

→ λf.λx.(2f)((1f)x)

= λf.λx.(2f)(((λg.λy.gy)f)x)

→ λf.λx.(2f)((λy.fy)x)

→ λf.λx.((λg.λy.g(gy))f)(fx)

→ λf.λx.(λy.f(fy))(fx)

→ λf.λx.f(f(fx))

= 3

Problem 30. Let Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and

e =

∞∑
k=0

1

k!
.

Furthermore let for a natural number n > 0 the word wn be given as the �rst n
digits after the comma in the decimal expansion of e and L = {wn |n ∈ N \ {0}}.

(a) Is there a grammar G with Σ as the set of terminal symbols such that
L(G) = L?

(b) Is L a context-free language?

Prove your answers!
Hint: Please note that e can be computed with arbitrary precision by evaluating
a su�ciently large number of summands in the summation term.
For the proof of the second part of the task you have to look into additional
literature. In particular, look for the Pumping Lemma for context-free languages.

Solution of Problem 30:

(a) According to a theorem from the lecture, every recursively enumerable
language can be described by a grammar. According to the hint, L is
recursively enumerable, a TM that generates L can easily be constructed.

(b) The proof is indirect. Suppose L is context-free. Then according to the
Pumping Lemma there is a number n such that for every word z ∈ L,
with |z| > n there is a splitting z = uvwxy with

(i) |vwx| ≤ n,
(ii) |vx| > 0,

(iii) ∀i ∈ N : uviwxiy ∈ L.

Berechenbarkeit und Komplexität, WS2020 6

BeKomp Problem Set 6 due date: 02 Dezember 2020, 23:59 via Moodle

Since in L there are no 2 words of the same length and all words of
L correspond to the digits of e, it means that the decimal expansion
of e is periodic from a certain point on. A periodic decimal expansion,
however, means that e is a rational number, in contrast to the fact that
e is irrational. Therefore, the assumption is wrong and L is not context-
free.

Berechenbarkeit und Komplexität, WS2020 7

